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Abstract

The ubiquity of missing values in real-world datasets poses a challenge for statistical inference 

and can prevent similar datasets from being analyzed in the same study, precluding many 

existing datasets from being used for new analyses. While an extensive collection of packages 

and algorithms have been developed for data imputation, the overwhelming majority perform 

poorly if there are many missing values and low sample sizes, which are unfortunately common 

characteristics in empirical data. Such low-accuracy estimations adversely affect the performance 

of downstream statistical models. We develop a statistical inference framework for regression 
and classification in the presence of missing data without imputation. Our framework, RIFLE 

(Robust InFerence via Low-order moment Estimations), estimates low-order moments of the 

underlying data distribution with corresponding confidence intervals to learn a distributionally 

robust model. We specialize our framework to linear regression and normal discriminant analysis, 

and we provide convergence and performance guarantees. This framework can also be adapted 

to impute missing data. In numerical experiments, we compare RIFLE to several state-of-the-art 

approaches (including MICE, Amelia, MissForest, KNN-imputer, MIDA, and Mean Imputer) for 

imputation and inference in the presence of missing values. Our experiments demonstrate that 

RIFLE outperforms other benchmark algorithms when the percentage of missing values is high 

and/or when the number of data points is relatively small. RIFLE is publicly available at https://

github.com/optimization-for-data-driven-science/RIFLE.

1 Introduction

Machine learning algorithms have shown promise when applied to various problems, 

including healthcare, finance, social data analysis, image processing, and speech 

recognition. However, this success mainly relied on the availability of large-scale, high-

quality datasets, which may be scarce in many practical problems, especially in medical 

and health applications (Pedersen et al., 2017; Sterne et al., 2009; Beaulieu-Jones et al., 

2018). Moreover, many experiments and datasets suffer from the small sample size in such 

applications. Despite the availability of a small number of data points in each study, an 
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increasingly large number of datasets are publicly available. To fully and effectively utilize 

information on related research questions from diverse datasets, information across various 

datasets (e.g., different questionnaires from multiple hospitals with overlapping questions) 

must be combined in a reliable fashion.

After integrating data from different studies, the obtained dataset can contain large blocks of 

missing values, as they may not share the same features (Figure 1).

There are three general approaches for handling missing values in statistical inference 

(classification and regression) tasks. A Naïve method is to remove the rows containing 

missing entries. However, such an approach is not an option when the percentage of 

missingness in a dataset is high. For instance, as demonstrated in Figure 1, the entire dataset 

will be discarded if we eliminate the rows with at least one missing entry.

The most common methodology for handling missing values in a learning task is to impute 

them in a pre-processing stage. The general idea behind data imputation is that the missing 

values can be predicted using the available data entries and correlated features. Imputation 

algorithms cover a wide range of methods, including imputing missing entries with the 

columns means Little & Rubin (2019, Chapter 3) (or median), least-square and linear 

regression-based methods (Raghunathan et al., 2001; Kim et al., 2005; Zhang et al., 2008; 

Cai et al., 2006; Buuren & Groothuis-Oudshoorn, 2010), matrix completion and expectation 

maximization approaches Dempster et al. (1977); Ghahramani & Jordan (1994); Honaker 

et al. (2011), KNN based (Troyanskaya et al., 2001), Tree based methods (Stekhoven & 

Bühlmann, 2012; Xia et al., 2017), and methods using different neural network structures. 

Appendix A presents a comprehensive review of these methods.

The imputation of data allows practitioners to run standard statistical algorithms requiring 

complete data. However, the prediction model’s performance can be highly reliant on the 

accuracy of the imputer. High error rates in the prediction of missing values by the imputer 

can lead to the catastrophic performance of the downstream statistical methods executed on 

the imputed data.

Another class of methods for inference in the presence of missing values relies on robust 

optimization over the uncertainty sets on missing entries. Shivaswamy et al. (2006) and Xu 

et al. (2009) adopt robust optimization to learn the parameters of a support vector machine 

model. They consider uncertainty sets for the missing entries in the dataset and solve a 

min-max problem over those sets. The obtained classifiers are robust to the uncertainty 

of missing entries within the uncertainty regions. In contrast to the imputation-based 

approaches, the robust classification formulation does not carry the imputation error to 

the classification phase. However, finding appropriate intervals for each missing entry is 

challenging, and it is unclear how to determine the uncertainty range in many real datasets. 

Moreover, their proposed algorithms are limited to the SVM classifier.

In this paper, we propose RIFLE (Robust InFerence via Low-order moment Estimations) 

for the direct inference of a target variable based on a set of features containing missing 

values. The proposed framework does not require the data to be imputed in a pre-processing 

stage. However, it can also be used as a pre-processing tool for imputing data. The main 
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idea of the proposed framework is to estimate the first and second-order moments of the data 

and their confidence intervals by bootstrapping on the available data matrix entries. Then, 

RIFLE finds the optimal parameters of the statistical model for the worst-case distribution 

with the low-order moments (mean and variance) within the estimated confidence intervals 

(See Figure 2). Compared to Shivaswamy et al. (2006); Xu et al. (2009), we estimate 

uncertainty regions for the low-order marginals using the Bootstrap technique. Furthermore, 

our framework is not restricted to any particular machine learning model, such as support 

vector machines (Xu et al., 2009).

Contributions:

Our main contributions are as follows:

1. We present a distributionally robust optimization framework over the low-order 

marginals of the training data distribution for inference in the presence of 

missing values. The proposed framework does not require data imputation as 

a pre-processing stage. In Section 3 and Section 4, we specialize the framework 

to ridge regression and classification models as two case studies respectively. 

The proposed framework provides a novel strategy for inference in the presence 

of missing data, especially for datasets with large proportions of missing values.

2. We provide theoretical convergence guarantees and the iteration complexity 

analysis of the presented algorithms for robust formulations of ridge linear 

regression and normal discriminant analysis. Moreover, we show the consistency 

of the prediction under mild assumptions and analyze the asymptotic statistical 

properties of the solutions found by the algorithms.

3. While the robust inference framework is primarily designed for direct statistical 

inference in the presence of missing values without performing data imputation, 

it can also be adopted as an imputation tool. To demonstrate the quality of 

the proposed imputer, we compare its performance with several widely-used 

imputation packages such as MICE (Buuren & Groothuis-Oudshoorn, 2010), 

Amelia (Honaker et al., 2011), MissForest (Stekhoven & Bühlmann, 2012), 

KNN-Imputer (Troyanskaya et al., 2001), MIDA (Gondara & Wang, 2018), 

GAIN (Yoon et al., 2018) on real and synthetic datasets. Generally speaking, our 

method outperforms all of the mentioned packages when the number of missing 

entries is large.

2 Robust Inference via Estimating Low-order Moments

RIFLE is based on a distributionally robust optimization (DRO) framework over low-order 

marginals. Assume that (x, y) ∈ ℝd × ℝ follows a joint probability distribution P∗. A standard 

approach for predicting the target variable y given the input vector x is to find the parameter 

θ that minimizes the population risk with respect to a given loss function ℓ:

min
θ

E(x, y) ∼ P∗ ℓ x, y; θ .

(1)
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Since the underlying distribution of data is rarely available in practice, the above problem 

cannot be directly solved. The most common approach for approximating (1) is to minimize 

the empirical risk with respect to n given i.i.d samples (x1, y1), …, (xn, yn) drawn from the joint 

distribution P∗:

min
θ

1
n ∑

i = 1

n
ℓ(xi, yi; θ) .

The above empirical risk formulation assumes that all entries of xi and yi are available. Thus, 

to utilize the empirical risk minimization (ERM) framework in the presence of missing 

values, one can either remove or impute the missing data points in a pre-processing stage. 

Training via robust optimization is a natural alternative in the presence of missing data. 

Shivaswamy et al. (2006); Xu et al. (2009) suggest the following optimization problem that 

minimizes the loss function for the worst-case scenario over the defined uncertainty sets per 

data points:

min
θ

max
{δi ∈ Ni}i = 1

n

1
n ∑

i = 1

n
ℓ(xi − δi, yi; θ),

(2)

where Ni represents the uncertainty region of data point i. Shivaswamy et al. (2006) obtains 

the uncertainty sets by assuming a known distribution on the missing entries of datasets. 

The main issue in their approach is that the constraints defined on data points are totally 

uncorrelated. Xu et al. (2009) on the other hand defines Ni as a “box” constraint around 

the data point i such that they can be linearly correlated. For this specific case, they show 

that solving the corresponding robust optimization problem is equivalent to minimizing 

a regularized reformulation of the original loss function. Such an approach has several 

limitations: First, it can only handle a few special cases (SVM loss with linearly correlated 

perturbations on data points). Furthermore, Xu et al. (2009) is primarily designed for 

handling outliers and contaminated data. Thus, they do not offer any mechanism for the 

initial estimation of xi when several vector entries are missing. In this work, we instead 

take a distributionally robust approach by considering uncertainty on the data distribution 

instead of defining an uncertainty set for each data point. In particular, we aim to fit the best 

parameters of a statistical learning model for the worst distribution in a given uncertainty set 

by solving the following:

min
θ

max
P ∈ P

E(x, y) ∼ P[ℓ(x, y; θ)],

(3)

where P is an uncertainty set over the underlying distribution of data. A key observation 

is that defining the uncertainty set P in (3) is easier and computationally more efficient 

than defining the uncertainty sets {Ni}i = 1
n  in (2). In particular, the uncertainty set P
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can be obtained naturally by estimating low-order moments of data distribution using 

only available entries. To explain this idea and to simplify the notations, let z = (x, y), 

μ̄z ≜ E[z], and C̄z ≜ E[zzT ]. While μ̄z and C̄z are typically not known exactly, one can 

estimate the (within certain confidence intervals) from the available data by simply ignoring 

missing entries (assuming the missing value pattern is completely at random, e.g., MCAR). 

Moreover, we can estimate the confidence intervals via bootstrapping. Particularly, we can 

estimate μmin
z , μmax

z , Cmin
z , and Cmax

z  from data such that μmin
z ≤ μ̄z ≤ μmax

z  and Cmin
z ≤ C̄z ≤ Cmax

z  with 

high probability (where the inequalities for matrices and vectors denote component-wise 

relations). In Appendix B, we show how a bootstrapping strategy can be used to obtain the 

confidence intervals described above. Given these estimated confidence intervals from data, 

(3) can be reformulated as

min
θ

max
P

EP[ℓ(z; θ)]

s.t. μmin
z ≤ EP[z] ≤ μmax

z ,
Cmin

z ≤ EP[zzT ] ≤ Cmax
z .

(4)

Gao & Kleywegt (2017) utilize the distributionally robust optimization as (3) over the set 

of positive semi-definite (PSD) cones for robust inference under uncertainty. While their 

formulation considers ℓ2 balls for the constraints on low order moments of the data, we 

use ℓ∞ constraints that are computationally more natural in the presence of missing entries 

when combined with bootstrapping. Furthermore, while it can be applied to general convex 

losses, their method relies on the ellipsoid and the existence of oracles for performing 

the steps of the ellipsoid method, which is not applicable in modern high-dimensional 

problems. Moreover, they assume concavity in data (the existence of some oracle to return 

the worst-case data points) that is practically unavailable even in convex loss functions 

(including linear regression and normal discriminant analysis studied in our work).

In Section 3, we study the proposed distributionally robust framework described in (4) for 

the ridge linear regression. We design efficient first-order convergent algorithms to solve the 

problem and show how we can use the algorithms for both inference and imputation in the 

presence of missing values. Further, in Appendix F, we study the proposed distributionally 

robust framework for the classification problems under the normality assumption of features. 

In particular, we show how Framework (4) can be specialized to the robust normal 

discriminant analysis in the presence of missing values.

3 Robust Linear Regression in the Presence of Missing Values

Let us specialize our framework to the ridge linear regression model. In the absence of 

missing data, ridge regression finds optimal regressor parameter θ by solving

min
θ

‖Xθ − y‖2
2 + λ‖θ‖2

2,

or equivalently by solving:
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min
θ

θTXTXθ − 2θTXTy + λ‖θ‖2
2 .

(5)

Thus, having the second-order moments of the data C = XTX and b = XTy is sufficient for 

finding the optimal solution. In other words, it suffices to compute the inner product of 

any two column vectors ai, aj of X, and the inner product of any column ai of X with 

vector y. Since the matrix X and vector y are not fully observed due to the existence of 

missing values, one can use the available data (see (24) for details) to compute the point 

estimators C0 and b0. These point estimators can be highly inaccurate, especially when the 

number of non-missing rows for two given columns is small. In addition, if the pattern of 

missing entries does not follow the MCAR assumption, the point estimators are not unbiased 

estimators of C and b.

3.1 A Distributionally Robust Formulation of Linear Regression

As we mentioned above, to solve the linear regression problem, we only need to estimate 

the second-order moments of the data (XTX and XTy). Thus, the distributionally robust 

formulation described in (4) is equivalent to the following optimization problem for the 

linear regression model:

min
θ

max
C, b

θTCθ − 2bTθ + λ‖θ‖2
2

s.t. C0 − cΔ ≤ C ≤ C0 + cΔ,
b0 − cδ ≤ b ≤ b0 + cδ,
C ≻ 0,

(6)

where the last constraint guarantees that the covariance matrix is positive and semi-definite. 

