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Abstract

The fiber orientation distribution function (FOD) is an advanced model for high angular resolution 

diffusion MRI representing complex fiber geometry. However, the complicated mathematical 

structures of the FOD function pose challenges for FOD image processing tasks such as 

interpolation, which plays a critical role in the propagation of fiber tracts in tractography. In 

FOD-based tractography, linear interpolation is commonly used for numerical efficiency, but it 

is prone to generate false artificial information, leading to anatomically incorrect fiber tracts. 

To overcome this difficulty, we propose a flowbased and geometrically consistent interpolation 

framework that considers peak-wise rotations of FODs within the neighborhood of each location. 

Our method decomposes a FOD function into multiple components and uses a smooth vector field 

to model the flows of each peak in its neighborhood. To generate the interpolated result along the 

flow of each vector field, we develop a closed-form and efficient method to rotate FOD peaks 

in neighboring voxels and realize geometrically consistent interpolation of FOD components. 

By combining the interpolation results from each peak, we obtain the final interpolation of 

FODs. Experimental results on Human Connectome Project (HCP) data demonstrate that our 

method produces anatomically more meaningful FOD interpolations and significantly enhances 

tractography performance.
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1 Introduction

Diffusion MRI (dMRI) is the most widely used technique for studying human brain 

structural connectivity in vivo [1]. Significant improvements in imaging techniques 

dramatically increased the spatial and angular resolution of dMRI [2] and provided 

opportunities for advanced models such as fiber orientation distribution (FOD) [3], which 

facilitates the development of FOD-based fiber tracking for brain connectivity research. 

However, well-known challenges in current tractography methods generate large amounts of 

false positives and negatives [4]. While there have been considerable efforts in developing 
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novel fiber tracking methods [5], a critical step in tractography, FOD interpolation, has 

received rare attention.

In popular FOD-based tractography, linear interpolation is commonly adopted for numerical 

efficiency. Still, it often generates artificial directions and ignores rotations between 

neighboring FODs, as shown in Figure 1. (B), which can lead to false positive streamlines. 

To enhance FOD interpolation, a Riemannian framework was proposed in [6]; under the 

square root reparameterization, the space of FOD functions can form the positive orthant 

of the unit Hilbert sphere. However, this framework is computationally expensive and 

sometimes fails to provide anatomically meaningful interpolations [7]. A rotation group 

action-based framework [7] was proposed that simultaneously averages the shape and 

rotation of FODs. A later work [8] proposed a rotation-induced Riemannian metric for 

FODs and introduced a weighted mean for FOD interpolation. However, since only one 

rotation is used for the whole FOD, these methods cannot handle more general situations 

where individual FOD peaks experience different rotations. More importantly, these methods 

have not been adopted in a tractography framework to advance fiber tracking performance 

due to their numerical complexity.

In this work, we develop a novel framework to perform geometrically consistent 

interpolation of FODs and demonstrate its effectiveness in enhancing the performance of 

fiber tracking. We decompose each FOD function with multiple peak lobes into components, 

each with only one peak lobe. Then, we locally model neighboring voxels’ single-peak 

components, consistent in direction, as a vector field flow fitted by polynomials. Each 

vector field locally represents the geometry of an underlying fiber bundle and continuously 

determines the direction of single-peak components within the support. Then, a closed-form 

solution is developed to account for rotations of FODs represented as spherical harmonics 

and realize the geometrically consistent interpolation of each FOD component, as shown 

in Figure 1. (C). The interpolation of a complete FOD function with multiple peak lobes 

is obtained by merging the singlepeak interpolations from all the covering vector fields. 

In our experiments, we use HCP data to quantify the accuracy of the proposed FOD 

interpolation algorithm and show that it achieves superior performance than the commonly 

used linear interpolation approach. Furthermore, we apply our interpolation method to 

perform upsampling of FOD fields and significantly improve the performance of FOD-based 

tractography both qualitatively and quantitatively.

