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SpiDe-Sr: blind super-resolution network for
precise cell segmentation and clustering in
spatial proteomics imaging

Rui Chen1,2,3, JiasuXu1,2,3, BoqianWang1,2, Yi Ding1,2, Aynur Abdulla1, Yiyang Li 2,
Lai Jiang1 & Xianting Ding 1,2

Spatial proteomics elucidates cellular biochemical changes with unprece-
dented topological level. Imagingmass cytometry (IMC) is a high-dimensional
single-cell resolution platform for targeted spatial proteomics. However, the
precision of subsequent clinical analysis is constrained by imaging noise and
resolution. Here, we propose SpiDe-Sr, a super-resolution network embedded
with a denoising module for IMC spatial resolution enhancement. SpiDe-Sr
effectively resists noise and improves resolution by 4 times. We demonstrate
SpiDe-Sr respectively with cells, mouse and human tissues, resulting 18.95%/
27.27%/21.16% increase in peak signal-to-noise ratio and 15.95%/31.63%/15.52%
increase in cell extraction accuracy. We further apply SpiDe-Sr to study the
tumor microenvironment of a 20-patient clinical breast cancer cohort with
269,556 single cells, and discover the invasion of Gram-negative bacteria is
positively correlated with carcinogenesis markers and negatively correlated
with immunological markers. Additionally, SpiDe-Sr is also compatible with
fluorescence microscopy imaging, suggesting SpiDe-Sr an alternative tool for
microscopy image super-resolution.

Spatial proteomics could elucidate tumor microenvironment1,2, organ
heterogeneity3, and cellular biochemical changes occurring at differ-
ent stages of disease4–6. Imaging mass cytometry (IMC) is a targeted
spatial proteomic technique that avoids ripping cells out of their native
environments by coupling immunocytochemical methods with laser
ablation7,8. To achieve accurate cell extraction and cell clustering for
subsequent statistical analysis, IMC imaging with high peak signal-to-
noise ratio (PSNR) and rationalized details is desired. However, due to
the non-specific binding of antibodies, IMC imaging is susceptible to
noise contamination, especially in the case ofmulti-channel staining2,8.
Meanwhile, IMC imaging resolution is limited by the size of laser spot,
as each pixel in the image process is generated by laser ablation of the
metal-labeled tissue8.

Themost straightforward strategy to obtain IMC imageswith high
PSNR is to manually eliminate pixel values above and below empirical

thresholds, but relatively ultra-high and ultra-low expression of mar-
kers would also be eliminated together9. More effective strategies
include selecting specific antibodies that rarely cross react with non-
target antigens10. As for improving IMC imaging resolution, the most
fundamental strategy is to reduce the laser spot size. There is no
comprehensive solution so far because the laser spot size is a complex
parameter that relies on the laser energy required for ablation, beam
radius, and single laser ablation shot duration8,11,12. Enlarging the tissue
with expansive hydrogel is a feasible approach for increasing image
resolution. However, IMC requires dehydrating the tissue. To keep the
tissue from shrinking after dehydration remains an unsolved
challenge13,14.

Apart from physical or biological methods, data-driven approa-
ches offer an alternative opportunity to recover authentic information
from noise contaminated images and reduce human labor. The
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classical approach is to train the superviseddeep learning network that
learns the mappings between image pairs of low PSNR/resolution
images and ground truth (that is, images without noise contamination
or high-resolution images with the same underlying scene as the low-
resolution images),which, respectively, refers to images denoising and
super-resolution (SR)15–17. Suchmethods have been broadly adopted to
enhance the performance of optical imaging18–20. However, the laser
ablation during IMC imaging processprecludes the same sample being
acquired twice. This makes the acquisition of clean-noisy or high
resolution (HR)-low resolution (LR) IMC image pairs almost imprac-
tical. With no proper ground truth to supervise the network training,
conventional supervised learning methods are not applicable to IMC
images. Meanwhile, unsupervised learning has also evolved rapidly in
natural image enhancement (denoising or SR21,22). For natural images,
visual quality is the priority. But for IMC images, rational enhancement
is the necessary foundation for subsequent analysis. The image
enhanced by the existing unsupervised SR network lacks rationality
due to the absence of ground truth20,23.

Here, we propose SpiDe-Sr (spatial proteomic images denoising
and super-resolution), a blind (without true blur kernel) super-
resolution network embedded with self-supervised denoising mod-
ule for enhancing PSNR and cell extraction accuracy in IMC. SpiDe-Sr
consisted of a self-supervised denoising module and a blind super-
resolution module. The denoising module was based on the insight
that pairs of noisy images generated by neighbor sub-sampling
from the single noisy images could be used for training, because the
noisy image pairs were conditionally independent when the gap
between the underlying ground truth images of the noisy image pairs
was small24,25. Thus, a U-net network26 was trained with image pairs for
denoising. The strategy of the blind super-resolution module was to
iteratively correct the predicted blur kernel to approximate the true
blur kernel, so that the image details could be rationally enhanced
without additional reference27. The SR module was comprised of
individually trained predictor, corrector, and SR network28.We verified
the SpiDe-Sr with metal/fluorescence dual-labeled samples of MCF-7
cell line, mouse fatty liver tissue, and human breast cancer tissue,
respectively. SpiDe-Sr was then applied to clinical breast cancer sam-
ples from a 20-patient cohort. The samples were stained with 14 bio-
markers. With the assistance of SpiDe-Sr, we found that Gram-positive
(G+) and negative (G-) bacteria were commonly present in the tumor
microenvironments. The expression of G+ bacteria marker was posi-
tively correlated with the expression of immunological markers (such
as CD45), while the expression of G- bacteria marker was positively
correlated with carcinogenesis markers (such as IFI6) and negatively
correlated with immunological markers (such as CD68 and CD8a). In
addition, we also demonstrated SpiDe-Sr was compatible with fluor-
escence microscopy imaging, suggesting its versatility in microscopy
image processing.

Results
Development and performance validation of SpiDe-Sr
The general composition of SpiDe-Sr is schematized in Fig. 1a. The
SpiDe-Sr comprised of two main modules, namely the self-supervised
denoisingmodule and the blind super-resolutionmodule. In denoising
module training, a pair of sub-sampled images (g1ðyÞ, g2ðyÞ) were
generated fromnoise image ywith the sub-samplerG. The noisy image
pairs were conditionally independent when the gap between the
underlying ground truth images of the noisy image pairs was small24,25.
Therefore, g1ðyÞ and g2ðyÞ could be used, respectively, as the input and
target to train the denoising network (Uθ), which uses U-net26 as the
framework (Supplementary Fig. 1a). The loss function of Uθ consisted
of two terms: the reconstruction term (Lrec) computing the differences
between the output and the noisy target, and the regularization term
(Lreg) computing the difference of the ground truth pixel values
between the sub-sampled noisy image pair24. The super-resolution

module had three components trained individually in a self-supervised
manner: the blur kernel predictor (Pθ), the blur kernel corrector (Cθ),
and the image super-resolution network (SFTMD28, Sθ) (Supplemen-
tary Fig. 2a–c). The predictor took the low-resolution image (imageLR)
as input and the initial blur kernel (k0) as output. The initial blur kernel
was iteratively corrected by the corrector to avoid super-resolution
images contain artifacts due to mismatched blur kernel27. For the
sensitivity of SR to kernel mismatch, please refer to Supplementary
Fig. 3a. In each corrector iteration, a super-resolution image (imageSRn )
was generated based on the estimated blur kernel (kn) until con-
vergence (Fig. 1c). The loss of the super-resolution module (Loss) was
calculated by themean square error between the estimated blur kernel
output from the corrector (k1,2,:::n) and the true blur kernel (K). After
training, interpretable features and accurate super-resolution map-
pings were learnt by SpiDe-Sr (Supplementary Figs. 1d, 2d and 11),
which could be applied to subsequent acquisitions without additional
training (Fig. 1b).