We dicuss the procedure of estimating the confidence intervals (b0, C0, δ, and Δ) in Appendix 

B.

3.2 RIFLE for Ridge Linear Regression

Since the objective function in (6) is convex in θ (ridge regression) and concave in b and C
(linear), the minimization and maximization sub-problems are interchangeable (Sion et al., 

1958). Thus, we can equivalently rewrite Problem (6) as:

max
C, b

g(C, b)

s.t. C0 − cΔ ≤ C ≤ C0 + cΔ,
b0 − cδ ≤ b ≤ b0 + cδ,
C ≻ 0,

(7)

where g(b, C) = minθθTCθ − 2bTθ + λ‖θ‖2. Function g can be computed in closed-form given 

any pair of (C, b) by setting θ = (C + λI)−1b. Thus, using Danskin’s Theorem (Danskin, 
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2012), we can apply projected gradient ascent to function g to find an optimal solution of 

(7) as described in Algorithm 1. At each iteration of the algorithm, we first perform one 

step of projected gradient ascent on matrix C and vector b; then we update θ in closed-form 

for the obtained C and b. We initialize C and b using entriwise point estimation on the 

available rows (see Equation (24) in Appendix B). The projection of b to the box constraint 

b0 − cδ ≤ b ≤ b0 + cδ can be done entriwise and has the following closed-form

Πδ(bi) =
bi if b0i − cδi ≤ bi ≤ b0i + cδi,
b0i − cδi if bi < b0i − cδi,
b0i + cδi if b0i + cδi < bi .

Algorithm 1 RIFLE for Ridge Linear Regression in the Presence of Missing Values

1: Input:C0, b0, Δ, δ, T
2: Initialize:C = C0, b = b0 .
3: for i = 1, …, T do

4: Update C = ΠΔ + [C + αθθT ]
5: Update b = Πδ(b − 2αθ)

6: Set θ = (C + λI)−1b

Theorem 1. Let (θ, C, b) be the optimal solution of (6), 

θ∗(b, C) = arg minθθTCθ − 2bTθ + λ‖θ‖2, and D = ‖C0 − C‖F
2 + ‖b0 − b‖2

2
. Assume that for any 

given b and C, within the uncertainty (constraint) sets described in (6), ‖θ∗(b, C)‖ ≤ τ. Then 

Algorithm 1 computes an ϵ-optimal solution of the objective function in (7) in O D(τ + 1)2
λϵ

iterations.

Proof. The proof is relegated to Appendix H.

In Appendix C, we show how using the acceleration method of Nesterov can improve the 

convergence rate of Algorithm 1 to O D(τ + 1)2
ϵλ . A technical issue of Algorithm 1 and 

its accelerated version presented in Appendix C is that projection of C to the intersection 

of box constraints and the set of positive semidefinite matrices (ΠΔ + [C]) is challenging 

and cannot be done in closed-form. In the implementation of Algorithm 1, we relax the 

problem by removing the PSD constraint on C to avoid this complexity and time-consuming 

singular value decomposition at each iteration. This relaxation does not drastically change 

the algorithm’s performance, as our experiments show in Section 5. A more systematic 

approach is to write the dual problem of the maximization problem and handle the resulting 

constrained minimization problem with the Alternating Direction Method of Multipliers 

(ADMM). The detailed procedure of such an approach can be found in Appendix D. All 

these algorithms are provably convergent to the optimal points of Problem (6). In addition 

to theoretical convergence, we have numerically evaluated the convergence of resulting 
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algorithms in Appendix K. Further, the proposed algorithms are consistent, as discussed in 

Appendix J.

3.3 Performance Guarantees for RIFLE

Thus far, we have discussed how to efficiently solve the robust linear regression problem 

in the presence of missing values. A natural question in this context is the statistical 

performance of the obtained optimal solution in the previous section on the unseen test data 

points. Theorem 2 answers this question from two perspectives: Assuming that the missing 

values are distributed completely at random, our estimators are consistent. Moreover, for the 

finite case, Theorem 2 part (b) states that with the proper choice of confidence intervals, 

with high probability, the test loss of the obtained solution is bounded by the training loss 

of the estimator. Note that the results regarding the performance of the robust estimator 

generally hold for MCAR missing pattern. However, we perform several experiments on 

datasets with MNAR patterns to show how RIFLE works in practice on such datasets in 

Section 5.

Theorem 2. Assume the data domain is bounded and that the missing pattern of the 

data follows MCAR. Let Xn × d, y be the training data drawn i.i.d. from the ground-truth 

distribution P∗ with low-order moments C∗ and b∗. Further, assume that each entry of X and 

y is missing with probability p < 1. Let (θn, Cn, bn) be the solution of Problem (6).

(a) Consistency of the Covariance Estimator: As the number of data points goes 

to infinity, the estimated low-order marginals converge to the ground-truth values, almost 

surely. More precisely,

lim
n ∞

Cn = EP∗[xxT ], a . s . ,

(8)

lim
n ∞

bn = EP∗[xy], a . s .

(9)

(b) Defining—

Ltrain(θn) = θn
TCnθn − 2bnθn + λ‖θn‖2

2

Ltest(θn) = θn
TC∗θn − 2b ∗ T θn + λ‖θn‖2

2,
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where C∗ = E(x, y) ∼ P∗[xxT ] and b∗ = E(x, y) ∼ P∗[xy] are the ground-truth second-order moments. 

Given V = maxi, jVar(XiXj) (maximum variance of pairwise feature products), with the 

probability of at least 1 − d2V
22c2Δ2n(1 − p)

, we have:

Ltest(θ) ≤ Ltrain(θ),

(10)

where Δ = min{Δij} and c is the hyper-parameter for controlling the size of the confidence 

intervals as presented in (6)

Proof. The proof is relegated to Appendix H.

3.4 Imputation of Missing Values and Going Beyond Linear Regression

RIFLE can be used for imputing missing data. To this end, we impute different features of 

a given dataset independently. More precisely, to impute each feature containing missing 

values, we consider it as a target variable y and the rest of the features as the input X in our 

methodology. Then, we train a model to predict the feature y given X via Algorihm 1 (or its 

ADMM version, Algorithm 7, in the appendix). Let the obtained optimal solutions be C∗, 

b∗, and θ∗. For a given missing entry, we can use θ∗ only if all other features in the row of 

that missing entry are available. However, that is not usually the case in practice, as each row 

can contain more than one missing entry. Therefore, one can learn a separate model for each 

missing pattern in the dataset. Let us clarify this point through the example in Figure 1. In 

this example, we have three different missing patterns (one missing pattern for each dataset). 

For missing entries in Dataset 1, the first forty features are available. Let rj denote the vector 

of the first 40 features in row j. Assume that we aim to impute entry i ∈ {41, …, 100} in row 

j where i denoted by xji. To this end, we restrict X to the first 40 features. Moreover, we 

consider y = xi as the target variable. Then, we run Algorithm 1 on X and y to obtain the 

optimal C∗, bi
∗, and θi

∗. Consequently, we impute xji as follows:

xji = rj
Tθi

∗

We can use the same methodology for imputing missing entries in each feature for missing 

patterns in Dataset 2 and Dataset 3. While this approach is reasonable for the missing 

pattern observed in Figure 1, in many practical problems, different rows can have distinct 

missing patterns. Thus, in the worst case, Algorithm 1 must be executed once for each 

missing entry. Such an approach is computationally expensive and might be infeasible in 

large-scale datasets containing large amounts of missing entries. Alternatively, one can 

perform Algorithm 1 only once to obtain C∗ and b∗ (considered the “worst-case/pessimistic” 

estimation of the moments). Then to impute each missing entry, C∗ and b∗ are restricted 

to the features available in that missing entry’s row. Having the restricted C∗ and b∗, the 

regressor θ∗ can be obtained in closed-form (line 6 in Algorithm 1). In this approach, we 

Baharlouei et al. Page 9

Transact Mach Learn Res. Author manuscript; available in PMC 2024 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



perform algorithm 1 once and find the optimal θ∗ for each missing entry based on the 

estimated C∗ and b∗. This approach can lead to sub-optimal solutions compared to the 

former approach, but it is much faster and more scalable.

Beyond Linear Regression: While the developed methods are primarily designed for 

ridge linear regression, one can apply non-linear transformations (kernels) to obtain models 

beyond linear. In Appendix E, we show how to extend the developed algorithms to quadratic 

models. The RIFLE framework applied to the quadratically transformed data is called 

QRIFLE.

4 Robust Classification Framework

In this section, we study the proposed framework in (4) for the classification tasks 

in the presence of missing values. Since the target variable y ∈ Y = {1, …, M} takes 

discrete values in classification tasks, we consider the uncertainty sets over the data’s 

first- and second-order marginals given each target value (label) separately. Therefore, the 

distributionally robust classification over low-order marginals can be described as:

min
w

max
P

EP[ℓ(x, y, w)]

s.t. μmin, y ≤ EP[x ∣ y] ≤ μmax, y ∀y ∈ Y
Σmin, y ≤ EP[xxT ∣ y] ≤ Σmax, y ∀y ∈ Y

(11)

where μmin, μmax, Σmin, and Σmax are the estimated confidence intervals for the first and second 

order of the data distribution. Unlike the robust linear regression task in Section 3, the 

evaluation of the objective function in (11) might depend on higher-order marginals (beyond 

second-order) due to the nonlinearity of the loss function. As a result, Problem (11) is 

a non-convex non-concave intractable min-max optimization problem in general. For the 

sake of computational traceability, we restrict the distribution in the inner maximization 

problem to the set of normal distributions. In the following section, we specialize (11) to the 

quadratic discriminant analysis as a case study. The methodology can be extended to other 

popular classification algorithms, such as support vector machines and multi-layer neural 

networks.

4.1 Robust Quadratic Discriminant Analysis

Learning a logistic regression model on datasets containing missing values has been studied 

extensively in the literature (Fung & Wrobel, 1989; Abonazel & Ibrahim, 2018). Besides 

deleting missing values and imputation-based approaches, Fung & Wrobel (1989) models 

the logistic regression task in the presence of missing values as a linear discriminant 

analysis problem where the underlying assumption is that the predictors follow normal 

distribution conditional on the labels. Mathematically speaking, they assume that the data 

points assigned to a specific label follow a Gaussian distribution, i.e., x ∣ y = i ∼ N(μi, Σ). 
They use the available data to estimate the parameters of each Gaussian distribution. 

Therefore, the parameters of the logistic regression model can be assigned based on the 

estimated parameters of the Gaussian distributions for different classes. Similar to the 
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linear regression case, the estimations of means and covariances are unbiased only when 

the data satisfies the MCAR condition. Moreover, when the number of data points in the 

dataset is small, the variance of the estimations can be very high. Thus, to train a logistic 

regression model that is robust to the percentage and different types of missing values, 

we specialize the general robust classification framework formulated in Equation (11) to 

the logistic regression model. Instead of considering a common covariance matrix for the 

conditional distributions of x given labels y (linear discriminant analysis), we assume a more 

general case where each conditional distribution has its own covariance matrix (quadratic 

discriminant analysis). Assume that x ∣ y ∼ N(μy, Σy) for y = 0, 1. We aim to find the optimal 

solution to the following problem:

min
w

max
μ0, μ1, Σ0, Σ1

Ex ∣ y = 1 ∼ N(μ1, Σ1) −log σ(wTx) ℙ(y = 1) +

Ex ∣ y = 0 ∼ N(μ0, Σ0) −log 1 − σ(wTx) ℙ(y = 0)
s.t. μmin0 ≤ μ0 ≤ μmax0

μmin1 ≤ μ1 ≤ μmax1
Σmin0 ≤ Σ0 ≤ Σmax0
Σmin1 ≤ Σ1 ≤ Σmax1

(12)

Where σ(x) = 1 ∕ 1 + exp( − x)  is the sigmoid function.

To solve Problem (12), first, we focus on the scenario when the target variable has no 

missing values. In this case, each data point contributes to the estimation of either (μ1, Σ1) 

or (μ0, Σ0), depending on its label. Similar to the robust linear regression case, we can apply 

Algorithm 4 to estimate the confidence intervals for μi, Σi using data points whose target 

variable equals i (y = i).

Obviously, the objective function is convex in w since the logistic regression loss is convex, 

and the expectation of loss can be seen as a weighted summation, which is convex. Thus, 

fixing μ, Σ the outer minimization problem can be solved with respect to w using standard 

first-order methods such as gradient descent.

Although the robust reformulation of logistic regression stated in (12) is convex in w and 

concave in μ0 and μ1, the inner maximization problem is intractable with respect to Σ0 and Σ1. 

We approximate Problem (12) in the following manner:

min
w

max
μ0, Σ0, μ1, Σ1

π1Ex ∣ y = 1 ∼ N(μ1, Σ1) −log σ(wTx) + π0Ex ∣ y = 0 ∼ N(μ0, Σ0) −log 1 − σ(wTx) ,

μmin0 ≤ μ0 ≤ μmax0
μmin1 ≤ μ1 ≤ μmax1
Σ0 ∈ {Σ01, Σ02, …, Σ0k}
Σ1 ∈ {Σ11, Σ12, …, Σ1k},

(13)

where π1 = ℙ(y = 1) and π0 = ℙ(y = 0). To compute optimal μ0 and μ1, we have:
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max
μ1

Ex ∼ N(μ1, Σ1) −log σ(wTx) s.t. μmin ≤ μ1 ≤ μmax

(14)

Theorem 3. Let a[i] be the i-th element of vector a. The optimal solution of Problem (14) 

has the following form:

μ1
∗[i] =

μmax[i], if w[i] ≤ 0
μmin[i], if w[i] > 0 .