2 Method

2.1 FOD Decomposition

The fiber orientation distribution (FOD) is an advanced model representing the complicated 

crossing fiber’s geometry [9]. However, the multiple peak lobes of the FOD function pose 

a challenge for image processing. Our solution is to decompose the FOD function into 

several independent components, each containing only one peak lobe. A FOD function is 

conventionally represented under the real spherical harmonics (SPHARMs) basis up to the 

order N:
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FOD(θ, φ) = ∑
n, m

un
mY n

m(θ, φ) = UTY (θ, φ)

(1)

where Y n
m is the mth (-n≤m≤n) real SPHARM basis at the order n (0≤n≤ N) and un

m is the 

coefficient for the corresponding basis, U is the vector that represents all the coefficients un
m , 

and θ and φ are the polar and azimuth angles of the spherical coordinates in R3. For any 

FOD function, we expand it using (1) on a unit sphere represented by a triangular mesh, 

search the peaks on the mesh, and accept the peaks whose value is higher than a threshold 

THD (e.g., 0.1). For a FOD function with K peak lobes, we solve the following optimization 

problem for its decomposition:

arg min
U1, …, UK

∑
k = 1

K
Uk − U

2

2

+ λ1 ∑
k = 1

K
AkUk − AkU 2

2 + λ2 ∑
k = 1

K
∑

j ≠ k

K
AjUk

2

2

(2)

where Uk are the coefficients for the decomposed single-peak FOD components, and Ak 

is the matrix that represents the values of SPHARMs at neighboring directions around the 

kth peak (vertices within two rings of each peak). The first term enforces the sum of the 

decomposed single-peak components to equal the original FOD; the second term enforces 

each component to equal the original FOD near the corresponding peak; the third term 

suppresses each component around other peaks. We show an example of a FOD function 

decomposition in Figure 2, where a FOD function is decomposed into two single-peak 

components.

2.2 Modeling Single Peak FOD Components as Flow of Vector Fields

For each single-peak FOD component, we model it with the flow of a smooth vector field, 

which supports geometrically consistent interpolations of FOD components.

We represent the kth single-peak component of the FOD function at a voxel p0 as F p0
k  . We 

choose the peak direction of F p0
k  as the seeding vector vp0 of the local supporting vector 

field. Then we compute a tube T p0
k  , centering at p0, along the direction vp0 with a radius 

r and a height h (Figure 3. (A)). For each voxel pt within the tube T p0
k  , we choose the 

single-peak component F pt
k  (Figure 3. (B)) whose peak direction vpt is closest to vp0, and the 

peak direction vpt is a vector at pt (Figure 3. (C)). We do not pick any vector for voxels 

without a valid peak direction whose angular difference is less than a threshold θ to the 

seeding vector vp0. These peak vectors {vpt} form a vector field within this tube, and we use 

a second-order polynomial to fit each component of this vector field:

arg min
a0, a1, …, a9

∑
t = 0

card T p0
k

vpt
d − a0 − ∑

i = 1

3
aixi − ∑

l + ℎ = 2
anxi

lxj
ℎ

2

2

+ λ3 ∑
n = 4

9
an

2

Nie and Shi Page 3

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2024 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3)

where vpt
d  (1≤d≤3) represent dth component of the vector at voxel pt. The second term 

regulates the second-order coefficients for smoothness. The polynomials are used to model 

the vector field V p0
k  within the tube T p0

k  that represents the kth underlying fiber bundle locally 

around the voxel p0.