To quantitatively evaluate the benchmark performance of SpiDe-
Sr, the raw IMC imageswere served as ground truth because of the lack
of clean and high-resolution images. The raw images were super-
imposed with noise and down-sampled to one-fourth of the original
size to form blurred images. The peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) were calculated between the ground truth
and the blurred images before and after SpiDe-Sr enhancement
(Details are provided in the Methods section). After enhancement by
SpiDe-Sr, the PSNR was improved by 23.1 ± 5.4%, raised from
25.25 ± 3.28 dB to 31.72 ± 1.56dB, and the SSIM was improved by
29.17 ± 41.70%, raised from 0.48 ±0.24 to 0.61 ± 0.26 (Fig. 1d and
Supplementary Fig. 1b, c). All cell segmentation tasks were imple-
mented with the Cellpose algorithm29. Fewer cells were missed after
enhancement by SpiDe-Sr. The accuracy of cell extraction was
improved by 58.19 ± 41.92%, from 60.85 ± 13.68% to 90.90 ± 3.61%
(Fig. 1e, g, and Supplementary Fig. 3b–d). The improvement of the
PSNR and SSIM of the images, and cell extraction accuracy were sta-
tistically significant (paired-samples two-sided t-test, P <0.001). In
addition, SpiDe-Sr was visually superior to three state-of-the-art single
image super-resolution methods including SRCNN19,30, KernelGAN31,
and RCAN19,20,32 (Fig. 1f). All methods, except SpiDe-Sr, accidentally
treated CD8 (red pixel points) that should not be expressed in View 2
as effective information.

SpiDe-Sr enhanced IMC images of MCF-7 cell line
While the resolution of the raw IMC image was above 1μm as deter-
mined by the imaging principle of laser ablation8, the resolution after
super-resolutionwas enhanced to 250 nm,whichwas close to confocal
images at 40×magnification (40×, 0.95NA, resolution: 330 nm). In real
experiments, the resolution of the IMC image enhanced by SpiDe-Sr
was faithfully close to confocal images at 20× magnification (20×,
0.4NA, resolution: 830 nm) because the tissue around the laser spot
was also vaporized during IMC imaging. Therefore, we opted to use
20× confocal images asground truth (GT) for comparisonwith the IMC
images before and after the enhancement of SpiDe-Sr.

20× confocal and IMC images of MCF-7 cell line were acquired in
pairs to quantitatively evaluate the performance of SpiDe-Sr (Fig. 2a),
where Tubulin, CD45, and CD34 were stained with fluorescent/metal
dual-labeled antibodies and cell nucleus were stained with both
fluorescent (DAPI) and metal (191Ir/193Ir) dyes (Fig. 2b–d). The Tubulin,
CD45, and CD34 were chosen as representatives of markers with
relatively high, moderate, and low expressions, respectively, as iden-
tified in the pre-experiments. The PSNR of Tubulin, CD45, and CD34
signal intensities in the IMC images were, respectively, 25.66 ± 1.98,
15.39 ± 1.30, and 22.65 ± 1.95 before SpiDe-Sr enhancement, and
27.01 ± 1.95, 18.27 ± 1.30, and 24.74 ± 1.98 after SpiDe-Sr enhancement.
Thus, SpiDe-Sr increased the PSNR by 5.36 ± 4.06%, 18.95 ± 5.89%, and
9.42 ± 5.47%, respectively (Fig. 2e). Meanwhile, the SSIM was,
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respectively, 0.76 ±0.08, 0.52 ± 0.09, and 0.44 ±0.14 before
enhancement, and 0.88 ±0.08, 0.7 ± 0.11, and 0.69 ±0.11 after
enhancement, which was also increased by 16.78 ± 1.81%,
40.21 ± 17.73%, and 57.01 ± 17.49%, respectively (Fig. 2f).

As the image quality was enhanced by SpiDe-Sr, the cells could be
extracted more accurately (Fig. 2g, Supplementary Fig. 4a–c). The
accuracyof cell extraction in the raw IMC images of Tubulin, CD45, and

CD34 being labeled was 90.03 ± 8.26%, 85.82 ± 7.65%, and
82.41 ± 9.37% prior SpiDe-Sr enhancement, while increased to
96.10 ± 4.62%, 95.86 ± 3.82%, and 94.59 ± 6.52% after SpiDe-Sr
enhancement. In this study, accurate extraction of a cell was defined
as being detected in both the IMC and confocal images. However,
accurate cell extraction did not necessarily lead to accurate cell seg-
mentation, which required precise determination of the cell
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boundaries. Therefore, intersection over union score (IoU) was cal-
culated to evaluate the accuracy of cell segmentation21,33. SpiDe-Sr
increased the IoU for 87.04%, 96.68%, and96.36%of the extracted cells
in Tubulin, CD45, and CD34 images, respectively (Fig. 2h). The
improved accuracy of cell boundary resulted in more accurate detec-
tion of protein expression levels. In the enhanced images, the marker
expressions in the accurately extracted cells were closer to that in the
confocal images than raw images (Fig. 2I, j).

In addition, the performance of SpiDe-Sr was comprehensively
compared with three prevalent super-resolution methods, including
SRCNN, KernelGAN, and RCAN on the cell line images (Fig. 2k, l, Sup-
plementary Fig. 4d–h). The running timeof SpiDe-Sr (0.45 ± 0.02 s/pic)
had no advantage over RCAN (0.35 ± 0.01 s/pic), the best performing
of the three methods, but SpiDe-Sr was better than RCAN with
17.78 ± 8.72% higher PSNR and 32.28 ± 15.20% higher SSIM increase
after image enhancement. SpiDe-Sr was also superior to the other
three methods in terms of visual representation (Fig. 2l).

SpiDe-Sr enhanced IMC images of mouse fatty liver tissue
To quantitatively evaluate the performance of SpiDe-Sr on animal
samples, paired 20× confocal and IMC images ofmouse fatty liverwere
acquired (Fig. 3a). Tubulin, CD45, and CD34 were stained with fluor-
escent/metal dual-labeled antibodies and cell nucleus were stained
with both fluorescent (DAPI) andmetal (191Ir/193Ir) dyes. (Fig. 3b–d). The
PSNR of Tubulin, CD45, and CD34 signals were, respectively,
19.59 ± 1.75 dB, 17.50± 2.18 dB, and 17.07 ± 1.34 dB before SpiDe-Sr
enhancement, and 21.22 ± 2.33 dB, 19.51 ± 2.29 dB, and 20.92 ± 1.63 dB
after SpiDe-Sr enhancement. SpiDe-Sr increased PSNR by 8.16 ± 4.77%,
11.67 ± 4.70%, and 22.60 ±0.88% for the three markers (Fig. 3e).
Meanwhile, the SSIM of the three markers raised from 0.57 ± 0.06,
0.53 ± 0.08, and0.51 ± 0.03, to 0.72 ± 0.15, 0.67 ± 0.12, and0.70 ±0.07,
which corresponded to increase by 27.27 ± 8.42%, 25.15 ± 5.49%, and
38.22 ± 9.47%, respectively (Fig. 3f).

The precision of cell segmentation was also improved in images
enhanced by SpiDe-Sr. Using raw images of Tubulin, CD45, and CD34,
the accuracy of cell extraction was, respectively, 68.24 ± 8.52%,
75.62 ± 5.92%, and 69.32 ± 4.08%. After image enhancement by SpiDe-
Sr, the accuracy was increased by 23.07 ± 8.87%, 20.76 ± 12.31%, and
31.63 ± 9.96%, reaching 83.79 ± 9.76%, 90.80 ± 4.43%, and
90.98 ± 1.87%, respectively (Fig. 3g, Supplementary Fig. 5a, c). The
boundaries of the extracted cells were more accurately segmented.
The IoU was increased from 0.56 ±0.18, 0.62 ± 0.13, and 0.57 ± 0.14 to
0.68 ± 0.16, 0.73 ± 0.11, and 0.68 ±0.11, respectively, for the Tubulin,
CD45, andCD34 biomarkers (Fig. 3h, Supplementary Fig. 5b). Accurate
cell segmentation resulted in more precise detection of marker
expressions. The expressions of Tubulin, CD45, and CD34 in, respec-
tively, 95.32%, 98.82%, 100% of the total extracted cells became more
consistent with the corresponding confocal images after SpiDe-Sr
enhancement (Fig. 3i). The normalized protein expression levels in the
enhanced images were also closer to confocal images than raw IMC
images (Fig. 3j).