(15)

Note that we relaxed (12) by taking the maximization problem over a finite set of Σ
estimations. We estimate each Σ by bootstrapping on the available data using Algorithm 4. 

Define fi(w) as:

fi(w) = π1Ex ∼ N(μ1
∗, Σi1) −log σ(wTx)

(16)

Similarly, we can define:

gi(w) = π0Ex ∼ N(μ0
∗, Σi0) −log 1 − σ(wTx)

(17)

Since the maximization problem is over a finite set, we can rewrite Problem (13) as:

min
w

max
i, j ∈ {1, …, k}

fi(w) + gj(w) = min
w

max
p1, …, pk, q1, …, qk

∑
i = 1

k
pifi(w) + ∑

j = 1

k
pigj(w)

s.t. ∑i = 1
k pi = 1, pi ≥ 0

∑j = 1
k qj = 1, qj ≥ 0

(18)

Since the maximum of several functions is not necessarily smooth (differentiable), we add 

a quadratic regularization term to the maximization problem, accelerating the convergence 

rate (Nouiehed et al., 2019) as follows:

min
w

max
p1, …, pk, q1, …, qk

∑
i = 1

k
pifi(w) − δ ∑

i = 1

k
pi

2 + ∑
j = 1

k
qjgj(w) − δ ∑

j = 1

k
qj

2

s.t. ∑i = 1
k pi = 1, pi ≥ 0

∑j = 1
k qj = 1, qj ≥ 0

(19)
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First, we show how to solve the inner maximization problem. Note that the pi’s and qi’s are 

independent. We show how to find optimal pi’s. Optimizing with respect to qi’s is similar. 

Since the maximization problem is a constrained quadratic program, we can write the 

Lagrangian function as follows:

max
p1, …, pk

∑
i = 1

k
pifi(w) − δ ∑

i = 1

k
pi

2 − λ( ∑
i = 1

k
pi − 1)

s.t. pi ≥ 0

(20)

Having the optimal λ, the above problem has a closed-form solution with respect to each pi, 

which can be written as:

pi
∗ = −λ + fi

2δ +

Since pi
∗ is a non-increasing function with respect to λ, we can find the optimal value of λ

using the following bisection algorithm. Algorithm 2 demonstrates how to find an ϵ-optimal 

λ and pi
∗’s efficiently using the bisection idea.

Algorithm 2 Finding the optimal λ and pi’s using the bisection idea

1: Initialize:λlow = 0, λhigh = maxi fi, pi = 0 ∀i ∈ {1, 2, …, k} .

2: while ∣ ∑i = 1
n pk − 1 ∣ > ϵ do

3: λ = λlow + λhigh
2

4: Set pi = [−λ + fi
2δ ]

+
∀i ∈ {1, 2, …, k}

5: if ∑i = 1
k pi < 1 then

6: λhigh = λ
7: else
8: λlow = λ
9: return λ, p1, p2, …, pk .

Remark 4. An alternative method for finding optimal λ, and pi’s is to sort fi values in 

O(k log k) first, and then finding the smallest fi such that if we set λ = fi, the sum of pi’s
is bigger than 1 (let j be the index of that value). Without loss of generality, assume that 

f1 ≤ ⋯ ≤ fk. Then, ∑i = j
k −λ + fi

2δ = 1, which has a closed-form solution with respect to λ.

To update w, we need to solve the following optimization problem:
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min
w

∑
i = 1

k
pi

∗fi(w) + ∑
j = 1

k
qj

∗gi(w),

(21)

Similar to the standard statistical learning framework, we solve the following empirical risk 

minimization problem by applying the gradient descent to w on a finite data sample. Define 

f i as follows:

f i(w) = π1 ∑
t = 1

n
−log σ(wTxt) ,

(22)

where x1, …, xn are generated from the distribution N(μ1
∗, Σ1i). The empirical risk minimization 

problem can be written as follows:

min
w

∑
i = 1

k
pi

∗f i(w) + ∑
j = 1

k
qj

∗g i(w),

(23)

Algorithm 3 summarizes the robust linear discriminant analysis method for the case where 

the label of all data points is available. Theorem 5 demonstrates the convergence of gradient 

descent algorithm applied to (23) in O k
ϵ log(M

ϵ )  iterations to an ϵ-optimal solution.

Algorithm 3 Robust Quadratic Discriminant Analysis in the Presence of Missing Values

1: Input:X0, X1: matrix of data points with labels 0 and 1 respectively, T : Number of iterations, α :
Step‐size.

2: Estimate μmin0 and μmax0 using the available entries of X0 .
3: Estimate μmin1 and μmax1 using the available entries of X1 .
4: Estimate Σ01, …, Σ0k using bootstrap estimator on the available data of X0 .
5: Estimate Σ11, …, Σ1k using bootstrap estimator on the available data of X1 .
6: for i = 1, …, T do
7: Compute μ1

∗ and μ0
∗ by Equation (15) .

8: Find optimal p1, …, pk, and q1, …, qk using Algorithm 2 .

9: w = w − α ∑i = 1
k pi

∗ ∇f i(w) + ∑j = 1
k qj

∗ ∇g i(w)

Theorem 5. Assume that M = maxifi. Gradient descent algorithm requires O k
ϵ log(M

ϵ )

gradient evaluations for converging to an ϵ-optimal saddle point of the optimization problem 

(23).
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In Appendix F, we extend the methodology to the case where y contains missing entries.

5 Experiments

In this section, we evaluate RIFLE’s performance on a diverse set of inference tasks in the 

presence of missing values. We compare RIFLE’s performance to several state-of-the-art 

approaches for data imputation on synthetic and real-world datasets. The experiments are 

designed in a manner that the sensitivity of the model to factors such as the number of 

samples, data dimension, types, and proportion of missing values can be evaluated. The 

description of all datasets used in the experiments can be found in Appendix I.

5.1 Evaluation Metrics

We need access to the ground-truth values of the missing entries to evaluate RIFLE and 

other state-of-the-art imputation approaches. Hence, we artificially mask a proportion of 

available data entries and predict them with different imputation methods. A method 

performs better than others if the predicted missing entries are closer to the ground-truth 

values. To measure the performance of RIFLE and the existing approaches on a regression 

task for a given test dataset consisting of N data points, we use normalized root mean 

squared error (NRMSE), defined as:

NRMSE =
1
N ∑i = 1

N (yi − yi)2

1
N ∑i = 1

N (yi − ȳ)2

where yi, y i, and ȳ represent the true value of the i-th data point, the predicted value of the 

i-th data point, and the average of true values of data points, respectively. In all experiments, 

generated missing entries follow either a missing completely at random (MCAR) or a 

missing not at random (MNAR) pattern. A discussion on the procedure of generating these 

patterns can be found in Appendix G.

5.2 Tuning Hyper-parameters of RIFLE

The hyper-parameter c in (7) controls the robustness of the model by adjusting the size of 

confidence intervals. This parameter is tuned by performing a cross-validation procedure 

over the set {0.1, 0.25, 0.5, 1, 2, 5, 10, 20, 50, 100}, and the one with the lowest NMRSE 

is chosen. The default value in the implementation is c = 1 since it consistently performs 

well over different experiments. Furthermore, λ, the hyper-parameter for the ridge regression 

regularizer, is tuned by choosing 20% of the data as the validation set from the set {0.01, 

0.1, 0.5, 1, 2, 5, 10, 20, 50}. To tune K, the number of bootstrap samples for estimating the 

confidence intervals, we tried 10, 20, 50, and 100. No significant difference is observed in 

terms of the test performance for the above values.

Furthermore, we tune the hyper-parameters of the competing packages as follows. For KNN-

Imputer (Troyanskaya et al., 2001), we try {2, 10, 20, 50} for the number of neighbors (K) 

and pick the one with the highest performance. For MICE (Buuren & Groothuis-Oudshoorn, 

2010) and Amelia (Honaker et al., 2011), we generate 5 different imputed data and pick 
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the one with the highest performance on the test data. MissForest has multiple hyper-

parameters. We keep the criterion as “MSE” since our performance evaluation measure is 

NRMSE. Moreover, we tune the number of iterations and number of estimations (number 

of trees) by checking values from {5, 10, 20} and {50, 100, 200}, respectively. We do not 

change the structure of the neural networks for MIDA (Gondara & Wang, 2018) and GAIN 

(Yoon et al., 2018), and the default versions are performed for imputing datasets.

5.3 RIFLE Consistency

In Theroem 2 Part (a), we demonstrated that RIFLE is consistent. In Figure 3, we investigate 

the consistency of RIFLE on synthetic datasets with different proportions of missing values. 

The synthetic data has 50 input features following a jointly normal distribution with the 

mean whose entries are randomly chosen from the interval (−100, 100). Moreover, the 

covariance matrix equals Σ = SST  where S elements are randomly picked from (−1, 1). 

The dimension of S is 50 × 20. The target variable is a linear function of input features 

added to a mean zero normal noise with a standard deviation of 0.01. As depicted in 

Figure 3, RIFLE requires fewer samples to recover the ground-truth parameters of the model 

compared to MissForest, KNN Imputer, Expectation Maximization (Dempster et al., 1977), 

and MICE. Amelia’s performance is significantly good since the predictors have a joint 

normal distribution and the linear underlying model. Note that by increasing the number of 

samples, the NRMSE of our framework converges to 0.01, which is the standard deviation of 

the zero-mean Gaussian noise added to each target value (the dashed line).

5.4 Data Imputation via RIFLE

As explained in Section 3, while the primary goal of RIFLE is to learn a robust regression 

model in the presence of missing values, it can also be used as an imputation tool. We 

run RIFLE and several state-of-the-art approaches on five datasets from the UCI repository 

(Dua & Graff, 2017) (Spam, Housing, Clouds, Breast Cancer, and Parkinson datasets) with 

different proportions of MCAR missing values (the description of the datasets can be found 

in Appendix I). Then, we compute the NMRSE of imputed entries. Table 1 shows the 

performance of RIFLE compared to other approaches for the datasets where the proportion 

of missing values are relatively high n(1 − p)
d ≈ O(1) . RIFLE outperforms these methods in 

almost all cases and performs slightly better than MissForest, which uses a highly non-linear 

model (random forest) to impute missing values.

5.5 Sensitivity of RIFLE to the Number of Samples and Proportion of Missing Values

In this section, we analyze the sensitivity of RIFLE and other state-of-the-art approaches to 

the number of samples and the proportion of missing values. In the experiment in Figure 4, 

we create 5 datasets containing 40%, 50%, 60%, 70%, and 80% of MCAR missing values, 

respectively, for four real datasets (Spam, Parkinson, Wave Energy Converter, and Breast 

Cancer) from UCI Repository (Dua & Graff, 2017) (the description of the datasets can be 

found in Appendix I). Given a feature in a dataset containing missing values, we say an 

imputer wins that feature if the imputation error in terms of NRMSE for that imputer is less 

than the error of the other imputers. Figure 4 reports the number of features won by each 

imputer on the created datasets described above. As we observe, the number of wins for 
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RIFLE increases as we increase the proportion of missing values. This observation shows 

that the sensitivity of RIFLE as an imputer to the proportion of missing values is less than 

MissForest and MICE in general.

Figure 4 does not show how the increase in the proportion of missing values changes the 

NRMSE of imputers. Next, we analyze the sensitivity of RIFLE and several imputers to 

change in missing value proportions. Fixing the proportion of missing values, we generate 

10 random datasets containing missing values in random locations on the Drive dataset (the 

description of datasets is available in Appendix I). We impute the missing values for each 

dataset with RIFLE, MissForest, Mean Imputation, and MICE. Figure 5 shows the average 

and the standard deviation of these 4 imputers’ performances for different proportions of 

missing values (10% to 90%). Figure 5 depicts the sensitivity of MissForest and RIFLE to 

the proportion of missing values in the Drive dataset. We select 400 data points for each 

experiment with different proportions of missing values (from 10% to 90%) and report 

the average NRMSE of imputed entries. Finally, in Figure 6, we have evaluated RIFLE 

and other methods on the BlogFeedback dataset (see Appendix I) containing 40% missing 

values. The results show that RIFLE’s performance is less sensitive to decreasing the 

number of samples.

5.6 Performance Comparison on Real Datasets

In this section, we compare the performance of RIFLE to several state-of-the-art approaches, 

including MICE (Buuren & Groothuis-Oudshoorn, 2010), Amelia (Honaker et al., 2011), 

MissForest (Stekhoven & Bühlmann, 2012), KNN Imputer (Raghunathan et al., 2001), and 

MIDA (Gondara & Wang, 2018). There are two primary ways to do this. One method to 

predict a continuous target variable in a dataset with many missing values is first to impute 

the missing data with a state-of-the-art package, then run a linear regression. An alternative 

approach is to directly learn the target variable, as we discussed in Section 3.