2.3 Rotation Calculation for SPHARM-based FODs

For a target point q where we perform the interpolation, we choose the nearest voxel 

p0, which has been augmented with a set of tubes {T p0
k } and vector fields {V p0

k } through 

the computation of section 2.2. For each vector field V p0
k  , we compute the vector vq at 

point q using its polynomial representation. Each of the corresponding kth single-peak FOD 

component F pt
k  from voxels within one voxel distance to q are used for interpolation. First, 

we rotate each single-peak component F pt
k  so that its peak direction is aligned with the 

vector vq. An easy way to compute the rotation is Rt = exp [r]× , where r is a vector with its 

direction determined by the crossing product between the peak vectors vpt and vq, and its 

length is the angle between vpt and vq; [∙]× is the crossproduct matrix of a vector [8]. Since 

the rotated single-peak FOD components are now aligned in direction, we can compute 

the weighted mean of SPHARM coefficients, which is the interpolated FOD component 

corresponding to the kth peak around voxel p0. The weights can be inverse distance 

or linear interpolation weights. After interpolating all the FOD single-peak components 

independently, we combine them into the complete interpolated FOD function at point q. 

The flowchart of the method is shown in Figure 4. Our framework independently handles the 

single-peak components of different FODs and successfully obtains geometrically consistent 

interpolation of complicated crossing fiber geometry.

An essential step for the interpolation above is to transform the FOD function by a rotation 

R. A straightforward numerical way is to expand the FOD function on a spherical triangular 

mesh and rotate the mesh to rotate the function and compute the inner products between the 

rotated FOD function and each of the SPHARM basis to obtain the coefficients. However, 

the numerical method is computationally expensive. Instead, we propose a closed-form 

solution to derive a matrix from the rotation R that can be applied to the coefficients of the 

SPHARMs. Let FODR represent the FOD function after applying the rotation R. We have 

the following relation:

FODR(θ, φ) = FOD θr, φr

(4)

where (θr,φr) is the coordinate acquired by rotating the coordinate (θ,φ) with the inverse 

rotation R−1. We represent (4) using the SPHARMs:

∑
n, m

vn
mY n

m(θ, φ) = ∑
n, m

un
mY n

m θr, φr
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(5)

where vn
m and un

m are coefficients for FODR and FOD, respectively. The key to computing 

coefficients vn
m is representing the SPHARM function Y n

m θr, φr  by a linear combination 

of Y n
m(θ, φ); namely, finding the transformation of SPHARMs under a coordinate system 

rotation. For rotation R−1, we follow Wigner’s work [10] to decompose it as three successive 

rotations around three axes:

R−1 = ZγY βZα

(6)

where Zγ and Zα are the rotations around the current z-axis by angles γ and α, respectively; 

Yβ is the rotation around the current y-axis by an angle β.

We transform the real SPHARMs into complex SPHARMs for more straightforward 

computation. Based on a group symmetry argument [10], Wigner has proven that Wigner 

D-matrices can represent the transformation of the nth-order complex SPHARMs between 

two coordinate systems based on the decomposition in (6):

W n θr, φr = W n(θ, φ)Dn(α, β, γ)

(7)

where Wn is a (2n+1) complex vector that represents the nth-order complex SPHARMs; Dn 

is a (2n+1)-by-(2n+1) matrix whose elements are represented as:

Dm, ℎ
n (α, β, γ) = eimαdm, ℎ

n (β)ejℎγ

(8)

where the first and third terms correspond to the rotations Zα and Zγ in (6), and the rotations 

around the z-axis are trivial since they only change the azimuth angle φ in the complex 

SPHARMs. The middle term is induced from the rotation Yβ, which corresponds to a 

rotation around the y-axis, and is much more complicated:

dm, ℎ
n (β) = Nm

ℎsinℎ − m(β)(1 + cosβ)mPn − ℎ
(ℎ − m, ℎ + m)(cosβ),

 with Nm
ℎ = 1

2ℎ
(n − ℎ)!(n + ℎ)!
(n − m)!(n + m)! , 0 ≤ m ≤ ℎ ≤ n

(9)

where P is the Jacobi polynomial, and other elements of this matrix can be induced by the 

symmetry property [11, 12]. Combining equations (5) and (7), we have:

vn = UDn(α, β, γ)U−1un

(10)
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where vn and un are real (2n+1) vectors whose mth element is vn
m and un

m in (5); U is the real 

to complex SPHARMs transformation matrix, and its inverse is U−1. Now we can compute 

the nth-order coefficients of the rotated FODR in (4) by formula (10). The computation 

achieved by the closed-form representation is efficient because it only involves small-size 

matrix operations. For example, the largest matrix in coefficients computation for a FOD 

function represented by up to 16th-order SPHARMs is 33×33.