In this case, SpiDe-Sr was also compared with the other three
super-resolution methods including SRCNN, KernelGAN, and RCAN.

SpiDe-Sr outperformed the other three methods in terms of PSNR,
SSIM, running time (Fig. 3k, Supplementary Fig. 5d–h), and visualiza-
tion (Fig. 3l, Supplementary Fig. 5c).

SpiDe-Sr enhanced IMC images of human breast cancer tissue
To further evaluate the performance of SpiDe-Sr on human tissue
samples, paired 20× confocal and IMC images of human breast cancer
tissue were acquired (Fig. 4a). Cell nucleus were stained with both
fluorescent (DAPI) and metal (191Ir/193Ir) dyes and Tubulin, CD45,
and CD34 were stained with fluorescent/metal dual-labeled antibodies
(Fig. 4b–d). The PSNR of Tubulin, CD45, and CD34 in raw IMC images
was 17.49 ± 3.63 dB, 16.07 ± 2.05 dB, and 16.86 ± 1.70 dB, respectively.
Following SpiDe-Sr enhancement, there was a notable increase
in PSNR, by 17.21 ± 14.10%, 21.16 ± 11.69%, and 13.19 ± 5.97%, resulting
in values of 20.10 ± 2.97 dB, 19.30 ± 1.75 dB, and 19.06 ± 1.89 dB,
respectively (Fig. 4e). SpiDe-Sr enhancement also enabled elevation of
SSIM of the three markers from 0.59± 0.08, 0.55 ± 0.09, and
0.52 ± 0.09, respectively, to 0.70 ±0.12, 0.67 ± 0.10, and 0.71 ± 0.10,
corresponding to an increase by 17.51 ± 4.50%, 20.24 ± 5.25%, and
37.27 ± 11.18% (Fig. 4f).

This enhancement correlated with increased accuracy in cell
segmentation. The accuracy of cell extraction for Tubulin, CD45, and
CD34 images raised to 89.84 ± 8.51%, 94.37 ± 2.31%, and 78.72 ± 10.50%,
respectively, which was a noticeable increase compared to raw IMC
images (Fig. 4g, Supplementary Fig. 6a), which enabled 93.85%/
94.20%/92.92% of the extracted cells in the Tubulin/CD45/CD34 ima-
ges being more accurately segmented. The IoU was increased from
0.56±0.18 to 0.69 ± 0.16 for the Tubulin image, 0.62 ± 0.13 to
0.73 ± 0.11 for CD45, and 0.57 ± 0.14 to 0.68 ±0.11 for CD34 (Fig. 4h,
Supplementary Fig. 6b). The expressions of Tubulin, CD45, and CD34
in the IMC images also became more consistent with the paired con-
focal images after SpiDe-Sr enhancement (Fig. 4I, j).

Furthermore, comparative validation with other super-resolution
methods like SRCNN, KernelGAN, and RCAN on human breast cancer
tissue images indicated SpiDe-Sr’s superior performance in terms of
PSNR, SSIM, and subjective visual experience. Despite its high per-
formance, SpiDe-Sr exhibited a relatively shorter running time of
0.44 ±0.01 s/pic, second only to RCAN (0.33 ± 0.08 s/pic) (Fig. 4k, l,
Supplementary Fig. 6c–h).

SpiDe-Sr facilitates precise spatial proteomics analysis of breast
cancer microenvironment
Bacterial colonization within the mammary gland has been reported
as a crucial contributor to modulating the tumor microenvironment
and impacting immunotherapeutic responses34,35. However, char-
acterizing bacterial presence in tumor microenvironment remains
challenging due to their typically small physical sizes36. Therefore,
SpiDe-Sr was adopted to enhance themultiplex IMC images for higher
resolution so that bacterial signals could be precisely analyzed.

We recruited a cohort of 20 patients covering 4 major breast
cancer subtypes (HER2, human epidermal growth factor receptor 2
breast cancer; LA, luminal A breast cancer; LB, luminal B breast cancer;
TNBC, triple-negative breast cancer) and designed a 14-channel IMC

Fig. 1 | SpiDe-Sr method. a The architecture of SpiDe-Sr. The network was com-
prised of the denoising module and the super-resolution module. The denoising
module included the neighbor sub-sampler and the U-net denoising network. And
the super-resolutionmodule had three components: the blur kernel predictor (Pθ),
the blur kernel corrector (Cθ) and the image super-resolution network (Sθ).
b Inference using the trained SpiDe-Sr network. The architectural details and
interpretability of the SpiDe-Sr were illustrated in Supplementary Fig. 1 and Sup-
plementary Fig. 2. c Quantitative evaluation of SR image quality with different
iterations of blur kernel estimation. Dashed line indicated the optimal number of
iterations. n = 4392 images. dQuantitative evaluation of image PSNR and SSIMwith
different noise levels before and after the SpiDe-Sr enhancement. n = 4392 images.

PSNR, peak signal-to-noise ratio, largermeans less noise. SSIM, structural similarity,
largermeansmore similar to the ground truth. In (c,d), data weremean± SD. e The
number of cells extracted based on images with different noise levels before and
after the SpiDe-Sr enhancement. Total number of cells in the field of view was 200.
f Visual comparison of SpiDe-Sr method with the three state-of-the-art (SOTA)
super-resolution methods including SRCNN, KernelGAN, and RCAN. g Spatial
profiles of extracted cells in the field of View 1. Correctly segmented regions (true
positives) were colored in green. Missing (false negatives) and extra regions (false
positives) were colored in red and gray, respectively. All cell segmentation tasks in
our workwere implemented with the Cellpose algorithm. Source data are provided
as a Source data file.
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panel to simultaneously identify bacteria subtypes, breast cancer cell
subtypes, and cellular functions (Fig. 5a, Supplementary Table 1).
Specifically, the panel included clinically established breast cancer
targets (ER, PR, HER2, ISG15, PKCD, ZC3HAV1), cell proliferation mar-
ker Ki67, apoptosismarker IFI6, immune lineagemarkers (CD19, CD45,
CD68, CD8a), and G− (gram-negative)/G+ (gram-positive) bacterial
markers (LPS, LTA)1,12,37.

After acquisition of the IMC images, SpiDe-Sr was applied to the
raw images, allowing more cells to be accurately identified (Fig. 5b).
Totally 269,556 cells (HER2:86,968; LA:55,496; LB:73,161; TNBC:53,931)
were identified from 84 SpiDe-Sr enhanced images (Fig. 5c). The signal
intensity of each cell was quantified, and normalized marker expres-
sions of the four breast cancer subtypes were separately depicted
(Fig. 5d). FlowSOM38 was employed to determine the clusters in all
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required cells. Compared with raw images, the clustering results were
significantly improved after SpiDe-Sr enhancement. Calinski Harabasz
(CH) score39, which evaluated the degree of dispersion between clus-
ters, was increased by 38.29 ± 24.23%, indicating the identified clusters
weremorediscrete.Meanwhile, theDavies-Bouldin (DB) score40, which
evaluated the intra-cluster tightness, was reduced by 11.12 ± 8.73%,
indicating more similarity within the identified clusters (Fig. 5e). In
addition, another clustering algorithm, PhenoGraph1,41, was also per-
formed without any preset number of clusters. SpiDe-Sr enhancement
realized 13.40± 3.69% increase of CH score and 6.33 ± 0.96%decline of
DB score (Fig. 5f).

The clustering result of PhenoGraph with the highest CH score
was used in subsequent analysis. Normal healthy cells (C1–C9), B cells
(C32 and C33 with highest expression of CD19), T cells (C26 with
highest expression of CD45),macrophage (C11with highest expression
of CD68), and cells containing G-/G+ bacteria (C12/C10), as well as 8
diverse tumor cell clusters were identified clearly (Fig. 5g, h). LPS and
LTAwere, respectively, markers of G- and G+ bacteria. Cluster #12 (C12)
with the highest expression of LPS and Cluster #10 (C10) with highest
expression of LTAwere further examined (Fig. 5I, j). The total numbers
of cells in C12 and C10 were 847 and 3854, respectively. In C12, the LPS
expression in all the four breast cancer subtypes positively correlated
with tumor markers, especially IFI6, and the expression of immune
markers such as CD68was negatively correlatedwith LPS in all the four
breast cancer subtypes except LA (lower half of Fig. 5k, Supplementary
Fig. 7d andSupplementaryTable8). Inversely, inC10, the expressionof
immune markers, such as CD45, was positively correlated with LTA
expression in all four breast cancer subtypes except LB, and the
expression of LTA was negatively correlated with the expression of
breast cancer markers associated with abnormal cell growth, namely
HER2 and Ki67 (upper half of Fig. 5k, Supplementary Fig. 7e and Sup-
plementary Table 9). In addition to this, we obtained label-free pro-
teomics data of bacteria-enriched and bacteria-nonenriched regions in
samples of four breast cancer subtypes. Analysis of the data revealed
that proteins with significantly higher expression in G+ bacterial-
enriched regions were associated with immunity (Supplementary
Figs. 9 and 10). After analyzing the correlations, the differential
expression of the proteins in C10 and C12 were also analyzed. The
expressionof thesemarkers,whichwerehighly positively or negatively
correlated with LPS/LTA, were all significantly different from the
expression of LPS/LTA (Fig. 5l).

Without SpiDe-Sr enhancement, B cells and T cells could not be
distinguished and only 4 tumor cell clusters were identified based on
the same IMC dataset because of noise interference or insufficiently
precise details (Supplementary Fig. 8e, f). And in subsequent analyses,
there was no indication that G- or G+ bacteria had any particular cor-
relation in the breast cancer microenvironment (Supplementary
Fig. 8i). After SpiDe-Sr enhancement, more biological information
was mined.

SpiDe-Sr is compatible with enhancement of fluorescence
microscopy images
To further exhibit the versatility of SpiDe-Sr, we tested themigrationof
SpiDe-Sr to conventional fluorescent images. Confocal microscope
images of MCF-7 cells, mouse retina, and human FFPE breast tissues
were separately acquired at 10× and 40× magnifications (Fig. 6a). The
40× images served as ground truths, and the 10× images were used as
the input of super-resolution. Our findings underscored the efficacy of
SpiDe-Sr in enhancing details within conventional fluorescent images
across various sample types. The blur kernels estimated between the
enhanced images and 10× images exhibited a high degree of similarity
to the true blur kernels between the raw 40× images and 10× images
(Fig. 6b–d).

For comparison, we have also tested the other three super-
resolution methods (SRCNN/KernelGAN/RCAN) for the same task. In
terms of subjective visual experience, SpiDe-Sr outperformed the other
three methods. KernelGAN demonstrated the ability to enhance image
details, however, tended to over-enhance invalid details (Fig. 6e).

Quantitative evaluation of the super-resolution results by the four
methods was also performed. SpiDe-Sr demonstrated the most excep-
tional overall performance across all sample types, resulting in an
improvement of PSNR and SSIM, respectively, by 21.08 ± 2.29% and
26.99± 14.04%, compared to the raw images (Fig. 6f, g). In comparison,
KernelGAN led to a decline in SSIM, particularly evident in more intri-
cate images, 0.94 ± 2.59%, 32.60± 17.48%, and 38.55 ± 17.83%, respec-
tively, for MCF-7 cells, mouse retina, and human breast tissues. In terms
of computational efficiency, RCAN exhibited the shortest running time
of 0.37 ±0.05 s/pic, only marginally faster than SpiDe-Sr (0.41 ±0.05 s/
pic) (Fig. 6h). In addition, F-actin were reasonably inferred by four
methods in the super-resolution images, while SpiDe-Sr exhibited
clearer details compared to the other three methods (Fig. 6i).

Discussion
SpiDe-Sr integrates a blind super-resolution network with a self-
supervised denoising module. The denoising module overcomes the
reliance on ground truth by training a self-supervised network with
image pairs that are neighbor sub-sampled from raw images. The blind
super-resolution network iteratively corrects the estimated blur kernel
to approach the true blur kernel in IMC, endowing the network with
the capability of enhancing imagewithout prior knowledge. In cell line,
mouse tissue and human tissue samples, SpiDe-Sr rationally sup-
pressed image noises and enhanced details, enabling more accurate
cell segmentation and measurement of marker expressions at single-
cell level. The specialized denoising module avoids treating noise as
valid information like in other super-resolution methods. Moreover,
the super-resolution network is split into three branches and trained
separately, which effectively reduced the number of layers in the deep
learning network. The delicate design of network structure underlays
the superior performance on spatial proteomics images, and widening

Fig. 2 | Validation of SpiDe-Sr on IMC images of MCF-7 cell line. a Schematic of
acquiring paired images of cells with fluorescent/metal dual-labeled antibodies.
b–d Confocal microscopy (left), raw IMC (middle), and SpiDe-Sr enhanced IMC
(right) images of nucleus and examples of relatively high/moderate/low expression
markers (b Tubulin/c CD45/d CD34). Cell segmentation was conducted with Cell-
pose. Missed (false negatives), extra segmentations (false positives), and wrong
boundary were, respectively, indicated by yellow, green, and red arrows. Correctly
extracted but wrongly bounded regions were indicated by red arrows. e, f Violin-
scatter plots showing the distribution of (e) peak signal-to-noise ratio (PSNR) and
(f) structural similarity (SSIM) with ground truth (GT) images before and after
SpiDe-Sr enhancement. Each gray line represented the variation of a single image
before and after enhancement. n = 52 (Tubulin)/36 (CD45)/71 (CD34) images.
g Accuracy of cell extraction before and after SpiDe-Sr enhancement. Data were
mean ± SD for n = 38 (Tubulin)/26 (CD45)/52 (CD34) images. h Violin-scatter plots
showed the distribution of intersection over union (IoU) of accurately extracted

cells in IMC images before and after SpiDe-Sr enhancement vs. GT images. Each line
represented the variation of a single cell before and after enhancement. Increasing
and decreasing pairs were colored in gray and red, respectively. i Violin-scatter
plots showed the distance of biomarker expressions in accurately extracted cells
from IMC images with and without SpiDe-Sr enhancement to the corresponding
cells in GT images. Each line represented the variation of a single cell before and
after enhancement. Increasing and decreasing pairs were colored red and gray,
respectively. j Normalized marker expressions in accurately extracted cells. Data
were presented as mean values ± SD. In (h–j), the number of cells was 216/241/357.
kComparison of SpiDe-Srmethodwith the three competitive SRmethods in PSNR,
SSIM, and running time. l Visual comparison of SpiDe-Sr method with the three
competitive super-resolution methods. In (e–h), asterisks indicate statistical sig-
nificance by paired-samples two-sided t-test, **P <0.01, ***P <0.001. Source data
are provided as a Source data file.
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its applicability range, such as conventional fluorescence microscopy
images.

In addition, SpiDe-Sr was employed to analyze IMC images from a
clinical breast cancer cohort.We focusedonG- andG+ bacteria relevant
tumor cell cluster. Our dataset faithfully detected G- bacteria in the
microenvironment, which was consistent with previous findings34,35.
We found that the expression of G- bacteria was positively correlated

with apoptosis-related IFI6 and negatively correlated with immune-
related CD68 and CD45.We speculated that the G- bacteria may have a
synergistic cross-talk with IFI6. In addition, G+ bacteria have been
detected in tumor tissues and exhibited a positive correlation with
immune-related CD45. Thus, the presence of G+ bacteriamay facilitate
the inhibition of tumor proliferation. The additional analysis of label-
free proteomics also cross-verified the observation that the presence

Article https://doi.org/10.1038/s41467-024-46989-z

Nature Communications |         (2024) 15:2708 7



of bacteria may modulate immune responses (Supplementary
Figs. 9 and 10).

Further improvements in SpiDe-Srmethods involve incorporating
instrumental features of IMC intomodel training to further advance its
blind super-resolution capabilities. Integration into user-friendly
packages for clinical researchers without algorithmic expertise is
also a goal. In addition, comparative experiments are needed to
explore the interactionmechanismof bacterial presencewith immune
(CD45 and CD68) or tumor cells (IFI6 and ISG15) based on the existing
findings of marker expression correlations.

In summary, we have proposed and demonstrated SpiDe-Sr, a
method capable of denoising and enhancing resolution for mass
cytometry-based spatial proteomics imaging. Its potential applicability
to diverse clinical samples underscores its promising role in spatial
proteome research, particularly in studying tumormicroenvironments
and disease pathogenesis.

Methods
Ethical statement
All of our experiments on mouse were ethically proved by Institutional
Animal Care and Use Committee (IACUC) of Shanghai Jiao Tong Uni-
versity (approval # 202201309) and the experiments on human samples
were ethically cleared by Institutional Review Board for Human
Research Protections of Shanghai Jiao Tong University (approval #
B2022357P). Human tissue sampleswere collectedwith previous patient
consent in strict observance of the legal and institutional regulations.

Network architecture of the SpiDe-Sr denoising module
The denoising module was based on the self-supervised framework25

and trained by single observation of noisy images. The denoising
module consisted of two components, the denoising network and the
neighbor sub-sampler (Fig. 1a). The U-net26 has been chosen by us for
spatial proteomics image denoising because it has been proposed for
biomedical images and reported to have superior performance on cell
segmentation in many studies21,26. Moreover, U-net as a CNN network
had a non-redundant and effective structure andpossessed a relatively
comprehensive mathematical derivation compared to other newly
proposedmethods. The specific U-net structure used for SpiDe-Sr was
illustrated in Supplementary Fig. 1a. Neighbor sub-sampling was pro-
posed to solve the challenging problem of capturing multiple noisy
observations of a scene in images, reducing the reliance on clean
images (ground truth) when training the denoising model. Therefore,
U-net combined with neighbor sampling was an optimal solution for
accuracy-sensitive IMC images without ground truth.

The neighbor sub-sampler (G= ðg1, g2Þ) generated noisy image
pairs (g1ðyÞ, g2ðyÞ) from single noise image (y). Noisy image pairs that
satisfy both of the following can be used for self-supervised training:
(1) The sub-sampled noisy image pairs are conditionally independent
givenGT; (2) Thediscrepancybetween theGT images of g1ðyÞ and g2ðyÞ

is minimal24,25. For the raw noisy image (y) of spatial size M × N, the
description of G= ðg1, g2Þ was as follows:

Step 1: The raw noisy image (y) was divided intoM/k × N/k cells of
size k × k. According to the experience in literature24, set k to 2.

Step 2: In the i-th row and j-th column cell, two neighbor pixels
were randomly selected as elements of the i-th row and j-th column
pixel point in g1ðyÞ and g2ðyÞ, respectively. i 2 ½1,M=k�, j 2 ½1,N=k�, i, j
were integers.

Step 3: For all cells, repeated Step 2.
Since the pixels of the paired images were neighbors in the raw

noisy image, the GT of the paired images were similar and could be
conditionally considered independent, thus satisfying the above two
conditions. Paired images with the similar ground truths were
demonstrated in the theorem proof in Supplementary Information.

Dataset acquisition, pre-processing, and denoising module
training
The IMC samples archived in our laboratory (including 91 breast cancer
samples, 67 liver cancer samples, and 63 mouse organs samples) were
prepared into 21,960 raw images of 300 × 300 pixels in TIFF format
using MATLAB scripts. These 21,960 raw images constituted a dataset
named SpiSet. Three-fifths of images in SpiSet were allocated for
training the denoising network, and one-fifth were employed for vali-
dation. The remaining one-fifth of SpiSet were randomly superimposed
with Gaussian or Poisson or pepper noise through the utilization of
built-in function within MATLAB for testing.

The loss function (L) employed for training the denoising network
was as follows:

L= Lrec + Lreg =

= kUθðg1ðyÞ � g2ðyÞÞk22 + γ � kUθðg1ðyÞÞ � g2ðyÞ � ðg1ðUθðyÞÞ � g2ðUθðyÞÞÞk22
ð1Þ

hereUθ was theU-net denoising networkparameterizedbyθ. γwas the
hyper-parameter controlling the regularization strength, and Lreg was
used to correct for the essential differences of ground truth pixel
values between sub-sampled noisy image pairs. The specific training
pipeline was shown in the Step 1–8 of the Pseudo code in
Supplementary Information.

In this work, the denosing network of SpiDe-Sr was trained on a
computer workstation equipped with an AMD Ryzen 5975WX CPU
running at 4.50GHz and one NVIDIA RTX 3090 graphics processing
card, with Python version 3.7 and PyTorch version 1.7.0. We utilized a
batch size of 4 for training andAdamoptimizer with the initial learning
rate of 0.0001. The number of training epochs was 100 and the
learning rate decayed by half every 20 epochs. For the hyper-
parameter γ used to control the strength of the regularization term
was set to 1. For the configuration of the operating environment (OE),
please refer to the Supplementary Table 3.

Fig. 3 | Validation of SpiDe-Sr on IMC images of mouse fatty liver tissues.
a Schematic of acquiring paired images of mouse fatty liver tissues with fluor-
escent/metal dual-labeled antibodies. b–d Confocal microscopy (left), raw IMC
(middle), and SpiDe-Sr enhanced IMC (right) images of nucleus and examples of
relatively high/moderate/low expression markers (b Tubulin/c CD45/d CD34). Cell
segmentation was conducted with Cellpose. Missed cells and wrong boundary
were, respectively, indicated by yellow and white arrows. Correctly extracted but
wrongly bounded regions were indicated by red arrows. e, f Violin-scatter plots
showing the distribution of (e) peak signal-to-noise ratio (PSNR) and (f) structural
similarity (SSIM) with ground truth (GT) images before and after SpiDe-Sr
enhancement. Each gray line represented the variation of a single image before and
after enhancement. n = 37 (Tubulin)/37 (CD45)/21 (CD34) images.gAccuracyof cell
extraction before and after SpiDe-Sr enhancement. Data were presented as mean
values ± SD. n = 6 (Tubulin)/8 (CD45)/5 (CD34) images. h Violin-scatter plots
showed the distribution of intersection over union (IoU) of accurately extracted

cells in IMC images before and after SpiDe-Sr enhancement vs. GT images. Each line
represented the variation of a single cell before and after enhancement. Increasing
and decreasing pairs were colored in gray and red, respectively. In (h–j), n = 235
(Tubulin)/422 (CD45)/203 (CD34) cells. iViolin-scatter plots showed the distanceof
marker expressions in accurately extracted cells from IMC imageswith andwithout
SpiDe-Sr enhancement to the corresponding cells in GT images. Each line repre-
sented the variation of a single cell before and after enhancement. Increasing and
decreasing pairs were colored red and gray, respectively. j Normalized marker
expressions in accurately extracted cells. Datawere presented asmean values ± SD.
kComparison of SpiDe-Srmethodwith the three competitive SRmethods in PSNR,
SSIM, and running time. l Visual comparison of SpiDe-Sr method with the three
competitive super-resolution methods. In (e–h), asterisks indicate statistical sig-
nificance by paired-samples two-sided t-test, ***P <0.001. Source data are provided
as a Source data file.
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Network architecture of the SpiDe-Sr SR module
Mathematically, the degradation model of the image is as follows:

ILR = K � IHR
� �

#s +n ð2Þ

here IHR is theHR image, ILR is the LR image,K is the blur kernel andn is
additional noise. ⊗ denotes the convolution operation and #s is the

down-sampling operation27,28. The blur kernel is a quantitative
characterization of the image degradation process. LR images are
deconvoluted with matching blur kernels and then up-sampled to
reconstruct high-quality HR images. When the blur kernel is unknow-
able, the process of reconstructing the HR image is called blind super-
resolution. In blind SR studies, blur kernels are usually estimatedbased
on specific degradation process42. However, the real degradation
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process (that is, the true blur kernel) is complex, thus researchers have
proposed to correct the estimated blur kernels to adapt them to real
applications27,43,44.

The rationality of the enhanced IMC image was the primary con-
sideration when selecting the appropriate methods. And the methods
based on predefined degradation models were more conducive to
ensure the objectivity and authenticity of the resulting images.
Therefore, the idea of iteratively correcting the predefined blur kernel
was opted in our study for super-resolution of IMC images after
denoising. Specifically, for LR image (ILR) with dimension M×N×3 (M
and Nwere the length and width of the image, 3 represented the three
channels of RGB.), the primary procedures were outlined as follows:

Step 1: Initialize the counter i=0. The initial blur kernel (k0) was
estimated by the predictor (Pθ):

k0 =PθðILRÞ ð3Þ

Step 2: Input the k0 and ILR into the SR network (Sθ) and output
the first SR image (ISR0 ). The blind SR network employed the SFTMD,
which avoided the image-independent interference that would be
introduced by processing the blur kernel and the LR image simulta-
neously with the convolution operation28.

ISR0 = SθðILR, k0Þ ð4Þ

Step 3: Update counter i= i+ 1. The blur kernel was iteratively
corrected with the corrector (Cθ) as follows:

Δki =CθðISRi�1, ki�1Þ ð5Þ

ki = ki�1 +Δki ð6Þ

Here, Δki was the error between the true blur kernel (K) and the pre-
dicted blur kernel at the i-th iteration. ki was the output blur kernel
after the i-th correction and ki�1 was the previous output of the i-th.

Step4: Input the correctedblur kernel (ki) and the ILR into SFTMD,
and output the i-th SR image (ISRi ):

ISRi = SθðILR,kiÞ ð7Þ

Step 5: Repeat Step 3 and Step 4 until the model converges.

Dataset acquisition, pre-processing, and SR module training
The images in SpiSet were augmented with random horizontal flips
and 90 degrees rotations to obtain the HR images. The isotropic
Gaussian blur kernel with width range set to 0.2 to 4.0 and size fixed to
21*21 was employed as blur kernel in our work (K). For non-moving
images, the isotropic Gaussian blur kernel has been widely adopted in

previous studies27,28. The width of the blur kernel was the standard
deviationof the Gaussian function (σ 2 [0.2, 4.0]). TheHR imageswere
convolved with the blur kernel and then down-sampled by bicubic
interpolation to generate the LR images, forming HR-LR image pairs.
These image pairs and their corresponding predefined blur kernel
were divided into training set, validation set, and test set in the ratio of
6:2:2. For testing or validation, bicubic interpolation was used to align
the image sizes when the SpiDe-Sr was not required.

The three branches of the SRmodule were trained on the training
set (Fig. 1a and Supplementary Fig. 2a–c). First, the SR network
(SFTMD27) was trained withmean square error (MSE) loss and then the
trained parameters were fixed. Next, the predictor (Pθ) and the cor-
rector (Cθ) were trained alternately. The predictor was optimized by
the following formula:

θp = argθp min kK � P ðILR;θpÞk
2

2
ð8Þ

Here, θp was the hyper-parameter of the predictor Pθ. K was the
predefined true blur kernel. And the corrector was optimized by the
following formula:

θc = argθc
minK � ðCθðISR;θcÞ+ ki�1Þ

2
2

ð9Þ

Here, θc was the hyper-parameter of the predictor.
The specific training pipeline was shown in the Step 10–17 of the

Pseudo code in Supplementary Information. On the validation set, the
model converged by the 9-th iteration. After 9 iterations, the ISR9 was
the final output of SR module. For additional inference processes,
please consult the relevant literature27,28. The optimizer employed
Adm with β1 = 0.9, β2 = 0.999, and the learning rate was set to 0.0001.
The SRmodule was implementedwith the PyTorch framework and the
hardware configuration used for training the denoising module was
utilized.

Sample preparation
Cell line samplepreparation.MCF-7 cells (HTB-22, ATCC)were grown
in Dulbecco’s modified Eagle’s medium, containing 10% fetal bovine
serum, and 1% penicillin-streptomycin. Toobtain adherent cell sample,
MCF-7 cells were seeded at 96-well plates with a density of ~10,000
cells per well overnight at 37 °C with 5% CO2.

Mouse liver sample preparation. Wild-type C57BL/6J mice around
6 weeks were used in this study (Sex was not considered in our study
design). Mouse fatty liver tissues were formalin fixed and paraffin
embedded (FFPE), sectioned at a thickness of 5 μm, and mounted on
positively charged slides to prevent tissue detachment during
processing.

Fig. 4 | Validation of SpiDe-Sr on IMC images of human breast cancer tissues.
a Schematic of acquiring paired images of breast cancer tissues with fluorescent/
metal dual-labeled antibodies. b–d Confocal microscopy (left), raw IMC (middle),
and SpiDe-Sr enhanced IMC (right) images of nucleus and examples of relatively
high/moderate/low expression markers (b Tubulin/c CD45/d CD34). Cell segmen-
tation was conducted with Cellpose. The missed cells and wrong boundary were,
respectively, indicated by yellow and red arrows. Correctly extracted but wrongly
bounded regions were indicated by red arrows. e, f Violin-scatter plots showing the
distribution of (e) peak signal-to-noise ratio (PSNR) and (f) structural similarity
(SSIM)with ground truth (GT) images before and after SpiDe-Sr enhancement. Each
gray line represented the variation of a single image before and after enhancement.
n = 47 (Tubulin)/25 (CD45)/54 (CD34) images. g Accuracy of cell extraction before
and after SpiDe-Sr enhancement. Data were presented as mean values ± SD. n = 7
(Tubulin)/8 (CD45)/10 (CD34) images. h Violin-scatter plots showed the distribu-
tion of intersection over union (IoU) of accurately extracted cells in IMC images

before and after SpiDe-Sr enhancement vs. GT images. Each line represented the
variation of a single cell before and after enhancement. Increasing and decreasing
pairs were colored in gray and red, respectively. i Violin-scatter plots showed the
distance of biomarker expressions in accurately extracted cells from IMC images
with and without SpiDe-Sr enhancement to the corresponding cells in GT images.
Each line represented the variation of a single cell before and after enhancement.
Increasing and decreasing pairs were colored red and gray, respectively.
jNormalizedmarker expressions in accurately extracted cells. Datawerepresented
as mean values ± SD. In (h–j), n = 244 (Tubulin)/207 (CD45)/240 (CD34) cells.
kComparison of SpiDe-Srmethodwith the three competitive SRmethods in PSNR,
SSIM, and running time. l Visual comparison of SpiDe-Sr method with the three
competitive super-resolution methods. In (e–h), asterisks indicate statistical sig-
nificancy by paired-samples two-sided t-test, *P <0.05, **P <0.01, ***P <0.001.
Source data are provided as a Source data file.
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Human breast cancer sample preparation. Thirty-one FFPE samples
of human breast cancer archived in our laboratory were from Xinhua
Hospital (not duplicated in SpiSet), and were utilized for fluorescent/
metal-dual-labeling experiments. The clinical breast cancer cohort (20
FFPE samples of breast cancer) was provided byWenling First People’s
Hospital and identified by doctor Yuli Hu.

Mouse retina cryo-sections preparation. Wild-type C57BL/6J mice
around 6weeks were used in this study (Sex was not considered in our
study design). Mouse retina cryo-sections were made of freshly har-
vested eyes. The eyes were briefly washed in PBS and fixed in 4% w/v
paraformaldehyde (PFA) for 1 h. Following dissection, retinas were
immersed in 4% PFA containing 30% sucrose overnight. After drying,
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retina was snapped frozen in OCT and sectioned at a thickness of
20 μm in crtostat (CryoStar NX50, Thermo Fisher Scientific, USA).

Antibody preparation
Metal-labeled primary antibodies and fluorophore/metal-dual-labeled
secondary antibodies were obtained using the Maxpar antibody
labeling kit45. Of note, the secondary antibody used here was already
labelled with Alexa Fluor 488 fluorophore and preserved in carrier/
protein-free buffer. After conjugation, the metal-labeled antibodies
were diluted in protein stabilizing cocktail for long-term storage at
4 °C. Antibodies, clones, vendors, catalog numbers, and the con-
centrations used in this study were listed in Supplementary Table 1.

Immunostaining
Before immunostaining, adherent cells were briefly washed with PBS
and fixed with 4% w/v PFA in PBS buffer for 10min, followed by
washing with PBS three times. FFPE samples, including mouse liver
section and breast cancer section, were baked at 55 °C for 30min,
followed by deparaffinization in 100% xylene for 20min, and rehy-
drated by ethanol series (100%, 95%, 80%, 70%) for 5min each. The
samples were incubated in antigen retrieval buffer and placed in an
autoclave (pre-heated to95 °C) at 95 °C for 30min. Slideswere allowed
to cool to room temperature for 60min, followed by two washes of
10min in ddH2O and PBS. As for frozen samples, mouse retina cryo-
sections were taken out from −20 °C and equilibrated to room tem-
perature for 1 h.

Step 1: Samples were incubated with permeabilization/blocking
buffer (1× PBS containing 0.1% v/v Triton X-100 and 3% w/v BSA)
for 30min.

Step 2: Slides were incubated with primary antibodies at the
appropriate concentrations (Supplementary Table 1) overnight
(>8 h) at 4 °C.

Step 3: For confocal/IMC imaging, samples were incubated with
fluorophore/metal-dual-labeled secondary antibodies for 1 h. The
nucleus was stained with DAPI at 1:1000 dilution (1μg/mL) for 10min
for nuclear confocal image acquisition. Correspondingly, the nucleus
was stained with 191Ir/193Ir DNA intercalator at 1:400 dilution (312.5 nM)
for nuclear IMC image acquisition. For IMC imaging only, specimens
were stainedwith 191Ir/193Ir DNA intercalator at 1:400dilution (312.5 nM)
after primary antibodies incubation. For specific information on all
reagents used in our work, please refer to the Supplementary Table 2.

Image acquisition
Confocal images were acquired on a confocal microscope (LSM 800,
Zeiss, German) and saved as 16-bit TIFF images in the ZEN blue 3.3
(Zeiss, German). The images shown in Figs. 2–4 and Supplementary
Figs. 3–6 were acquired with 20×/0.40 NA LD PlnN objective. The
samples used in Fig. 6were imaged using 10×/0.3 NA ECPlnNobjective
and 40×/0.6 NA LD PlnN objective. All IMC imageswere acquired using
a Hyperion laser scanning module coupled to Helios mass cytometer

(Fluidigm Sciences)46. A metal-coated tuning slide (Fluidigm Sciences)
was used for optimization of peak intensity and resolution as a func-
tion of helium and argon flow. Tominimize batch-to-batch variance, a
standard internal metal isotope bead was acquired with samples
together as a normalization guideline. The acquired raw data was
displayed and initially analyzed inMCDViewer (FluidigmSciences) and
then saved as 16-bit TIFF images. Then Confocal images were paired
with IMC images of the same sample using MATLAB (MATLAB 2019b)
scripts.

Data analysis of clinical breast cancer cohort
The data processing pipeline was consistent with the standard pro-
cessing pipeline steps at https://github.com/BodenmillerGroup/
ImcSegmentationPipeline, except that the methods in the individual
steps were changed to those that performed better in the researches.
The specific processing was as follows:

Step 1: The raw data were imported and displayed in the software
(MCD Viewer, Fluidigm), and the valid marker channel of the raw data
was selected by an experienced researcher and then stored as 16-bit
TIFF format.

Step 2: A customized MATLAB script was utilized to collate all
images so that the content on each imagewasanoverlay of the nucleus
channel and one marker channel. There were 14 markers in each ROI,
and 14 images were saved out. The nucleus served primarily for
localization.

Step 3: All images after collation were super-resolved with
SpiDe-Sr.

Step 4: The regions of individual cells in all images were seg-
mented at the pixel level using cytoplasm pattern with adaptive cali-
bration diameter in Cellpose to generate masks. Other default
parameters were in Supplementary Table 10. The mask for single-cell
segmentation in each ROI wasmanually adjusted and selected. Single-
cell segmentation mask and TIFF images of the 14 channels were
overlaid to extract the average expression of markers and spatial fea-
tures (cell area, perimeter, long-axis length, and short-axis length) of
single cell using the MATLAB toolbox regionprops. Single-cell marker
expressions were summarized by mean pixel values for each channel.
The single-cell data were censored at the 99-th percentile to remove
outliers, and normalized to the 99-th percentile, as was suggested for
these algorithms41,47.

Step 5: Single cells from clinical cohorts were clustered into
groups with functionally similar using two unsupervised clustering
methods, FlowSOM and PhenoGraph. Both methods were imple-
mented using the python package in the download path provided in
the literature38,41. The FlowSOM was repeated 10 times using default
parameters within each determined cluster number interval. Every 5
clusters were set as one interval, for a total of 12 intervals between 1
and 60 of cluster numbers. The PhenoGraph was used for the case
where the clustering number was not determined, and was repeated
120 times with the nearest neighbor parameter of 30.

Fig. 5 | Application of SpiDe-Sr to spatial proteomics data from four major
subtypes of breast cancer patients. aWorkflow of IMC image acquisition. bA raw
breast cancer IMC image and extracted cells (left), compared with the corre-
sponding SpiDe-Sr enhanced image and extracted cells (right). c Number of cells.
d Normalized expressions of 14 markers at single-cell level (n = 8697/5550/7316/
5393 for HER2/LA/LB/TNBC). e CH and DB scores of FlowSOM clustering results.
f CH and DB of PhenoGraph clustering results. Histogram showed the frequency
distribution of cluster numbers. In (d–f), data were presented as mean ± SD. In
(e–f), both CH and DB were statistically different before and after SpiDe-Sr
enhancement (two-sided t-test, P <0.001). g The clustering result with the highest
CH score. Theheatmap (left) showednormalizedmeanmarker expressions of each
cluster. The stackedbarplot showed (middle) theproportions of four breast cancer
cells in each cluster. The bar plot (right) showed the absolute cell counts in each
cluster.h t-SNE (t-distributed stochastic neighbor embedding)mapof 269,556 cells

sub-sampled from all images. Cell clusters weremarked by different colors. i, j The
proportion of cells of each breast cancer in the clusters which had the highest
expression of G- (i, C12, n = 144/506/76/121 cells) and G+ (j C10, n = 21/78/3654/
101 cells) bacterial markers, compared to the total cell count of each subtype.
k (below) Heat map showing the Pearson correlation coefficients of the 14 markers
in C12 with each other. (above) Heat map showing the Pearson correlation coeffi-
cients of the 14markers in C10with each other. Positively and negatively correlated
markerswere colored inorangeandblue, respectively. LPS andLTAwerecolored in
red. l–m Box plots showed the absolute expressions of 14 markers in C12 (l n = 847
cells) and C10 (m n = 3854 cells) of the four breast cancer subtypes. Red and blue
asterisks, respectively, represented the statistical significance of proteins positively
andnegatively associatedwith LPS/LTA versus LPS/LTA (two-sided t-test, **P <0.01,
***P <0.001). Source data are provided as a Source data file.
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Fig. 6 | Migrating SpiDe-Sr to fluorescence microscopy images. a Paired images
at different magnifications (10× and 40×) were acquired for MCF-7 cell line, mouse
retina, and breast tissue. b, d Raw images at 10× magnification (left) of MCF-7 cell
(b), mouse retina (c), and breast tissue (d), and corresponding 40× images recon-
structed from the 10× images using SpiDe-Sr (middle), along with the true blur
kernels and the blur kernels between the 10× and SpiDe-Sr enhanced 40× images
(right). e Comparison of the super-resolution images reconstructed by SRCNN,
KernelGAN, RCAN, and SpiDe-Sr for the three sample types. f, g Comparisons of

PSNR (f) and SSIM (g) among the four super-resolutionmethods in different sample
types. n = 65/16/22 for MCF-7 cells/mouse retina tissues/human breast tissues.
h Overall comparison of the PSNR, SSIM, and running time among the four super-
resolution methods. i Visual comparison of 40× ground truth image of F-actin and
40× super-resolution image reconstructed from 10× image using SpiDe-Sr, as well
as the other three methods. FFPE formalin fixed paraffin embedded. Source data
are provided as a Source data file.
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Step 6: The clustering results with the highest CH in Step 5 were
used for the subsequent analysis. Functionally similar clusters were
aggregated into larger groups based on the expression and correlation
of markers. For visualization, high-dimensional single-cell data were
reduced to two dimensions using the nonlinear dimensionality
reduction algorithm t-SNE47.