Table 2 compares the performance of mean imputation, MICE, MIDA, MissForest, and 

KNN to that of RIFLE on three datasets: NHANES, Blog Feedback, and superconductivity. 

Both Blog Feedback and Superconductivity datasets contain 30% of MNAR missing values 

generated by Algorithm 9, with 10000 and 20000 training samples, respectively. The 

description of the NHANES data and its distribution of missing values can be found in 

Appendix I.

Efficiency of RIFLE: We perform RIFLE for 1000 iterations and the step size of 0.01 

in the above experiments. At each iteration, the main operation is to find the optimal θ for 

any given b and C. The average time of each method on each dataset is reported in Table 

5 in Appendix L. The main reason for the time efficiency of RIFLE compared to MICE, 

MissForest, MIDA, and KNN Imputer is that it directly predicts the target variable without 

imputation of all missing entries.

Since MICE and MIDA cannot predict values during the test phase without data imputation, 

we use them in a pre-processing stage to impute the data. Then we apply the linear 

regression to the imputed dataset. On the other hand, RIFLE, KNN imputer, and MissForest 

can predict the target variable without imputing the training dataset. Table 2 shows that 
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RIFLE outperforms all other state-of-the-art approaches executed on the three mentioned 

datasets. In particular, RIFLE outperforms MissForest, while the underlying model RIFLE 

uses is simpler (linear) compared to the nonlinear random forest model utilized by 

Missforest.

5.6.1 Performance of RIFLE on Classification Tasks—In Section 4, we discussed 

how to specialize RIFLE to robust normal discriminant analysis in the presence of missing 

values. Since the maximization problem over the second moments of the data (Σ) is 

intractable, we solved the maximization problem over a set of k covariance matrices 

estimated by bootstrap sampling. To investigate the effect of choosing k on the performance 

of the robust classifier, we train robust normal discriminant analysis models for different 

values of k on two training datasets (Avila and Magic) containing 40% MCAR missing 

values. The description of the datasets can be found in Appendix I. For k = 1, there is no 

maximization problem, and thus, it is equivalent to the classifier proposed in Fung & Wrobel 

(1989). As shown in Figure 7, increasing the number of covariance estimations generally 

enhances the accuracy of the classifier in the test phase. However, as shown in Theorem 5, 

the required time for completing the training phase grows linearly regarding the number of 

covariance estimations.

5.6.2 Comparison of Robust Linear Regression and Robust QDA—An 

alternative approach to the robust QDA presented in Section 4 is to apply the robust linear 

regression algorithm (Section 3) and mapping the solutions to each one of the classes by 

thresholding (positive value maps to Label 1 and negative values to label −1).

Table 4 compares the performance of two classifiers on three different datasets. As 

demonstrated in the table, when all features are continuous, quadratic discriminant analysis 

has a better performance. It shows the QDA model relies highly on the normality 

assumption, while robust linear regression handles the categorical features better than robust 

QDA.

Limitations and Future Directions:  The proposed framework for robust regression in 

the presence of missing values is limited to linear models. While in Appendix E, we use 

polynomial kernels to apply non-linear transformations on the data, such an approach can 

potentially increase the number of missing values in the kernel space generated by the 

composition of the original features. A future direction is to develop efficient algorithms for 

non-linear regression models such as multi-layer neural networks, decision tree regressors, 

gradient boosting regressors, and support vector regression models. In the case of robust 

classification, the methodology is extendable to any loss beyond quadratic discriminant 

analysis. Unlike the regression case, a limitation of the proposed method for robust 

classification is its reliance on the Gaussianity assumption of data distribution (conditioned 

on each data label). A natural extension is to assume the underlying data distribution follows 

a mixture of Gaussian distributions.

Conclusion:  In this paper, we proposed a distributionally robust optimization framework 

over the distributions with the low-order marginals within the estimated confidence intervals 
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for inference and imputation of datasets in the presence of missing values. We developed 

algorithms for regression and classification with convergence guarantees. The method’s 

performance is evaluated on synthetic and real datasets with different numbers of samples, 

dimensions, missing value proportions, and types of missing values. In most experiments, 

RIFLE consistently outperforms other existing methods.
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A A Review of Missing Value Imputation Methods in the Literature

The fundamental idea behind many data imputation approaches is that the missing values 

can be predicted based on the available data of other data points and correlated features. 

One of the most straightforward imputation techniques is to replace missing values by the 

mean (or median) of that feature calculated from what data is available see Little & Rubin 

(2019, Chapter 3). However, this naïve approach ignores the correlation between features 

and does not preserve the variance of features. Another class of imputers has been developed 

based on the least-square methods (Raghunathan et al., 2001; Kim et al., 2005; Zhang et al., 

2008; Cai et al., 2006). Raghunathan et al. (2001) learns a linear model with multivariate 

Gaussian noise for the feature with the least missing entries. It repeats the same procedure 

on the updated data to impute the next feature with the least missing entries until all features 

are completely imputed. One drawback of this approach is that the error from the imputation 

of previous features can be propagated to subsequent features. To impute entries of a given 

feature in a dataset, Kim et al. (2005) learns several univariate regression models that 

consider that feature as the response. Then it takes the average of these predictions as the 

final value of imputation. This approach fails to learn the correlations involving more than 

two features.

Many more complex algorithms have been developed for imputation, although many are 

sensitive to initial assumptions and may not converge. For instance, KNN-Imputer imputes 

a missing feature of a data point by taking the mean value of the K closest complete 

data points (Troyanskaya et al., 2001). MissForest, on the other hand, imputes the missing 

values of each feature by learning a random forest classifier using other training data 

features (Stekhoven & Bühlmann, 2012). MissForest does not need to assume that all 

features are continuous (Honaker et al., 2011) or categorical (Schafer, 1997). However, both 

KNN-imputer and MissForest do not guarantee statistical or computational convergence 

for their algorithms. Moreover, when the proportion of missing values is high, both are 

likely to have a severe drop in performance, as demonstrated in Section 5. The Expectation 

Maximization (EM) algorithm is another popular approach that learns the parameters of a 

prior distribution on the data using available values based on the EM algorithm of Dempster 

et al. (1977); see also Ghahramani & Jordan (1994) and Honaker et al. (2011). The EM 

algorithm is also used in Amelia, which fits a jointly normal distribution to the data using 

EM and the bootstrap technique (Honaker et al., 2011). While Amelia demonstrates a 

superior performance on datasets following a normal distribution, it is highly sensitive to the 

violation of the normality assumption (as discussed in Bertsimas et al. (2017)). Ghahramani 
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& Jordan (1994) adopt the EM algorithm to learn a joint Bernoulli distribution for the 

categorical data and a joint Gaussian distribution for the continuous variables independently. 

While those algorithms can be viewed as inference methods based on low-order estimates 

of moments, they do not consider uncertainty in such low-order moments estimates. By 

contrast, our framework utilizes robust optimization to consider the uncertainty around the 

estimated moments. Moreover, our optimization procedure for imputation and prediction is 

guaranteed to converge despite some of the algorithms mentioned above.

Another popular method for data imputation is multiple imputations by chained equations 

(MICE). MICE learns a parametric distribution for each feature conditional on the remaining 

features. For instance, it assumes that the current target variable is a linear function of other 

features with a zero-mean Gaussian noise. Each feature can have its distinct distribution and 

parameters (e.g., Poisson regression, logistic regression). Based on the learned parameters 

of conditional distributions, MICE can generate one or more imputed datasets (Buuren & 

Groothuis-Oudshoorn, 2010). More recently, several neural network-based imputers have 

been proposed. GAIN (Generative Adversarial Imputation Network) learns a generative 

adversarial network based on the available data and then imputes the missing values using 

the trained generator (Yoon et al., 2018). One advantage of GAIN over other existing 

GAN imputers is that it does not need a complete dataset during the training phase. MIDA 

(Multiple Imputation using Denoising Autoencoders) is an auto-encoder-based approach 

that trains a denoising auto-encoder on the available data considering the missing entries 

as noise. Similar to other neural network-based methods, these algorithms suffer from 

their black-box nature. They are challenging to interpret/explain, making them unpopular 

in mission-critical healthcare approaches. In addition, no statistical or computational 

guarantees are provided for these algorithms.

Bertsimas et al. (2017) formulates the imputation task as a constrained optimization problem 

where the constraints are determined by the underlying classification model such as KNN 

(k-nearest neighbors), SVM (Support Vector Machine), and Decision Trees. Their general 

framework is non-convex, and the authors relax the optimization for each choice of the cost 

function using first-order methods. The block coordinate descent algorithm then optimizes 

the relaxed problem. They show the convergence and accuracy of their proposed algorithm 

numerically, while a theoretical analysis that guarantees the algorithm’s convergence is 

absent in their work.

B Estimating Confidence Intervals of Low-order Moments

In this section, we explain the methodology of estimating confidence intervals for E[zi]
and E[zizj]. Let Xn × d and y be the data matrix and target variables for n given data points 

respectively whose entries are in ℝ = ℝ ∪ { ∗ }, where * symbol represents a missing entry. 

Moreover, assume that ai represents the i-th column (feature) of matrix X. We define:

ai(k) = ai(k) if ai(k) ≠ ∗

0 if ai(k) = ∗

Baharlouei et al. Page 20

Transact Mach Learn Res. Author manuscript; available in PMC 2024 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Thus, a is obtained by replacing the missing values with 0. We estimate the confidence 

intervals for the mean and covariance of features using multiple bootstrap samples on the 

available data. Let C0[i][j] and Δ0[i][j] be the center and the radius of the confidence interval 

for C[i][j], respectively. We compute the center of the confidence interval for C[i][j] as 

follows:

C0[i][j] = 1
mij

ai
Taj

(24)

where mi = ∣ {k :ai(k) ≠ ∗ } ∣ and mij = ∣ {k :ai(k) ≠ ∗ , aj(k) ≠ ∗ } ∣. This estimator is 

obtained from the rows where both features are available. More precisely, let M be the 

mask of the input data matrix X defined as:

Mij =
0, if Xij is missing,
1, otherwise.

Assume that mij = (MTM)ij, which is the number of rows in the dataset where both features 

i and j are available. To estimate the confidence intervals for Cij, we use Algorithm 4. 

First, we select multiple (K) samples of size N = mij from the rows where both features 

are available. Each one of these samples with size mij is obtained by applying a bootstrap 

sampler (sampling with replacement) on the mij rows where both features are available. 

Then, we compute the second-order moment of two features for each sample.

To find the radius of confidence intervals for each given pair (i, j) of features, we choose 

k different bootstrap samples with length n on the rows where both features i and j are 

available. Then, we compute C0[i][j] of two features in each bootstrap sample. The standard 

deviation of these estimations determines the radius of the corresponding confidence 

interval. Algorithm 4 summarizes the required steps for computing the confidence interval 

radius for the ij-th entry of covariance matrix Δ. Note that the confidence intervals for μ
can be computed similarly. Having C0 and Δ, the confidence interval for the matrix C is 

computed as follows:

Cmin = C0 − cΔ
Cmax = C0 + cΔ,

Computing bmin and bmax can be done in the same manner. The hyper-parameter c is defined 

to control the robustness of the model by tuning the length of confidence intervals. A larger 

c corresponds to bigger confidence intervals and, thus, a more robust estimator. On the other 

hand, large values for c lead to very large confidence intervals that can adversely affect the 

performance of the trained model.
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Algorithm 4 Estimating Confidence Interval Length Δij for Feature i and Feature j.

1: Input:K : Number of bootstrap estimations
2: for t = 1, …, K do
3: Pick n samples with replacement from the rows where both i‐th and j‐th are available .
4: Let (Xi1, Xj1), …, (Xin, Xjn) be the i‐th and j‐th features of the selected samples

5: Ct = 1
n ∑r = 1

n XirXjr

6: Δij = std(C1, C2, …, CK)

Remark 6. Since the computation of confidence intervals for different entries of the 

covariance matrix are independent of each other, they can be computed in parallel. In 

particular, if γ cores are available, d ∕ γ  features (columns of the covariance matrix) can be 

assigned to each one of the available cores.

C Solving Robust Ridge Regression with the Optimal Convergence Rate

The convergence rate of Algorithm 1 to the optimal solution of Problem (6) can be slow in 

practice since the algorithm requires to do a matrix inversion for updating θ and applying 

the box constraint to C and b at each iteration. While we update the minimization problem 

in closed-form with respect to θ, we can speed up the convergence rate of the maximization 

problem by applying Nesterov’s acceleration method to function g(b, C) in (7). Since 

function g is the minimum of convex functions, its gradient with respect to C and b can 

be computed using Danskin’s theorem. Algorithm 5 describes the steps to optimize Problem 

(7) using Nesterov’s acceleration method.

Algorithm 5 Applying the Nesterov’s Acceleration Method to Robust Linear Regression

1: C0, b0, Δ, δ, T
2: Initialize:C1 = C0, b1 = b0, γ0 = 0, γ1 = 1 .
3: for i = 1, …, T do

4: γi + 1 = 1 + 1 + 4γi
2

2

5: Y Ci = Ci + γi − 1
γi + 1

(Ci − Ci − 1)

6: Ci + 1 = ΠΔ + Y Ci + 1
LθθT

7: Y bi = bi + γi − 1
γi + 1

(bi − bi − 1)

8: bi + 1 = Πδ(Y bi − 2θ
L )

9: Set θ = (Ci + 1 + λI)−1bi + 1
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Theorem 7. Let (θ, C, b) be the optimal solution of (6) and D = ‖C0 − C‖F
2 + ‖b0 − b‖2

2
. 