2.4 Evaluation Methods

We compare the proposed FOD interpolation method with the linear interpolation of 

SPHARM coefficients, the most used method in FOD-based tractography. We measure 

the quality of the interpolated FOD functions based on down-sampling; we downsimple a 

ground truth FOD volume data to half the resolution, interpolate the downsampled data to 

the original resolution, and measure the interpolated FOD functions against the ground truth 

data based on two metrics. The first metric is to measure the sharpness of the interpolated 

FOD functions, which indicates the specificity and accuracy of the FOD function. Inspired 

by the full width at half maximum (FWHM) in signal processing, we define the full area at 

half maximum (FAHM) of a FOD function f as FAHM(f) = area( x:f(x) > max(f /2) )/4π. 

The metric FAHM is more sensitive to boating effects than entropy [7] and generalized 

fractional anisotropy [8]. Another metric is the relative error between the interpolated FOD 

function and the ground truth FOD function. The relative error is the L2 distance of two 

FOD functions divided by the L2 norm of the ground truth FOD function.

We also evaluate the effectiveness of the proposed method on tractography. We up-sample 

the FOD volume images to super-resolution images, including the cortical spinal tract 

(CST) area that connects the cortical surface to the internal capsule. Then, we run the 

popular tractography from the MRTrix [13] on the original and superresolution data. We 

use an evaluation called Topographic Regularity, an essential property widely presented in 

motor and sensory pathways [14–17], to show the improvements of the tractography on 

up-sampled FOD data. We measure the topographic regularity using an intuitive metric 

proposed in [14], where the classical multidimensional scaling (MDS) is used to project 

both the beginning (cortical surface) and ending points (internal capsule) of the streamlines 

of each CST bundle to R2. Then, the Procrustes distance between the projected beginning 

and ending points is computed to characterize how well topographic regularity is preserved 

during fiber tracking.

3 Experiment Results

We evaluated the FOD interpolation using 40 HCP subjects[18], including 20 females and 

20 males. We reconstructed 16th-order SPHARM-based FODs [9] from the HCP data with 

an isotropic resolution of 1.25mm. For parameters in our method, we set λ1, λ2, and λ3 in 

equations (2) and (3) to be 1; the radius r, height h, and θ of the tubes to be three times of 

voxel size, five times of voxel size, and 10 degrees.

The HCP FOD data is used as the ground truth for down-sampling-based evaluation. We 

show the FODs from one interpolated slice of a subject in Figure 5 and highlight the 

FODs from an ROI (red box) where several fiber bundles cross. Contrasting to the proposed 

Nie and Shi Page 6

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2024 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



method, FODs from linear interpolation tend to lose their sharpness. For each subject, we 

computed the FAHM and relative L2 error for each interpolated FOD, which was then used 

to compute the mean FAHM and mean relative L2 error among all interpolated FODs. We 

show the boxplots of these measures from the 40 HCP subjects in Figure 6. (A) and (B). 

The FAHM measurement shows our approach avoids the bloating effects and preserves a 

similar level of sharpness to the ground truth FODs; the lower mean relative L2 error to 

the ground truth from our method further shows the proposed interpolation achieved more 

accurate interpolation.