Step 7: Statistical analysis (correlation, difference) was performed
on clusters with high expression of G- and G+ bacteria.

For data analysis without SpiDe-Sr (in Supplementary Fig. 8), the
processing pipeline was all the steps above except Step 3.

Comparison of SpiDe-Sr and other SR methods
To validate the superiority of SpiDe-Sr, we quantitatively evaluated the
performance of SpiDe-Sr and other SOTA SISR (single-image super-
resolution) methods on seven different datasets: the IMC test set (in
Fig. 1), fluorescent/metal-dual-labeling experimental images of cells/
mouse/human (in Figs. 2–4), and conventional fluorescence micro-
scopy images of cells/mouse/human (in Fig. 6), respectively. HR and LR
images with the same scene were paired in all above datasets.

The methods used for comparison were SRCNN30, KernelGAN31,
and RCAN20,32, respectively. SRCNN/KernelGAN/RCAN was the top-
performingCNN/GAN/Attentionmethod in SISR task, andwas used for
comparison with optical microscopy methods19,20.

Specifically, the three comparison models were retrained sepa-
rately in our SR training set according to the standard procedure and
optimal parameters in the research papers30–32. For all types of biolo-
gical samples, only one model was trained to process images of dif-
ferent structural features and marker expressions. The super-resolved
imageswere resized using nearest neighbor interpolation tomatch the
dimensions of the HR image, enabling quantitative evaluation para-
meters to be calculated.

Performance metrics
Two metrics were utilized to quantitatively evaluate the performance
of SpiDe-Sr in enhancing image quality. PSNR and SSIM were used to
evaluate pixel-level similarity between IMC images and ground-truth
images, with PSNR focusing on noise levels and SSIM focusing on
structural details20,21. In fluorescent/metal dual-labeling experiment,
confocal images were utilized as the ground truth for comparisonwith
IMC images of cells/mouse/human tissue samples before and after
enhancement. PSNR and SSIM between the confocal image xði, jÞ and
the IMC image yði, jÞ are calculated as:

MSE=
1

m�n �
Xm�1

i =0

Xn�1

j =0

xði, jÞ � yði, jÞ½ �2 ð10Þ

PSNR= 10�log10
ð2n � 1Þ2
MSE

" #
ðdBÞ ð11Þ

SSIM=
ð2�μx�μy + ε1Þ�ð2�ϑx y + ε2Þ
ðμ2

x +μ2
y + ε1Þ�ðϑ2x + ϑ2y + ε2Þ

ð12Þ

Here, m and n are the length and height of the image, i and j are the
corresponding pixel points; μx and μy are the mean values of image x
and y, respectively; ϑx and ϑy are the variances of image x and image y,
respectively; ϑx y is the covariance of x and y. ε1 and ε2 are two default
constants of 6.5025 and 58.5225, respectively. In experiments, we
calculated the PSNR and SSIM for each of the three RGB channels
separately taking the average value.

Next, we also evaluated the performance of SpiDe-Sr on the basis
of more complex downstream tasks such as cell segmentation and
intracellular protein expression detection, whichwere themost crucial
prerequisites in functional analysis of single-cell spatial proteomics

data. Cell extraction was regarded as an instance segmentation pro-
blem, accuracy and object-level metrics (IoU and F1) were adopted to
evaluate the segmentation performance of Cellpose29 before and after
enhancement. Further details were in Supplementary Note 7 and
Supplementary Table 10. The accuracy is calculated as:

Accuracy=
TP

2�TP + FP + FN
ð13Þ

Here TP, FP, and FN are the cell number of true positives (accurately
detected cells), false positives (extra cells), and false negatives (missing
cells), respectively.

The precision of the extracted cell boundaries was evaluated
using IoU (intersection over union) and F1. IoU is defined as the
intersection area divided by the union area of two objects, and is cal-
culated as:

IoU=
Areacell 1

T
Areacell 2

Areacell 1
S
Areacell 2

ð14Þ

Here Areacell1 is the area of the cell that is accurately detected in the
IMC image, and Areacell2 is its area in the corresponding confocal
image. F1 is the pixel-level statistical complement of IoU and is
calculated as:

F1 =
2�TP

2�TP + FP + FN
ð15Þ

Here TP, FP, and FN are the number of true positives, false positives,
and false negatives of the pixel points of the accurately detected cells,
respectively. The accuracy of intracellular protein expression detec-
tion was evaluated by the distance and mean value of the pixel values
in each cell in IMC image versus corresponding cell in confocal image.

Cell clustering was the task that followed cell segmentation in
single-cell proteomics data analysis. Furthermore, we evaluated the
impact of SpiDe-Sr on cell clustering task on clinical cohort data.
Calinski-Harabaz (CH) score and Davies-Bouldin (DB) score were used
to evaluate the results of clustering39,40. The CH is defined as the ratio
of the inter-cluster distance to the intra-cluster distance, and DB
measures the similarity between each cluster and its most similar
clusters. The n-dimensional dataset is clustered into k clusters, CH and
DB are calculated as:

CH ðkÞ= tr ðBkÞ�ðn� kÞ
trðWkÞ�ðk � 1Þ ð16Þ

DB ðkÞ= 1
k

Xk
i = 1

max
i≠j,j2½i,k�

Si + Sj
Mij

ð17Þ

Here n is the number of samples, k is the number of clusters, Bk is
the inter-cluster covariance matrix, Wk is the intra-cluster covariance
matrix, and tr is the traceof thematrix. In the formula forDB, i and j are
the i-th and j-th clusters, respectively. Si is the average distance of
individuals in the i-th cluster to the center. Sj is the average distance of
individuals in the j-th cluster to the center.Mij is the distance between
the centers of the two clusters of the i-th and j-th clusters. Max is the
maximum value.

The evaluation process was implemented with customized
MATLAB R2019b scripts, PSNR, SSIM, IoU, F1, mean value, CH, DB, and
Pearson correlation coefficient were computed using built-in func-
tions. And the running time of the program for processing each image
was obtained from the built-in timing function of PyCharm 2020.3.3.
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Statistics and reproducibility
The violin plot is a combination of the standard Tukey box-and-
whisker plot and density distribution plot, showing the distribution of
datasets as well as probability densities. The three lines in the violin
plot represent the upper quartile, median, and lower quartile,
respectively. All violin plots (in Figs. 2–4e, f, h, i and Fig. 6f) were
plotted in GraphPad Prism 9 in the standard format, and we super-
imposed the scatter plot of the data on top of it after aligning the
coordinates. The asterisk in the violin plots indicated the statistically
significant difference between the two arrays as determined by two-
sided paired-samples t-test. The two-sided t-tests were done in IBM
SPSS Statistics 25 following standard procedure. In addition, all his-
tograms and bubble plots were generated in GraphPad Prism 9 in
the standard format. The heat map (in Fig. 5g, k) was performed using
the OmicStudio tools at https://www.omicstudio.cn/tool following the
advanced heatmapprocess. In Fig. 5k, Pearson correlation coefficients
greater than 0.75 weremarked with two asterisks and greater than 0.5
were marked with one asterisk. In Fig. 5l, m, the center line, box limits,
and whiskers of Box plots indicate the median, upper and lower
quartiles and 1.5× interquartile rage. Each experiment in Fig. 2b–d,
Fig. 3b–d, Fig. 4b–d, Fig. 6b–d was repeated independently 10 times
with similar results. In Fig. 5e, the clustering was repeated 10 times for
each cluster number interval. In Fig. 5f, the clusteringwas repeated 120
times without preset cluster number.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided as a Source data file. The proteomics raw
data of clinical breast cancer cohort used in this study are available in
the the ProteomeXchange database under accession code
PXD050123. Source data are provided with this paper.

Code availability
The laboratory version of the code was published on https://github.
com/DingLabSJTUChenRui/SpiDe-Sr. (https://doi.org/10.5281/zenodo.
10669093).
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