Assume that for any given b and C, within the uncertainty sets described in (6), 

‖θ∗(b, C)‖ ≤ τ. Then, Algorithm 1 computes an ϵ-optimal solution of the objective function 

in O D(τ + 1)2
λϵ  iterations.

Proof. The proof is relegated to Appendix H.

D Solving the Dual Problem of the Robust Ridge Linear Regression via 

ADMM

The Alternating Direction Method of Multipliers (ADMM) is a popular algorithm for 

efficiently solving linearly constrained optimization problems (Gabay & Mercier, 1976; 

Hong et al., 2016). It has been extensively applied to large-scale optimization problems in 

machine learning and statistical inference in recent years (Assländer et al., 2018; Zhang 

et al., 2018). Consider the following optimization problem consisting of two blocks of 

variables x and y that are linearly coupled:

min
w, z

f(w) + g(z)

s.t. Aw + Bz = c,

(25)

The augmented Lagrangian of the above problem can be written as:

min
w, z

f(w) + g(z) + 〈Aw + Bz − c, λ〉 + ρ
2‖Aw + Bz − c‖2

(26)

ADMM schema updates the primal and dual variables iteratively as presented in Algorithm 

6.

Algorithm 6 General ADMM Algorithm

1: for t = 1, …, T do

2: wt + 1 = arg minwf(w) + 〈Aw + Bzt − c, λ〉 + ρ
2‖Aw + Bzt − c‖2

3: zt + 1 = arg minzf(wt + 1) + 〈Awt + 1 + Bz − c, λ〉 + ρ
2‖Awt + 1 + Bz − c‖2

4: λt + 1 = λt + ρ(Awt + 1 + Bzt + 1 − c)

As we mentioned earlier, simultaneous projection of C to the set of positive semi-

definite matrices and the box constraint Cmin ≤ C ≤ Cmax in Algorithm 1 and Algorithm 
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5 is computationally expensive. Moreover, careful step-size tuning is necessary to avoid 

inconsistency and guarantee convergence in that algorithm.

An alternative approach for solving Problem (6) that avoids removing the PSD constraint 

in the implementation of Algorithm 1 and Algorithm 5 is to solve the dual of the inner 

maximization problem. Since the maximization problem is concave with respect to C and 

b, and the relative interior of the feasible set of constraints is non-empty, the duality gap is 

zero. Hence, instead of solving the inner maximization problem, we can solve its dual which 

is a minimization problem. Theorem 8 describes the dual problem of the inner maximization 

problem in (6). Thus, Problem (6) can be alternatively formulated as a minimization 

problem rather than a min-max problem. We can solve such a constrained minimization 

problem efficiently via the ADMM algorithm. As we will show, the ADMM algorithm 

applied to the dual problem does not need tuning of step-size or applying simultaneous 

projections to the box constraints and positive semi-definite (PSD) constraints.

Theorem 8. (Dual Problem) The inner maximization problem described in (6) can be 

equivalently formulated as:

min
A, B, d, e, H

− 〈bmin, d〉 + 〈bmax, e〉 − 〈Cmin, A〉 + 〈Cmax, B〉 + λ‖θ‖2

s.t. − θθT − A + B − H = 0,
2θ − d + e = 0,
A, B, d, e ≥ 0,
H ≻ 0 .

Therefore, Problem (6) can be alternatively written as:

min
θ, A, B, d, e, H

− 〈bmin, d〉 + 〈bmax, e〉 − 〈Cmin, A〉 + 〈Cmax, B〉 + λ‖θ‖2

s.t. − θθT − A + B − H = 0,
2θ − d + e = 0,
A, B, d, e ≥ 0,
H ≻ 0 .

(27)

Proof. The proof is relegated to Appendix H.

To apply the ADMM method to the dual problem, we require to divide the optimization 

variables into two blocks as in (25) such that both sub-problems in Algorithm 6 can be 

efficiently solved. To do so, first, we introduce the auxiliary variables d′, e′, θ′, A′ and B′ to 

the dual problem. Also, let G = H + θ′θ′T.

Therefore, Problem (27) is equivalent to:
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min
θ, A, B, d, e, H

− 〈bmin, d〉 + 〈bmax, e〉 − 〈Cmin, A〉 + 〈Cmax, B〉 + λ‖θ‖2

s.t. B − A = G,
2θ − d + e = 0,
A = A′, B = B′,
d = d′, e = e′, θ = θ′,
A′, B′, d′, e′ ≥ 0,
G ≻ θ′θ′T .

(28)

Since handling both constraints on θ in Problem (27) is difficult, we interchange 

θ with θ′ in the first constraint. Moreover, the non-negativity constraints on A, B, d
and e are exchanged with non-negativity constraints on A′, B′, d′ and e′. For the 

simplicity of presentation, assume that c1
t = bmin − μd

t + ρd′t + ηt, c2
t = − bmax − μe

t + ρe′t + ηt, 

c3
t = − μθ + ρθ′t − 2ηt, D1

t = ρA′t − ρGt + Γt − MA
t + Cmin, and D2

t = ρB′t + ρGt − Γt − MB
t − Cmax. 

Algorithm 7 describes the ADMM algorithm applied to Problem (28).

Corollary 9. If the feasible set of Problem (6) has non-empty interior, then Algorithm 7 

converges to an ϵ-optimal solution of Problem (28) in O(1
ϵ ) iterations.

Proof. Since the inner maximization problem, in (6) is convex, and its feasible interior set is 

not empty, the duality gap is zero by Slater’s condition. Thus, according to Theorem 6.1 in 

He & Yuan (2015), Algorithm 7 converges to an optimal solution of the primal-dual problem 

with a linear rate. Moreover, the sequence of constraint residuals converges to zero with a 

linear rate as well.

Remark 10. The optimal solution obtained from the ADMM algorithm can be different 

from the one given by Algorithm 1 because we remove the positive semi-definite constraint 

on C in the latter. We investigate the difference between solutions of two algorithms in 

three cases: First, we generate a small positive semi-definite matrix C∗ and the matrix of 

confidence intervals (Δ) as follows:

C∗ =
97 40 92
40 17 38
92 38 88

, Δ =
0.2 0.3 0.2
0.3 0.1 0.2
0.1 0.3 0.1

.

Moreover, let b∗ and δ are generated as follows:

b∗ =
6.65
8.97
5.40

, δ =
0.1
0.2
0.2

.

Initializing both algorithms with a random matrix within Cmin = C∗ − Δ and Cmax = C∗ + Δ, 

and a random vector within bmin = b∗ − δ and bmax = b∗ + δ, ADMM algorithm returns 

a different solution from Algorithm 1. Besides, the difference in the performance of 
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algorithms during the test phase can be observed in the experiments on synthetic datasets 

depicted in Figure 3 as well, especially when the number of samples is smaller.

Algorithm 7 Applying ADMM to the Dual Reformulation of Robust Linear Regression

1: Given:bmin, bmax, Cmin, Cmax, λ, ρ
2: Initialize:C1 = C0, b1 = b0, γ0 = 0, γ1 = 1 .
3: for t = 0, …, T do

4: θt + 1 = 1
6λ + 7ρ (2c1

t − 2c2
t − 3c3

t )

5: dt + 1 = 1
6λ + 7ρ (6ρ + 4λ

ρ c1
t + 4ρ + 4λ

ρ c2
t + 2c3

t )

6: et + 1 = 2
6λ + 7ρ (ρ + 2λ

ρ c1
t + 3ρ + 2λ

ρ c2
t − c3

t )

7: A′t + 1 = max(At + MA
t

ρ , 0)

8: B′t + 1 = max(Bt + MB
t

ρ , 0)

9: Gt + 1 = [Bt − At + Γt
ρ − θ′tθ′tT]

+
+ θ′tθ′tT

10: d′t + 1 = max(dt + μd
t

ρ , 0)

11: e′t + 1 = max(et + μe
t

ρ , 0)

12: θ′t + 1 = arg minθ′ ‖θt + 1 − θ′‖2 + 〈μθ
t , θt + 1 − θ′〉 s.t. Gt + 1 ≻ θ′Tθ′

13: At + 1 = 1
3ρ (2D1

t + D2
t )

14: Bt + 1 = 1
3ρ (D1

t + 2D2
t )

15: MA
t + 1 = MA

t + ρ(At + 1 − A′t + 1)

16: MB
t + 1 = MB

t + ρ(Bt + 1 − B′t + 1)

17: μd
t + 1 = μd

t + ρ(dt + 1 − d′t + 1)

18: μe
t + 1 = μe

t + ρ(et + 1 − e′t + 1)

19: μθ
t + 1 = μθ

t + ρ(θt + 1 − θ′t + 1)

20: ηt + 1 = ηt + ρ(2θt + 1 − dt + 1 + et + 1)

21: Γt + 1 = Γt + ρ(Bt + 1 − At + 1 − Gt + 1)

Now, we show how to apply ADMM schema to Problem (28) to obtain Algorithm 7. As 

we discussed earlier, we consider two separate blocks of variables w = (θ, d, e, G, B′, A′) and 

z = (d′, e′, θ′, B, A). Assigning Γ, η, MA, MB, μd, μe, and μθ to the constraints of Problem (28) in 

order, we can write the corresponding augmented Lagrangian function as:
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min
θ, θ′, A, A′, B, B′, d, d′, e, e′, G

− 〈bmin, d〉 + 〈bmax, e〉 − 〈Cmin, A〉 + 〈Cmax, B〉 + λ‖θ‖2

+ 〈A − A′, MA〉 + ρ
2‖A − A′‖F

2

+ 〈B − B′, MB〉 + ρ
2‖B − B′‖F

2

+ 〈d − d′, μd〉 + ρ
2‖d − d′‖2

+ 〈e − e′, μe〉 + ρ
2‖e − e′‖2

+ 〈θ − θ′, μθ〉 + ρ
2‖θ − θ′‖2

+ 〈2θ − d + e, η〉 + ρ
2‖2θ − d + e‖2

+ 〈B − A − G, Γ〉 + ρ
2‖B − A − G‖F

2

A′, B′, d′, e′ ≥ 0,
G ≻ θ′θ′T,

(29)

At each iteration of the ADMM algorithm, the parameters of one block are fixed, 

and the optimization problem is solved with respect to the parameters of the other 

block. For the simplicity of presentation, let c1
t = ρθ′t − μθ

t − 2ηt, c2
t = ρd′t − μd

t − bmin + ηt, 

c3
t = ρe′t − μe

t + bmax − ηt, D1
t = ρA′t − ρGt + Γt − MA

t + Cmin, and D2
t = ρB′t + ρGt − Γt − MB

t − Cmax.

We have two non-trivial problems containing positive semi-definite constraints. The sub-

problem with respect to G can be written as:

min
G

〈Bt − At − G, Γt〉 + ρ
2‖Bt − At − G‖F

2

s.t. G ≻ θ′tθ′tT,

(30)

By completing the square, and changing the variable G′ = G − θ′tθ′tT, equivalently we require 

to solve the following problem:

min
G′

ρ
2‖G′ − (Bt − At − θ′tθ′tT + Γt

ρ )‖
F

2

s.t. G′ ≻ 0,

(31)

Thus, G′∗ = [Bt − At + Γt
ρ − θ′tθ′tT]

+
, where [A]+ is the projection to the set of PSD matrices, 

which can be done by setting the negative eigenvalues of A in its singular value 

decomposition to zero.

The other non-trivial sub-problem in Algorithm (7) is the minimization with respect to θ′
(Line 10). By completing the square, it can be equivalently formulated as:
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min
θ′

‖θ′ − (θt + 1 + μθ
t

ρ )‖
2

2

s.t. Gt + 1 ≻ θ′θ′T ,

(32)

Let G = UΛUT  be the singular value decomposition of the matrix G where Λ is a diagonal 

matrix containing the eigenvalues of the matrix G. Set α = θt + 1 + μθ
t

2 . Since UTU = I, we 

have:

‖UTθ − UTα‖2 = ‖θ − α‖2
2

Set β = UTθ′, then Problem (32) can be reformulated as:

min
β

‖β − UTα‖2
2

s.t. ββT ≺ Λ .

(33)

Note that the constraint of the above optimization problem is equivalent to the following:

ββT ≺ Λ 1 βT

β Λ
≻ 0 βTΛ−1β ≤ 1 ∑

i = 1

n βi
2

λi
≤ 1,

where λi = Λii Since the block matrix is symmetric, using Schur Complement, it is positive 

semi-definite if and only if Λ is positive semi-definite and 1 − βtΛ−1β ≥ 0 (the third 

inequality above).

Set γ = UTα, then we can write Problem (33) as:

min
β

‖β − γ‖2
2

s.t. ∑i = 1
n βi

2

λi
≤ 1,

(34)

It can be easily shown that the optimal solution has the form βi
∗ = γi

1 + μ∗
λi

, where μ∗ is the 

optimal Lagrangian multiplier corresponding to the constraint of Problem (34). The optimal 

Lagrangian multiplier can be obtained by the bisection algorithm similar to Algorithm 2. 