We up-sampled the 40 HCP FOD volume images around the CST region to superresolution 

images with an isotropic resolution of 0.25mm. Then, we ran FOD-based probabilistic 

tractography on the original and up-sampled FOD data using the iFOD1 algorithm of the 

MRtrix software [13]. In each run, 10K seed points are randomly selected, and the main 

parameters of iFOD1 are set as: step size = 0.02mm, which is around 0.1 times the voxel 

size of the up-sampled image, and angle threshold = 7 degrees. The same parameters were 

used for the original HCP dataset to avoid the bias of parameters. Three representative 

examples of the reconstructed CST bundle from the motor cortex to the internal capsule 

are shown in Figure 7, where we can easily see that the tracts from the super-resolution 

FOD by our proposed interpolation method are much smoother and better reflect the 

somatotopic organizational principles of the CST from neuroanatomy than the baseline 

tracking results. In Figure 6. (C), boxplots of the results from Procrustes analyses further 

confirm this observation and demonstrate that our geometric FOD interpolation algorithm 

can significantly enhance the anatomical consistency of fiber tracking results.

4 Conclusion

We propose a novel interpolation method for FOD function with enhanced consistency 

of fiber geometry. The experiments show that our method provides a more accurate 

interpolation of FODs and can generate super-resolution FODs via upsampling to improve 

the tractography’s performance significantly. In future work, we will integrate the proposed 

FOD interpolation with tractography algorithms and validate its performance in reducing 

false positives and negatives in challenging fiber bundles.

Acknowledgement

This work is supported by the National Institute of Health (NIH) under grants R01EB022744, RF1AG077578, 
RF1AG056573, RF1AG064584, R21AG064776, P41EB015922, U19AG078109.

References

1. Wandell BA: Clarifying Human White Matter. Annu Rev Neurosci 39, 103–128 (2016) [PubMed: 
27050319] 

2. Ugurbil K, Xu J, Auerbach EJ, Moeller S, Vu AT, Duarte-Carvajalino JM, Lenglet C, Wu X, 
Schmitter S, Van de Moortele PF, Strupp J, Sapiro G, De Martino F, Wang D, Harel N, Garwood 
M, Chen L, Feinberg DA, Smith SM, Miller KL, Sotiropoulos SN, Jbabdi S, Andersson JL, Behrens 
TE, Glasser MF, Van Essen DC, Yacoub E, Consortium WU-MH: Pushing spatial and temporal 
resolution for functional and diffusion MRI in the Human Connectome Project. Neuroimage 80, 
80–104 (2013) [PubMed: 23702417] 

Nie and Shi Page 7

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2024 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Tournier JD, Calamante F, Connelly A: Robust determination of the fibre orientation distribution in 
diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35, 
1459–1472 (2007) [PubMed: 17379540] 

4. Thomas C, Ye FQ, Irfanoglu MO, Modi P, Saleem KS, Leopold DA, Pierpaoli C: Anatomical 
accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc 
Natl Acad Sci U S A 111, 16574–16579 (2014) [PubMed: 25368179] 

5. Aydogan DB, Shi Y: Parallel Transport Tractography. IEEE Trans Med Imaging 40, 635–647 (2021) 
[PubMed: 33104507] 

6. Goh A, Lenglet C, Thompson PM, Vidal R: A nonparametric Riemannian framework for processing 
high angular resolution diffusion images and its applications to ODF-based morphometry. 
Neuroimage 56, 1181–1201 (2011) [PubMed: 21292013] 

7. Cetingul HE, Afsari B, Wright MJ, Thompson PM, Vidal R: Group Action Induced Averaging for 
Hardi Processing. Proc IEEE Int Symp Biomed Imaging 1389–1392 (2012) [PubMed: 22903055] 

8. Li J, Shi Y, Toga AW: Diffusion of fiber orientation distribution functions with a rotation-induced 
riemannian metric. Med Image Comput Comput Assist Interv 17, 249–256 (2014) [PubMed: 
25320806] 

9. Tran G, Shi Y: Fiber Orientation and Compartment Parameter Estimation from Multi-Shell 
Diffusion Imaging. IEEE Trans Med Imaging 34, 2320–2332 (2015) [PubMed: 25966471] 

10. Wigner EP: Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. 
American journal of physics 28, 408–409 (1960)

11. Aubert G: An alternative to Wigner d-matrices for rotating real spherical harmonics. AIP advances 
3, 62121–062121 (2013)

12. Lai S-T, Palting P, Chiu Y-N: On the closed form of Wigner rotation matrix elements. Journal of 
mathematical chemistry 19, 131–145 (1996)

13. Tournier JD, Calamante F, Connelly A: MRtrix: Diffusion tractography in crossing fiber regions. 
Int J Imag Syst Tech 22, 53–66 (2012)

14. Aydogan DB, Shi Y: Tracking and validation techniques for topographically organized 
tractography. Neuroimage 181, 64–84 (2018) [PubMed: 29986834] 

15. Jbabdi S, Sotiropoulos SN, Behrens TE: The topographic connectome. Curr Opin Neurobiol 23, 
207–215 (2013) [PubMed: 23298689] 

16. Nie X, Shi Y: Topographic Filtering of Tractograms as Vector Field Flows. pp. 564–572. Springer 
International Publishing, (Year)

17. Patel GH, Kaplan DM, Snyder LH: Topographic organization in the brain: searching for general 
principles. Trends Cogn Sci 18, 351–363 (2014) [PubMed: 24862252] 

18. Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TE, Bucholz R, Chang A, Chen L, 
Corbetta M, Curtiss SW, Della Penna S, Feinberg D, Glasser MF, Harel N, Heath AC, Larson-Prior 
L, Marcus D, Michalareas G, Moeller S, Oostenveld R, Petersen SE, Prior F, Schlaggar BL, Smith 
SM, Snyder AZ, Xu J, Yacoub E, Consortium WU-MH: The Human Connectome Project: a data 
acquisition perspective. Neuroimage 62, 2222–2231 (2012) [PubMed: 22366334] 

Nie and Shi Page 8

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2024 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
An illustrative example of FOD interpolations. (A) FODs of four neighboring voxels from 

a bending fiber bundle were highlighted by red circles in (B) and (C). The blue arrow 

shows the direction of the fiber bundle. (B) Interpolated FODs by linear interpolation, where 

artificial peaks have been generated. (C) The interpolated result by our proposed method 

correctly accounts for rotation and follows the bending geometry of the fiber bundle.
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Figure 2. 
A FOD function with two peak lobes is decomposed into two SPHARM-based FOD 

functions, each with only a salient peak lobe.
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Figure 3. 
A vector field within a tube centering at a voxel p0. (A) Tube T p0

k  (yellow box) centering at p0 

along the peak direction vp0 of the kth FOD component F p0
k  (green). (B) The FODs within the 

tube and the {F pt
k } are in green. (C) The vectors {vpt} are picked at voxels within the tube, 

and these vectors are used to solve (3) and compute the supporting vector field V p0
k  .
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Figure 4. 
In the flowchart, the original FODs are highlighted by red circles at the four corners. The 

FOD functions are decomposed into single-peak components in the first row and locally 

fitted by vector field flows. In the second row, we rotate the single-peak components at four 

corners to align with the vectors at each target point, and then we compute their weighted 

mean at each target point. Finally, we combine the single-peak components into complete 

FODs.
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Figure 5. 
One interpolated slice of the FODs. For FODs within the red box, a zoomed view of the 

proposed interpolation, the linear interpolation, and the ground truth are plotted.
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Figure 6. 
Boxplots from quantitative comparisons using data from 40 HCP subjects. (A) Mean FAHM 

of the ground-truth FODs, upsampled FODs from the proposed and linear interpolation. 

(B) Relative error between up-sampled FODs and ground truth. (C) Procrustes distance of 

CST bundles from fiber tracking based on linear interpolation (original) and our up-sampled 

FODs.
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Figure 7. 
Tractography of CST on original HCP data and upsampled data for three subjects, and for 

each bundle, we downsample the number of streamlines to 1000 for visualization.

Nie and Shi Page 15

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2024 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Method
	FOD Decomposition
	Modeling Single Peak FOD Components as Flow of Vector Fields
	Rotation Calculation for SPHARM-based FODs
	Evaluation Methods

	Experiment Results
	Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