Having β∗, the optimal θ can be computed by solving the linear equation UTθ∗ = β∗.
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E Quadratic RIFLE: Using Kernels to Go Beyond Linearity

A natural extension of RILFE to non-linear models is to transform the original data via 

multiple Kernels and then apply RIFLE to the obtained data. To this end, we applied 

Polynomial Kernels to the original data that considers the polynomial transformations of 

features and their interactions. A drawback of this approach is that if the original data 

contains d features, and the order of the polynomial Kernel is t, the number of features in 

the transformed data will be O(dt) that increases the runtime of the prediction/imputation 

drastically. Thus, we only consider t = 2, which leads to a dataset containing the interaction 

of different features of the original data. We call the RIFLE algorithm applied on the data 

transformed by Quadratic Kernel Quadratic RIFLE (QRIFLE). Table 1 demonstrates the 

performance of QRIFLE alongside RIFLE and other state-of-the-art approaches. Moreover, 

we applied QRIFLE on a regression task where the correlation between predictors and the 

target variable is quadratic (Figure 8). We can observe that QRIFLE works better than 

RIFLE when the percentage of missing values is not high.

E.1 Performance of RIFLE and QRIFLE on Synthetic Non-linear Data

A natural question is how RIFLE performs when the underlying model is non-linear. To 

evaluate RIFLE and other methods, we have generated jointly normal data similar to the 

experiment in Figure 9. Here, we have 5000 data points, and the data dimension is d = 5. 

The target variable has the following quadratic relationship with the input features:

y = x1
2 + 3x3

2 − 6x5
2 − 0.9x1x4 + 9x2x3 + 3.2x4x5 − 1.7x2x5 − 5x1 − 2x3 + 7x4 + 4.6

Figure 8: 
Performance of RIFLE, QRIFLE, MissForest, Amelia, KNN Imputer, MICE, Expectation 

Maximization to the percentage of missing values on Quadratic artificial datasets with 

different percentages of missing values.
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We evaluated the performance of KNN-Imputer (Troyanskaya et al., 2001), MICE (Buuren 

& Groothuis-Oudshoorn, 2010), Amelia (Honaker et al., 2011), MissForest (Stekhoven & 

Bühlmann, 2012), and Expectation Maximization (Dempster et al., 1977), alongside the 

RIFLE and QRIFLE. QRIFLE is the RIFLE application on the original data transformed by 

a polynomial kernel with the degree of 2. Although QRIFLE can learn the quadratic models, 

the number of missing values in the new features (interaction terms) will be higher than the 

original data. For instance, if, on average, 50% of entries are missing in the original features, 

there will be 75% of missing entries in the interaction terms. Moreover, the computation 

complexity will be increased since we have d2 features instead of d if we use QRIFLE. 

Figure 8 demonstrates the performance of the aforementioned methods on the artificial 

data with 5000 samples containing different percentages of missing values. We generated 

5 artificial datasets for each missing value percentage, and each method is performed 5 

times on the datasets. We reported the average performances for each method in Figure 8. 

For small percentages of missing values, QRIFLE performs better than other approaches. 

However, by increasing the percentage of missing values, QRIFLE performance drops, and 

RIFLE works much better than RIFLE.

F Robust Quadratic Discriminant Analysis (Presence of Missing Values in 

the Target Feature)

In Section 4 we formalized robust quadratic discriminant analysis assuming the target 

variable is fully available. In this appendix, we study Problem (12) when the target variable 

contains missing values.

If the target feature contains missing values, the proposed algorithm for solving the 

optimization problem (13) does not exploit the data points whose target feature is 

unavailable. However, such points can contain valuable statistical information about the 

underlying data distribution. Thus, we apply an Expectation Maximization (EM) procedure 

on the dataset as follows:

Assume that a dataset consisting of n + m samples. Let (X1, y1), …, (Xn, yn) be n samples 

whose target variable is available and (Xn + 1, z1), …, (Xn + m, zm) are m samples where their 

corresponding labels are missing. Similar to the previous case, we assume:

Xi ∣ zi = j ∼ N(μj, Σj), j = 0, 1 .

Thus, the probability of observing a data point xi can be written as:

P (Xi = xi) = π0P (Xi = xi ∣ zi = 0) + π1P (Xi = xi ∣ zi = 1)
= π0N(xi; μ0, Σ0) + π1N(xi; μ1, Σ1)

The log of likelihood function can be formulated as follows:

ℓ(μ0, Σ0, μ1, Σ1) = ∑
i = 1

n + m
log π0N(xi; μ0, Σ0) + π1N(xi; μ1, Σ1)
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We apply Expectation Maximization procedure to jointly update Σ0, Σ1, μ0, μ1 and zi’s. Note 

that the posterior distribution of zi can be written as:

P (Zi = t ∣ Xi = xi) = P (Xi = xi ∣ Zi = t)P (Zi = t)
P (Xi = xi) = πtN(xi; μt, Σt)

P (Xi = xi)

We update zi values in the E-step by comparing the posterior probabilities for two possible 

labels. Precisely, we assign label 1 to Zi if and only if:

π1N(xi; μ1, Σ1) > π0N(xi; μ0, Σ0)

In M-step, we estimate Σ0, Σ1, μ0, μ1, π0 and pi0 by fixing the zi values. Since in M-step, all 

labels (both already available yi’s and estimated zi’s in E-step) are assigned, updating the 

aforementioned parameters can be done as follows:

μ1[j] = 1
∣ S1 ∩ Tj ∣ ∑

i ∈ S1 ∩ Tj

xi[j]

(35)

μ0[j] = 1
∣ S0 ∩ Tj ∣ ∑

i ∈ S0 ∩ Tj

xi[j]

(36)

Σ1[i][j] = 1
∣ S1 ∩ Ti ∩ Tj ∣ ∑

i ∈ S1 ∩ Ti ∩ Tj

xt[i]xt[j]

(37)

Σ0[i][j] = 1
∣ S0 ∩ Ti ∩ Tj ∣ ∑

i ∈ S0 ∩ Ti ∩ Tj

xt[i]xt[j]

(38)

π1 = ∣ S1 ∣
∣ S0 ∪ S1 ∣

(39)

π0 = ∣ S0 ∣
∣ S0 ∪ S1 ∣

(40)
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We apply the M-step and E-step iteratively to obtain Σ1 and Σ0. Based on the random 

initialization of zi’s we can obtain different values for μ0, μ1, Σ0 and Σ1. Having these 

estimations, we apply Algorithm 3 to solve the robust normal discriminant analysis 

formulated in (13).

Algorithm 8 Expectation Maximization Procedure for Learning a Robust Normal Discriminant Analysis

1: Input:T : Number of EM iterations, k: Number of covariance estimations at each iteration .
2: Initialize: Set each missing labels randomly to 0 or 1 .
3: for i = 1, …, T do
4: Estimate k covariance matrices by sampling with replacement from the available entries
5: Find an optimal w for Problem (18)
6: Update the missing labels using the new w obtained above .

G Generating Missing Values Patterns in Numerical Experiments

In this appendix, we define MCAR and MNAR patterns and discuss how to generate them 

in a given dataset. Formally, the distribution of missing values in a dataset follows a missing 

completely at random (MCAR) pattern if the probability of having a missing value for a 

given entry is constant, independent of other available and missing entries. On the other 

hand, a dataset follows a Missing At Random (MAR) pattern if the missingness of each 

entry only depends on the available data of other features. Finally, if the distribution of 

missing values does not follow an MCAR or MAR pattern, we call it missing not at random 

(MNAR).

To generate the MCAR pattern on a given dataset, we fix a constant probability 0 < p < 

1 and make each data entry unavailable with the probability of p. On the other hand, the 

generation of the MNAR pattern is based on the idea that if the value of an entry is farther 

from the mean of its corresponding feature, then the probability of missingness for that entry 

is larger.

The generation of the MNAR pattern is based on the idea that if the value of an entry 

is farther from the mean of its corresponding feature, then the probability of missingness 

for that entry is larger. Algorithm 9 describes the procedure of generating MNAR missing 

values for a given column of a dataset:
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Algorithm 9 Generating MNAR Pattern for a Given Column of a Dataset

1: Input:x1, x2, …, xn: The entries of the current column in the dataset, a, b: Hyper‐parameters control‐
ling the percentage of missing values

2: Initialize:Set μ = 1
n ∑i = 1

n xi and σ2 = 1
n ∑i = 1

n xi
2 − μ2 .

3: for i = 1, …, n do

4: xi
′ = xi − μ

σ
5: pi = F (a ∣ xi

′ ∣ + b)
6: Set xi = ∗ with probability of pi

Note that F  in the above algorithm is the cumulative distribution function of a standard 

Gaussian random variable. a and b control the percentage of missing values in the given 

column. As a and b increase, the probability of having more missing values is higher. Since 

the availability of each data entry depends on its value, the generated missing pattern is 

missing not at random (MNAR).

H Proof of Lemmas and Theorems

In this appendix, we prove all lemmas and theorems presented in the article. First, we prove 

the following lemma that is useful in several convergence proofs:

Lemma 11. Let θ∗(b, C) = arg minθθTCθ − 2bTθ + λ‖θ‖2. Assume that for any given b

and C, ‖θ∗(b, C)‖ ≤ τ. Then, the Lipschitz constant of the gradient of the function 

g(b, C) = minθθTCθ − 2bTθ + λ‖θ‖2 used in Problem (7) is equal to L = 2(τ + 1)2
λ .

Proof. Since the problem is convex in θ and concave in C and b, we have:

min
θ

max
C, b

θTCθ − 2bTθ + λ‖θ‖2 = − min
C, b

max
θ

− θTCθ + 2bTθ − λ‖θ‖2

Assume that ℎ(θ, C, b) ≜ − θTCθ + 2bTθ + λ‖θ‖2. Define L11, L12 as follows:

‖∇b, Cℎ(θ, b1, C1) − ∇b, Cℎ(θ, b2, C2)‖ ≤ L11‖(C1, b1) − (C2, b2)‖
‖∇θℎ(θ, b1, C1) − ∇θℎ(θ, b2, C2)‖ ≤ L12‖(C1, b1) − (C2, b2)‖

ℎ(θ, b, C) is convex in C and b and strongly concave with respect to θ. According to Lemma 

1 in Barazandeh & Razaviyayn (2020), g′ = − g = maxθℎ(θ, b, C) is Lipschitz continuous with 

the Lipschitz constant equal to:

Lg = Lg′ = L11 + L12
2

σ ,
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where σ = 2λ is the strong-concavity modulus of −θTCθ + 2bTθ − λ‖θ‖2. Note that

∇b, C ℎ(θ, b, C) = − θθT + 2θ

∇b, C ℎ(θ, b1, C1) − ∇b, C ℎ(θ, b2, C2) = 0

Thus, L11 = 0. On the other hand,

∇θℎ(θ, b, C) = − 2θC + 2b − 2λθ
∇θℎ(θ, b1, C1) − ∇θℎ(θ, b2, C2) = − 2(C1 − C2)θ + 2(b1 − b2) ≤ 2‖C1 − C2‖2‖θ‖2 + 2‖b1 − b2‖2

≤ 2‖(C1, b1) − (C2, b2)‖2‖θ‖2 + 2‖(C1, b1) − (C2, b2)‖2 ≤ (2‖θ‖2 + 2)‖(C1, b1) − (C2, b2)‖2

Therefore, L12 = 2 max ‖θ‖2 + 2, which means Lg = 2(max ‖θ‖ + 1)2
λ . Note that θ is computed 

exactly in Algorithm 1 and Algorithm 5 at each iterations. Thus, during the optimization 

procedure the norm of θ is bounded by the maximum norm of θ for any given b and C:

max ‖θ‖2 ≤ max
b, C

θ∗(b, C) ≤ τ

As a result, Lg = 2(τ + 1)2
λ .

Proof of Theorem 1: Since the set of feasible solutions for b and C defines a compact set, 

and function g is a concave function with respect to b and C, the projected gradient ascent 

algorithm converges to the global maximizer of g in T = O(LD
ϵ ) iterations (Bubeck, 2014, 

Theorem 3.3), where D = ‖C0 − C∗‖F

2
+ ‖b0 − b∗‖2

2
 and L is the Lipschitz constant of function 

g, which is equal to 2(τ + 1)2
λ  according to Lemma 11.

Proof of Theorem 7 Algorithm 5 applies the projected Nesterov acceleration method on the 

concave function g. As proved in Nesterov (1983), the rate of convergence of this method 

conforms to the lower bound of first-order oracles for the general convex minimization 

(concave maximization) problems, which is O( LD2
ϵ ). We compute the Lipschitz constant L

that appeared in the iteration complexity bound by Lemma 11.

Proof of Theorem 8: First, note that if we multiply the objective function by −1, Problem (6) 

can be equivalently formulated as:
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max
θ

min
C, b

− θTCθ + 2bTθ − λ‖θ‖2
2

s.t. − C + Cmin ≤ 0,
C − Cmax ≤ 0,
− b + bmin ≤ 0,
b − bmax ≤ 0,
− C ≺ 0

(41)

If we assign A, B, d, e, H to the constraints respectively, then the Lagrangian function can be 

written as:

L(C, b, A, B, d, e, H) = − θTCθ + 2bTθ + 〈A, − C + Cmin〉
+ 〈B, C − Cmax〉 + 〈d, − b + bmin〉
+ 〈e, b − bmax〉 − 〈C, H〉 − λ‖θ‖2

2,

(42)

The dual problem is defined as:

max
A, B, d, e, H

min
C, b

L(C, b, A, B, d, e, H)

(43)

The minimization of L takes the following form:

min
C, b

〈C, − θθT − A + B − H〉 + 〈b, 2θ − d + e〉 − λ‖θ‖2
2

− 〈B, Cmax〉 + 〈A, Cmin〉 − 〈e, bmax〉 + 〈d, bmin〉,

(44)

To avoid −∞ value for the above minimization problem, it is required to set 

−θθT − A + B − H and 2θ − d + e to zero. Thus the dual problem of (41) is formulated as:

max
A, B, d, e, H

bmin
T d − bmax

T e + 〈Cmin, A〉 − 〈Cmax, B〉 − λ‖θ‖2
2

s.t. − θθT − A + B − H = 0,
2θ − d + e = 0,
A, B, d, e ≥ 0,
H ≻ 0

(45)

Since the duality gap is zero, Problem (6) can be equivalently formulated as:

max
θ, A, B, d, e, H

bmin
T d − bmax

T e + 〈Cmin, A〉 − 〈Cmax, B〉 − λ‖θ‖2

s.t. − θθT − A + B − H = 0,
2θ − d + e = 0,
A, B, d, e ≥ 0,
H ≻ 0 .
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(46)

We can multiply the objective function by −1 and change the maximization to minimization, 

which gives the dual problem described in (27).

Proof of Theorem 2:

(a) Let Δn be the estimated confidence matrix obtained from n samples. The first part 

of the theorem is true, if Δn converges to 0 as n, the number of samples goes to 

infinity (the same argument works for b and δ). Assume that {(xi1, xi2)}i = 1
n  is an i.i.d 

bootstrap sample over data points that both features X1 and X2 are available. Since the 

distribution of missing values is completely at random (MCAR), we have E[xi1xi2] = E[X1X2]. 

Therefore, E[1
n ∑i = 1

n xi1xi2] = E[X1X2]. Moreover, since the samples are drawn independently, 

Var[1
n ∑i = 1

n xi1xi2] = 1
n2 ∑i = 1

n Var[xi1xi2] = n
n2Var[X1X2] = 1

nVar[X1X2]. Since the variance of the 

product of every two features is bounded, according to the weak law of large numbers:

lim
n ∞

Pr ∣ 1
n ∑

i = 1

n
xi1xi2 − E[X1X2] ∣ ≥ ϵ = 0

Therefore, for any given bootstrap sample of features X1 and X2, the estimation converges 

in probability to the ground-truth value. This means the size of the confidence interval 

Δ12 converges in probability to 0. Therefore, the estimation of E[X1X2] is consistent by the 

definition of consistency. With the same argument, we can prove the consistency of the 

estimator for any given features Xi and Xj.

(b) Fix two features i and j. Let (Xi1, Xj1), …, (Xim, Xjm) be m = n(1 − p)  i.i.d pairs sampled 

via bootstrap from the entries where both features i and j are available. Define Zt = XitXjt

(for simplicity we do not consider the dependence of Zt to i and j in the notation). Assume 

that we initialize Cij = 1
m ∑t = 1

m Zt. Note that, E[Zt] = E[XitXjt] = Cij
∗ . According to Chebyshev’s 

inequality, we have:

Pr 1
m ∑

t = 1

m
Zt − E[Zt] ≥ Δij ≤

Var( 1
m ∑t = 1

m Zt)

c2Δij
2

Note that Zi’s are iid samples, thus:

Var( 1
m ∑

t = 1

m
Zt) = 1

mVar(Zt) ≤ 1
mmax

i, j
Var(XiXj) = V

m = V
n(1 − p)

Let Δ = min{Δij}. Then, based on the two above inequalities, we have:
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Pr C0[i][j] − C∗[i][j] ≥ Δ ≤ V
c2Δ2n(1 − p)

Using a union bound argument, with the probability of at least 1 − V d2

2c2Δ2n(1 − p)
, we have: 

C0 − cΔ ≤ C∗ ≤ C0 + cΔ, which means the actual covariance matrix is within the confidence 

intervals we have considered. In that case, for (θ, b, C), we have:

θTCθ − 2bT θ = max
C, b

θTCθ − 2bT θ ≥ θTC∗θ − 2b ∗ T θ,

which completes the proof.

Proof of Theorem 3: Since the objective function is convex with respect to μ1, and the 

constraint on μ1 is closed and bounded (compact), an optimal solution exists to the problem 

on the boundaries (note that the problem is convex maximization.) Therefore, for any entry 

of the μ1, it should either take μmin[i] or μmax[i], which gives the provided solution in the 

theorem.

I Dataset Descriptions

In this section, we introduce the datasets used in Section 5 to evaluate the performance of 

RIFLE on regression and classification tasks. Except for the NHANES, all other datasets 

contain no missing values. For those datasets, we generate MCAR and MNAR missing 

values artificially (for MNAR patterns, we apply Algorithm 9 to the datasets).

Datasets for Evaluating RIFLE on Regression and Imputation Tasks

• NHANES: The percentage of missing values varies for different features of the 

NHANES dataset. There are two sources of missing values in NHANES data: 

Missing entries during data collection and missing entries resulting from merging 

different datasets in the NHANES collection. On average, approximately 20% of 

data is missing.

• Super Conductivity1: Super Conductivity datasets contains 21263 samples 

describing supercon-ductors and their relevant features (81 attributes). All 

features are continuous, and the assigned task is to predict the critical 

temperature based on the given 81 features. We have used this dataset in 

experiments summarized in Figure 10, Figure 11, and Table 2.

• BlogFeedback2: BlogFeedback data is a collection of 280 features extracted 

from HTML-documents of the blog posts. The assigned task is to predict the 

number of comments in the upcoming 24 hours based on the features of more 

1 https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data 
2 https://archive.ics.uci.edu/ml/datasets/BlogFeedback 
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than 60K data training data points. The test dataset is fixed and is originally 

separated from the training data. The dataset is used in experiments described in 

Table 2.

• Breast Cancer(Prognostic)3: The dataset consists of 34 features and 198 

instances. Each record represents follow-up data for one breast cancer case 

collected in 1984. We have done several experiments to impute the MCAR 

missing values generated artificially with different proportions. The results are 

depicted in Table 1 and Figure 4.

• Parkinson4: The dataset describes a range of biomedical voice recording from 

31 people, 23 with Parkinson’s disease (PD). The assigned task is to discriminate 

healthy people from those with PD. There are 193 records and 23 features in the 

dataset. The dataset is processed similarly to the Breast Cancer dataset and used 

in the same experiments.

• Spam Base5: The dataset consists of 4601 instances and 57 attributes. The 

assigned classification task is to predict whether the email is spam. To evaluate 

different imputation methods, we randomly mask a proportion of data entries and 

impute them with different approaches. The results are depicted in Table 1 and 

Figure 4.

• Boston Housing6: Boston Housing dataset contains 506 instances and 14 

columns. We generate random missing entries with different proportions and 

impute them with RIFLE and several state-of-the-art approaches. The results are 

demonstrated in Table 1 and Figure 4.

• Cloud7: The dataset has 1024 instances and 10 features extracted from clouds 

images. We use this dataset in experiments depicted in Table 1 with 70% 

artificial MCAR missing values.

• Wave Energy Converters8: We sample a subset of 3000 instances with 49 

features from the original Wave Energy Converter dataset. We have executed 

several imputation methods on the dataset, and the results are shown in Figure 4.

• Sensorless Drive Diagnosis9: The 49 continuous features in this dataset are 

extracted from electric current drive signals, and the associated classification task 

is to determine the condition of device’s motor. We choose different random 

samples with size 400 to run experiments (imputation) in Figure 5.

3 https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Prognostic) 
4 https://archive.ics.uci.edu/ml/datasets/parkinsons 
5 https://archive.ics.uci.edu/ml/datasets/spambase 
6 https://www.kaggle.com/c/boston-housing 
7 https://archive.ics.uci.edu/ml/datasets/Cloud 
8 https://archive.ics.uci.edu/ml/datasets/Wave+Energy+Converters 
9 https://archive.ics.uci.edu/ml/datasets/dataset+for+sensorless+drive+diagnosis 
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Datasets for Evaluating Robust QDA on Classification Tasks

• Avila10: The Avila dataset consists of 10 attributes extracting from 800 images 

of "Avila Bible". The associated classification task is to match each pattern (an 

instance of the dataset) to a copyist. We put 40% of MCAR missing values 

(both input features and the target variable) on 10 different random samples of 

the dataset with size 1000. The average accuracy of the robust LDA method on 

the 10 datasets is demonstrated in Figure 7 for each value of k (the number of 

covariance estimations).

• Magic Gamma Telescope11: The dataset consists of 11 continuous MC-

generated features from contributing to the prediction of the type of event (signal 

or background). We used the same procedure as the above dataset for the results 

depicted in Figure 7 (random sampling subsets of 1000 data points out of more 

than 19000).

• Glass Identification12: This dataset is composed of 10 continuous features and 

214 instances. The assigned classification task is to predict the type of glasses 

based on the materials used for making them. We have assigned 40% of MCAR 

missing values to the dataset for the experiments reported in Table 4.

• Annealing13 This dataset is a mix of categorical and numerical features (37 

in total), and the associated task is to predict the class (5 classes) of instances 

(metals). The number of instances in this dataset is 798. We use 500 data points 

as the training data and the rest as the test. We apply 40% of MCAR missing 

values to both input features and the target variable. The accuracy of different 

models is reported in Table 4.

• Abalone14: This dataset consists of 4177 instances and 8 categorical and 

continuous features. The goal is to predict the age of abalone based on physical 

measurements. The first 1000 samples are used as the training data and the rest 

as the test data. We applied the same pre-processing procedure as the above 

dataset to generate missing values on the training data. The accuracy of different 

models is reported in Table 4.

• Lymphography15: Lymphography is a categorical dataset containing 18 features 

and 148 data points obtained from the University Medical Centre, Institute of 

Oncology, Ljubljana, Yugoslavia. 100 data points are used as the training data; 

the rest are test data points (with no missing values). We applied the same pre-

processing described for the above dataset to generate MCAR missing values.

• Adult 16: The adult dataset contains census information of individuals, including 

education, gender, and capital gain. The assigned classification task is to predict 

10 https://archive.ics.uci.edu/ml/datasets/Avila 
11 https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope 
12 https://archive.ics.uci.edu/ml/datasets/glass+identification 
13 https://archive.ics.uci.edu/ml/datasets/Annealing 
14 https://archive.ics.uci.edu/ml/datasets/abalone 
15 https://archive.ics.uci.edu/ml/datasets/Lymphography 
16https://archive.ics.uci.edu/ml/datasets/adult.
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whether a person earns over 50k annually. The train and test sets are two separate 

files consisting of 32, 000 and 16, 000 samples, respectively. We consider gender 

and race as the sensitive attributes (For the experiments involving one sensitive 

attribute, we have chosen gender). Learning a logistic regression model on the 

training dataset (without imposing fairness) shows that only 3 features out of 14 

have larger weights than the gender attribute.

J Further Discussion on the Consistency of RIFLE

The three developed algorithms in Section 3 for solving robust ridge regression are all 

consistent. To show this, we have generated a synthetic dataset with 50 input features 

following a jointly normal distribution. As observed in Figure 9, by increasing the number 

of samples, the NRMSE of all three algorithms converges to 0.01, which is the standard 

deviation of the zero-mean Gaussian noise added to each target value (the dashed line). The 

pattern can be observed for different percentages of missing values.

Figure 9: 
Consistency of ADMM (Algorithm 7) and Projected Gradient Ascent on function g
(Algorithm 1) on the synthetic datasets with 40%, 60% and 80% missing values.

K Numerical Experiments for Convergence of RIFLE Algorithms

We presented three algorithms for solving the robust linear regression problem formulated 

in (6): Projected gradient ascent (Algorithm 1, Nesterov acceleration method (Algorithm 5), 

and Alternating Direction Method of Multipliers (ADMM) (Algorithm 7) applied on the 

dual problem.
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Figure 10: 
Convergence of ADMM algorithm to the optimal solution of Problem (27) for different 

values of ρ. The left plot measures the objective function of Problem (27) per iteration 

(without considering the constraints), while the right plot demonstrates the constraint 

violation of the algorithm per iteration. The constraint violation can be measured by adding 

all regularization terms in the augmented Lagrangian function formulated in Problem (29).

We established the convergence rate of the gradient ascent and Nesterov acceleration 

methods in Theorem 1 and Theorem 7, respectively. To investigate the convergence of 

the ADMM algorithm and its dependence on ρ, we perform Algorithm 7 on the Super 

Conductivity dataset (Description in Appendix I) with 30% MCAR missing values. Figure 

10 demonstrates the convergence of the ADMM algorithm for multiple values of ρ applied 

to the Super Conductivity dataset as described above. As can be observed, decreasing the 

value of ρ accelerates the ADMM convergence to the optimal value. Note that for ρ = 0.2, 

the objective function is smaller than the final value in the first few iterations. The reason 

is that for those iterations, the solution is not feasible (as observed in the right figure). The 

final solution is the optimal feasible solution.

In the next experiment, we compare the three proposed algorithms regarding the number of 

iterations required to reach a certain level of test accuracy on the Super Conductivity dataset. 

The number of training samples is 1000, containing 40% of MCAR missing values on both 

input features and the target variable. The test dataset contains 2000 samples. As depicted in 

Figure 11, ADMM and Nesterov’s algorithms require less number of iterations to reach the 

ϵ-optimal solution compared to Algorithm 1. However, the cost per iteration of the ADMM 

algorithm (Algorithm 7) is higher than the Nesterov acceleration and Algorithm 1.
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Figure 11: 
The performance of the Nesterov acceleration method, projected gradient ascent, and 

ADMM on the Super Conductivity dataset vs. the number of iterations.

L Execution Time Comparison of RIFLE and Other State-of-the-art 

Approaches

This section reports the average execution time of the RIFLE and other approaches 

presented in Table 2.

Table 5:

Execution time of RIFLE and other SOTA methods on three datasets.

Methods
Datasets

Super Conductivity Blog Feedback NHANES

Regression on Complete Data 0.3 sec 0.7 sec 0.4 sec

RIFLE 87 sec 471 sec 125 sec

Mean Imputer + Regression 0.4 sec 0.9 sec 0.5 sec

MICE + Regression 112 sec 573 sec 294 sec

EM + Regression 171 sec 612 sec 351 sec

MIDA Imputer + Regression 245 sec 726 sec 599 sec

MissForest 94 sec 321 sec 132 sec

KNN Imputer 66 sec 292 sec 144 sec
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Figure 1: 
Consider the problem of predicting the trait y from feature vector (x1, …, x100). Suppose 

that we have access to three data sets: The first dataset includes the measurements 

of (x1, x2, …, x40, y) for n1 individuals. The second dataset collects data from another n2

individuals by measuring (x30, …, x80) with no measurements of the target variable y in it; and 

the third dataset contains the measurements from the variables (x70, …, x100, y) for n3 number of 

individuals. How one should learn the predictor y = ℎ(x1, …, x100) from these three datasets?
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Figure 2: 
Prediction of the target variable without imputation. RIFLE estimates confidence intervals 

for low-order (first and second-order) marginals from the input data containing missing 

values. Then, it solves a distributionally robust problem over the set of all distributions 

whose low-order marginals are within the estimated confidence intervals.
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Figure 3: 
Comparing the consistency of RIFLE, MissForest, KNN Imputer, MICE, Amelia, and 

Expectation Maximization methods on a synthetic dataset containing 40% of missing values.
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Figure 4: 
Performance Comparison of RIFLE, MICE, and MissForest on four UCI datasets: 

Parkinson, Spam, Wave Energy Converter, and Breast Cancer. For each dataset, we count the 

number of features that each method outperforms the others.
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Figure 5: 
Sensitivity of RIFLE, MissForest, Amelia, KNN Imputer, MIDA, and Mean Imputer to the 

percentage of missing values on the Drive dataset. Increasing the percentage of missing 

value entries degrades the benchmarks’ performance compared to RIFLE. KNN-imputer 

implementation cannot be executed on datasets containing 80% (or more) missing entries. 

Moreover, Amelia and MIDA do not converge to a solution when the percentage of missing 

value entries is higher than 70%.
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Figure 6: 
Sensitivity of RIFLE, MissForest, MICE, Amelia, Mean Imputer, KNN Imputer, and MIDA 

to the number of samples for the imputations of Blog Feedback dataset containing 40% of 

MCAR missing values. When the number of samples is limited, RIFLE outperforms other 

methods, and its performance is very close to the non-linear imputer MissForest for larger 

samples.
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Figure 7: 
Effect of the number of covariance estimations on the performance (left) and run time 

(right) of robust LDA on Avila and Magic datasets. Increasing the number of covariance 

estimations (k) improves the model’s accuracy on the test data. However, it takes longer 

training time.
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Table 1:

Performance comparison of RIFLE, QRIFLE (Quadratic RIFLE), and state-of-the-art methods on several UCI 

datasets. We applied to impute methods on three different missing-value proportions for each dataset. The best 

imputer is highlighted with bold font, and the second-best imputer is underlined. Each experiment is done 5 

times, and the average and the standard deviation of performances are reported.

Dataset Name RIFLE QRIFLE MICE Amelia GAIN MissForest MIDA EM

Spam (30%) 0.87 ±0.009 0.82 ±0.009 1.23 ±0.012 1.26 ±0.007 0.91 ±0.005 0.90 ±0.013 0.97 ±0.008 0.94 ± 0.004

Spam (50%) 0.90 ±0.013 0.86 ±0.014 1.29 ±0.018 1.33 ±0.024 0.93 ±0.015 0.92 ±0.011 0.99 ±0.011 0.97 ± 0.008

Spam (70%) 0.92 ±0.017 0.91 ±0.019 1.32 ±0.028 1.37 ±0.032 0.97 ±0.014 0.95 ±0.016 0.99 ±0.018 0.98 ± 0.017

Housing (30%) 0.86 ±0.015 0.89 ±0.018 1.03 ±0.024 1.02 ±0.016 0.82 ±0.015 0.84 ±0.018 0.93 ±0.025 0.95 ± 0.011

Housing (50%) 0.88 ±0.021 0.90 ±0.024 1.14 ±0.029 1.09 ±0.027 0.88 ±0.019 0.88 ±0.018 0.98 ±0.029 0.96 ± 0.016

Housing (70%) 0.92 ±0.026 0.95 ±0.028 1.22 ±0.036 1.18 ±0.038 0.95 ±0.027 0.93 ±0.024 1.02 ±0.037 0.98 ± 0.017

Clouds (30%) 0.81 ±0.018 0.79 ±0.019 0.98 ±0.024 1.04 ±0.027 0.76 ±0.021 0.71 ±0.011 0.83 ±0.022 0.86 ± 0.013

Clouds (50%) 0.84 ±0.026 0.84 ±0.028 1.10 ±0.041 1.13 ±0.046 0.82 ±0.027 0.75 ±0.023 0.88 ±0.033 0.89 ± 0.018

Clouds (70%) 0.87 ±0.029 0.90 ±0.033 1.16 ±0.044 1.19 ±0.048 0.89 ±0.035 0.81 ±0.031 0.93 ±0.044 0.92 ± 0.023

Breast Cancer 
(30%)

0.52 ±0.023 0.54 ±0.027 0.74 ±0.031 0.81 ±0.032 0.58 ±0.024 0.55 ±0.016 0.70 ±0.026 0.67 ± 0.014

Breast Cancer 
(50%)

0.56 ±0.026 0.59 ±0.027 0.79 ±0.029 0.85 ±0.033 0.64 ±0.025 0.59 ±0.022 0.76 ±0.035 0.69 ± 0.022

Breast Cancer 
(70%)

0.59 ±0.031 0.65 ±0.034 0.86 ±0.042 0.92 ±0.044 0.70 ±0.037 0.63 ±0.028 0.82 ±0.035 0.67 ± 0.014

Parkinson (30%) 0.57 ±0.016 0.55 ±0.016 0.71 ±0.019 0.67 ±0.021 0.53 ±0.015 0.54 ±0.010 0.62 ±0.017 0.64 ± 0.011

Parkinson (50%) 0.62 ±0.022 0.64 ±0.025 0.77 ±0.029 0.74 ±0.034 0.61 ±0.022 0.65 ±0.014 0.71 ±0.027 0.69 ± 0.022

Parkinson (70%) 0.67 ±0.027 0.74 ±0.033 0.85 ±0.038 0.82 ±0.037 0.69 ±0.031 0.73 ±0.022 0.78 ±0.038 0.75 ± 0.029
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Table 2:

Normalized RMSE of RIFLE and several state-of-the-art Methods on Superconductivity, blog feedback, and 

NHANES datasets. The first two datasets contain 30% Missing Not At Random (MNAR) missing values in 

the training phase generated by Algorithm 9. Each method applied 5 times to each dataset, and the result is 

reported as the average performance ± standard deviation of experiments in terms of NRMSE.

Methods
Datasets

Super Conductivity Blog Feedback NHANES

Regression on Complete Data 0.4601 0.7432 0.6287

RIFLE 0.4873 ± 0.0036 0.8326 ± 0.0085 0.6304 ± 0.0027

Mean Imputer + Regression 0.6114 ± 0.0006 0.9235 ± 0.0003 0.6329 ± 0.0008

MICE + Regression 0.5078 ± 0.0124 0.8507 ± 0.0325 0.6612 ± 0.0282

EM + Regression 0.5172 ± 0.0162 0.8631 ± 0.0117 0.6392 ± 0.0122

MIDA Imputer + Regression 0.5213 ± 0.0274 0.8394 ± 0.0342 0.6542 ± 0.0164

MissForest 0.4925 ± 0.0073 0.8191 ± 0.0083 0.6365 ± 0.0094

KNN Imputer 0.5438 ± 0.0193 0.8828 ± 0.0124 0.6427 ± 0.0135
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Table 3:

Sensitivity of Linear Discriminant Analysis, Robust LDA (Common Covariance Matrices), and Robust QDA 

(Different Covariance matrices for two groups) to the number of training samples.

Number of Training Data Points
Method

LDA Robust LDA Robust QDA

50 52.38% ± 3.91% 62.14% ± 1.78% 61.36% ± 1.62%

100 61.24% ± 1.89% 68.46% ± 1.04% 70.07% ± 0.95%

200 73.49% ± 0.97% 73.35% ± 0.67% 73.51% ± 0.52%
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Table 4:

Accuracy of RIFLE, MICE, KNN-Imputer, Expectation Maximization (EM), and Robust QDA on different 

discrete, mixed, and continuous datasets. Robust QDA can perform better than other methods when the input 

features are continuous, and the target variable is discrete. However, RIFLE results in higher accuracy in 

mixed and discrete settings.

Accuracy of Methods

Dataset Feature 
Type

RIFLE Robust QDA MissForest MICE KNN Imputer EM

Glass 
Identification

Continuous 67.12% ± 
1.84%

69.54% ± 
1.97%

65.76% ± 1.49% 62.48% ± 
2.45%

60.37% + 
±1.12%

68.21% + 
±0.94%

Annealing Mixed 63.41% ± 
2.44%

59.51% ± 
2.21%

64.91% ± 1.35% 60.66% ± 
1.59%

57.44% ± 
1.44%

59.43% + 
±1.29%

Abalone Mixed 68.41% ± 
0.74%

63.27% ± 
0.76%

69.40% ± 0.42% 63.12% ± 
0.98%

62.43% ± 
0.38%

62.91% + 
±0.37%

Lymphography Discrete 66.32% ± 
1.05%

58.15% ± 
1.21%

66.11% ± 0.94% 55.73% ± 
1.24

57.39% ± 
0.88%

59.55% + 
±0.68%

Adult Discrete 72.42% ± 
0.06%

60.36% ± 
0.08

70.34% ± 0.03% 63.30% ± 
0.14%

60.14% ± 0.00 60.69% + 
±0.01%

Transact Mach Learn Res. Author manuscript; available in PMC 2024 March 28.


	Abstract
	Introduction
	Contributions:

	Robust Inference via Estimating Low-order Moments
	Robust Linear Regression in the Presence of Missing Values
	A Distributionally Robust Formulation of Linear Regression
	RIFLE for Ridge Linear Regression

	Table T1
	Performance Guarantees for RIFLE
	Consistency of the Covariance Estimator:
	Defining

	Imputation of Missing Values and Going Beyond Linear Regression
	Beyond Linear Regression:


	Robust Classification Framework
	Robust Quadratic Discriminant Analysis

	Table T2
	Table T3
	Experiments
	Evaluation Metrics
	Tuning Hyper-parameters of RIFLE
	RIFLE Consistency
	Data Imputation via RIFLE
	Sensitivity of RIFLE to the Number of Samples and Proportion of Missing Values
	Performance Comparison on Real Datasets
	Efficiency of RIFLE:
	Performance of RIFLE on Classification Tasks
	Comparison of Robust Linear Regression and Robust QDA
	Limitations and Future Directions:
	Conclusion:



	A A Review of Missing Value Imputation Methods in the Literature
	B Estimating Confidence Intervals of Low-order Moments
	Table T8
	C Solving Robust Ridge Regression with the Optimal Convergence Rate
	Table T9
	D Solving the Dual Problem of the Robust Ridge Linear Regression via ADMM
	Table T10
	Table T11
	E Quadratic RIFLE: Using Kernels to Go Beyond Linearity
	Figure 8:
	F Robust Quadratic Discriminant Analysis (Presence of Missing Values in the Target Feature)
	Table T12
	G Generating Missing Values Patterns in Numerical Experiments
	Table T13
	H Proof of Lemmas and Theorems
	I Dataset Descriptions
	J Further Discussion on the Consistency of RIFLE
	K Numerical Experiments for Convergence of RIFLE Algorithms
	L Execution Time Comparison of RIFLE and Other State-of-the-art Approaches
	Table 5:
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Table 1:
	Table 2:
	Table 3:
	Table 4:

