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Abstract

Aims: The microbiome is a critical factor in health throughout human development. The aims of this scoping review are to (i) elucidate
the differences between the youth (post-natal day 21–65 for rodents, 2–7 years for non-human primates, and 10–25 years for humans)
microbiome with other life stages and (ii) identify youth-specific microbial changes associated with substance use. Methods: Peer-
reviewed studies published up to May 2023 were identified in PubMed and SCOPUS and included gut and oral microbiome studies
from rodents, non-human primates, and humans (N = 1733). Twenty-six articles were determined eligible based on inclusion criteria
(aim 1: n = 19, aim 2: n = 7). Results: The adolescent and young adult oral and gut microbiomes are distinct compared to other life stages,
within both non-human and human models. While there is limited research in this area, the microbiome appears to be vulnerable to
substance use exposure earlier in life, including substances commonly initiated and escalated during adolescence and young adulthood
(i.e. alcohol, cannabis, and tobacco). Conclusions: Studies across the lifespan indicate that adolescence and young adulthood are
distinct periods of development, where the microbiome is sensitive to exposures, including substance use. There is a need for more
studies focused on the adolescent and young adult microbiome and substance use, as well as focused on the oral microbiome during
this developmental period. Understanding the gut and oral microbiome during adolescence and young adulthood may provide insight
into the pathophysiology of substance use disorders.
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Introduction

The development and maturation of the human brain primar-
ily takes place during adolescence and is not fully complete
until the age of ∼25 (Arain et al. 2013). Importantly, initia-
tion and escalation of alcohol, cannabis, nicotine, and other
drugs often occurs during this developmental period, poten-
tially enhancing vulnerability to the negative consequences
of substance use. Research shows that earlier initiation of
substance use is associated with a wide range of adverse
outcomes, including increased risk for substance use disor-
der (SUD) diagnosis (Ellickson et al. 2003, Dawson et al.
2008, Lopez-Quintero et al. 2011). Interventions during this
heightened period of vulnerability may improve outcomes,
but current treatment options for this age group are mainly
psychosocial and limited in efficacy (Fadus et al. 2019).

Past efforts to study the pathophysiology of SUDs have
mainly focused on central nervous system specific mechanisms
and effects; however, it is important to consider peripheral
biological systems to fully understand how youth substance
use may lead to long-term consequences. Growing preclinical

and clinical adult evidence suggests that the human micro-
biome, a collection of microbes that live in and on our bodies,
may play a key role in the etiology of SUDs. Given this,
modulation of the microbiome has recently been proposed as a
novel treatment option for SUDs (Leclercq et al. 2019, Chinna
Meyyappan et al. 2020, Verma et al. 2020, Pizarro et al.
2021). Targeting the microbiome during a window of neural
and microbial plasticity may help mitigate substance-induced
effects; however, little is known about how the adolescent
and young adult microbiome compares to other life stages
or how it is influenced by substances. More youth (ages
10–25) focused studies on the microbiome and substance
use are needed given the numerous biological changes that
occur during this period. Furthermore, youth substance use
patterns can differ greatly from that of adults, with most
youth using less frequently but in much higher quantities
(SAMHSA 2021). Therefore, this scoping review provides a
critical overview of (i) the differences between the adolescent
and young adult microbiome with other life stages and (ii)
youth-specific microbial changes associated with substance
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use. The goal of this scoping review is to highlight the impor-
tance of studying the youth microbiome to further elucidate
the pathophysiology of SUDs.

General overview of the microbiome

Humans have evolved in the context of their microbial
communities, which consist of bacteria, archaea, fungi, and
viruses/phages. Collectively, these trillions of microorganisms
are called the microbiota and their combined genomes are
referred to as the microbiome (Ursell et al. 2012). Importantly,
the microbiome plays a key role in brain development and
function. Studies show that germ-free mice (mice devoid of
all microorganisms) experience deficits in areas important
for adolescent brain development, including myelination,
neurotransmission, synaptic plasticity, microglia function,
neurogenesis, dendritic growth, and blood—brain-barrier
permeability (Cryan et al. 2019). Growing evidence also
indicates that the microbiome can affect behavior. For
example, in both rodents and humans, administration of
certain strains of bacteria is associated with reductions in
anxiety and depression behaviors, which are commonly
comorbid with substance use (Mckernan et al. 2010, Bravo
Javier et al. 2011, Tillisch et al. 2013, Savignac et al. 2014,
Akkasheh et al. 2016, Allen et al. 2016, Pinto-Sanchez et al.
2017, Li et al. 2018, Morshedi et al. 2018, Chahwan et al.
2019, Liao et al. 2019, Marotta et al. 2019, Murray et al.
2019, Sun et al. 2019, Wei et al. 2019, Stenman et al.
2020). Together, the involvement of the microbiome in brain
development and function, and the data supporting the
manipulation of behaviors via the microbiome, highlights
the potential for interventions in the context of substance use
disorders.

Gut microbiome and substance use in adults

Most studies investigating the microbiome and the brain have
focused on the gut which contains the largest bacterial ecosys-
tem in the human body (Proctor et al. 2019). Gut microbiota
and the brain can communicate with each other through the
microbiota—gut—brain axis, a complex bidirectional com-
munication network composed of a variety of routes, includ-
ing cranial nerves, neuroendocrine pathways, immune path-
ways, and microbial metabolites (Cryan et al. 2019). A grow-
ing body of literature suggests that the microbiota—gut—
brain axis may play a role in substance use disorders. Several
studies have reported that adult substance use alters the
diversity and abundances of microbes in the gut, as already
reviewed elsewhere (Meckel and Kiraly 2019, Salavrakos
et al. 2021, Simpson et al. 2022). Recent studies indicate that
these differences in the gut microbiome may not only be a
consequence of substance use but may also play a role in
the development and maintenance of SUDs. Alterations in gut
permeability and microbiome composition have been associ-
ated with craving, a central feature of SUDs (Leclercq et al.
2012, Leclercq et al. 2014). Administration of antibiotics,
which depletes the microbiome, has been shown to decrease
voluntary alcohol drinking, reward, withdrawal symptoms,
behavioral responses to cocaine, and opioid tolerance (Kiraly
et al. 2016, Kang et al. 2017, Lee et al. 2018, Angoa-Pérez
and Kuhn 2021). Likewise, transplantation of gut microbiota
has been shown to influence alcohol withdrawal, alcohol pref-
erence, alcohol craving, methamphetamine reward behavior,
and opioid withdrawal (Xiao et al. 2018, Zhao et al. 2020,

Bajaj et al. 2021, Thomaz et al. 2021, Wolstenholme et al.
2022, Wang et al. 2023).

Oral microbiome and substance use in adults

Until recently, the majority of microbiome research often
disregarded another key environment that is part of the diges-
tive tract: the oral microbiome. As the second largest and
diverse microbial community in humans, the oral microbiome
has also been shown to play a prominent role in several
systemic diseases, including neurological and psychiatric dis-
orders (Bowland and Weyrich 2022, Peng et al. 2022). Fur-
thermore, both oral inflammation and poor oral health are
associated with SUDs, suggesting the importance of under-
standing the oral microbiome to support a comprehensive
knowledge of the biological underpinnings and consequences
of such disorders (Baghaie et al. 2017). Epidemiological and
experimental evidence suggest that the oral microbiota may
affect the brain through many of the same routes as the gut
including cranial nerves and circulating blood (Peng et al.
2022). Oral microbes have also been shown to invade and
colonize the gut which can lead to several negative outcomes,
including inflammation and increased intestinal permeability,
potentially allowing bacterial components to reach systemic
circulation (Iwauchi et al. 2019, Li et al. 2019, Huh and Roh
2020). In a recent study, seven genera (Actinomyces, Bifi-
dobacterium, Dialister, Granulicatella, Lactobacillus, Megas-
phaera, and Veillonella) were shown to be present in both fecal
and oral samples of patients with alcohol use disorder (AUD),
but not in healthy individuals from the Human Microbiome
Project (HMP), suggesting there might be more oral to gut
transmission in individuals with AUD (Ames et al. 2020).
Although less researched than the gut, recent studies on the
oral microbiome and substance use in adults show promis-
ing complementary results. Alterations in the diversity and
abundances of oral microbes have been associated with use
of alcohol (Fan et al. 2018, Yussof et al. 2020, Barb et al.
2022, Li et al. 2022, Liao et al. 2022, Maley et al. 2022),
amphetamine (Kosciolek et al. 2021), opioid (Kosciolek et al.
2021), cannabis (Luo et al. 2021), and nicotine (Wu et al.
2016, Lin et al. 2019, Pushalkar et al. 2020, Chopyk et al.
2021, Wang et al. 2022).

Current review aims

Overall, the adult literature suggests a relationship between
substance use and both the gut and oral microbiomes; how-
ever, it is important to study microbial changes in the context
of adolescence and young adulthood, as changes during this
period may be related to initiation and escalation of sub-
stance use, affect the developing brain, and influence SUD
development and maintenance. The current scoping review
advances the literature by providing a critical overview and
synthesis of what is known about (i) the adolescent and young
adult microbiome in both animals and humans and (ii) youth-
specific microbial changes associated with substance use. It
also identifies and discusses gaps in the literature to help
future research studies.

Methods

The current review was conducted using published guide-
lines for scoping studies (Arksey and O’malley 2005). Studies
were searched in May 2023 using SCOPUS and PubMed.
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Backward reference searching of relevant articles (e.g. cita-
tions in included studies and reviews) was conducted.

Separate searches were performed for each of the aims.
To produce critical overview and synthesis of adolescent
and young adult microbiome, we used the following
search terms: ‘adolescent,’ ‘adolescence,’ ‘youth,’ ‘teen,’
‘teenager,’ ‘young adult,’ AND ‘microbiome,’ ‘microbiota,’
‘microbes,’ and ‘bacteria’. This search yielded 1267 results,
301 results from SCOPUS, 963 from PubMed, and 3
through backward reference searching. To relate adolescent
microbiome to substance use, we added to the search terms
the following AND-clauses ‘alcohol,’ ‘ethanol,’ ‘alcohol use,’
‘binge drinking,’ ‘alcoholic beverage,’ ‘alcohol use disorder,’
‘alcohol dependence,’ ‘alcohol abuse,’ ‘alcoholism,’ ‘nicotine,’
‘tobacco,’ ‘cigarette,’ ‘cannabis,’ ‘cannabis use disorder,’
‘marijuana,’ ‘cocaine,’ ‘opioid,’ ‘crack,’ ‘methamphetamine,’
‘amphetamine,’ ‘opioid,’ ‘codeine,’ ‘oxycodone,’ ‘heroin,’
‘benzodiazepine,’ ‘sedatives,’ ‘hypnotics,’ ‘anxiolytics,’ ‘PCP,’
‘LSD,’ ‘hallucinogen,’ ‘inhalants,’ ‘psilocybin,’ ‘illegal drug,’
‘illicit drug,’ ‘street drug,’ ‘substance related disorder,’
‘substance abuse,’ ‘substance dependence,’ ‘drug abuse,’
‘drug dependence,’ and ‘addiction’. This search yielded 466
results, 48 from SCOPUS, 416 from PubMed, and 2 through
backward reference searching.

Studies were reviewed in Covidence (Innovation n.d.) for
inclusion. For aim 1, studies were included if they compared
the microbiome of healthy adolescents and young adults
[post-natal day (PND) 21–65 for rodents, 2–7 years for non-
human primates, and 10–25 years for humans] to healthy indi-
viduals in another life stage (e.g. childhood or adulthood). For
aim 2, studies were included if microbial effects of substance
use during adolescence or young adulthood [post-natal day
(PND) 21–65 for rodents, 2–7 years for non-human primates,
and 10–25 years for humans] was assessed. In addition,
both aims required studies to meet the following inclusion
criteria: (i) examined gut or oral microbiota; (ii) included
rodent, non-human primates, or humans; (iii) written in
English; and (iv) published in peer-reviewed journals between
January 1990 and May 2023. Any questions about eligibility
criteria were discussed and resolved within the research team
(n = 4). Across both searches, a total of 26 articles were deter-
mined eligible: 19 publications for aim 1 and 7 publications
for aim 2. One study was included for both aims (Vetreno
et al. 2021). Figure 1 provides a flow chart of the selection
process.

Results

Aim 1: the adolescent microbiome is distinct
compared to other stages of the lifespan

Nineteen studies were included for aim 1. Study methods
varied greatly in terms of population, study design, micro-
biome type, sequencing method, taxonomic identification
method, and microbiome analyses (Table 1). The studies
were conducted in humans (n = 7), rodents (n = 7; rats
n = 6, mice n = 1), and non-human primates (n = 5) and
utilized either cross-sectional (n = 15) or longitudinal (n = 4)
microbiome assessments. Most of the studies compared the
adolescent period to adulthood (n = 15), and four studies
investigated changes between adolescents and children. Only
two studies (one adolescent and young adult vs. adult, one
adolescent and young adult vs. child) examined the oral
microbiome and all others focused on the gut (n = 17). Most

studies utilized 16S rRNA sequencing; however, different
variable regions and taxonomic identification methods
were used. All but one study assessed differences in the
abundance of taxa through a variety of statistical methods
and spanned the species, genus, family, order, class, and
phylum levels. Studies also examined the diversity of the
microbiome by determining whether there were differences
in the number or distribution of bacteria (alpha diversity;
n = 14) and/or the similarity or dissimilarity in microbiota
communities between groups (beta diversity; n = 14). Metrics
used to assess diversity varied widely across studies. For
alpha diversity, the Shannon index was the most widely
utilized (n = 13), followed by observed species/operational
taxonomic units (OTUs)/amplicon sequence variants (ASVs;
n = 7), phylogenetic diversity (n = 5), Chao1 (n = 5), Simpson
(n = 4), ACE (n = 1), Good’s coverage (n = 1), and evenness
(n = 2). Distance/dissimilarity metrics included unweighted
UniFrac (n = 5), Bray—Curtis (n = 5), weighted UniFrac
(n = 4), Jaccard (n = 2), and Euclidean (n = 2). Only four
studies assessed differences in microbial function or metabolic
potential between the microbiomes of adolescents and adults.
These are detailed in Table 1.

Most of our current understanding of the adolescent micro-
biome has been extrapolated from adult studies under the
assumption that the microbiome is stable by adolescence;
however, based on the studies identified in this review, the
adolescent microbiome has a distinct microbial profile com-
pared to the adult and child microbiomes (Figs 2 and 3). Of
the 19 identified studies, 17 reported differences in relative
abundance of taxa (1 null finding, 1 not assessed), 8 in alpha
diversity (6 null findings, 5 not assessed), and 9 in beta
diversity (5 null findings, 5 not assessed).

Adolescent and young adult versus adult

In the 15 adolescent and young adult versus adult studies,
differences in 52 taxa spanning the genus, family, order, class,
and phylum levels were identified. Most of the differences
in the identified studies belonged to the phylum Firmicutes
(Bacillota; 52%); however, these findings were also the most
variable with both higher and lower levels reported at several
taxonomic ranks. The three studies that directly assessed
differences in Firmicutes between adolescents and adults were
also conflicting, with two reporting decreases and one report-
ing increases (Fig. 2) (Hu et al. 2016, Reveles et al. 2019).
In addition to Firmicutes, differences in four other taxa,
including Bacteroidetes, Rikenellaceae, Lachnospiraceae, and
Succinivibrionaceae, were reported by multiple studies (Hu
et al. 2016, Del Chierico et al. 2018, Kim et al. 2018, Duan
et al. 2019, Reveles et al. 2019, Lach et al. 2020, Sgro et al.
2022). While few studies reported differences in the same
taxa, there seems to be consistencies when grouping these taxa
by their associated phyla with the exception of Firmicutes.
For example, when classifying significantly different species,
genus, family, and order level taxa at the associated phylum
level, 13 of 14 studies reported higher abundances of Bac-
teroidetes (Bacteroidota), 5 of 6 studies reported lower levels
of Actinobacteria (Actinomycetota), and all 5 studies reported
lower Proteobacteria (Pseudomonadota) in adolescents com-
pared to adults (Fig. 2) (Kim et al. 2018, Duan et al. 2019,
Lach et al. 2020, Korpela et al. 2021, Vetreno et al. 2021).
These findings are consistent with the directions reported
in studies directly analyzing these phyla, including increased
Bacteroidetes and decreased Proteobacteria (Hu et al. 2016,
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Figure 1 PRISMA flow diagram for the scoping review. Aim 1: the adolescent microbiome compared other stages of the lifespan. Aim 2: associations
between the adolescent microbiome and substance use.

Kim et al. 2018, Reveles et al. 2019). For alpha diversity,
six studies found significant differences between adolescents
and adults, five found no significant differences, and four
did not assess alpha diversity or did not include statistical
measures. Of those with significant differences, most reported
lower alpha diversity in adolescents/young adults compared to
adults (five out of six), and one study reported higher Chao1
in adolescents (Del Chierico et al. 2018). For beta diver-
sity, seven studies reported statistically significant differences
between adolescents/young adults and adults, four found no
statistically significant differences, and four did not assess for
beta diversity and did not include statistical measures. Only
four studies assessed microbial function using bioinformatics
(Kim et al. 2018, Duan et al. 2019, Pallikkuth et al. 2021, Sgro
et al. 2022).

In addition to the unique composition and diversity of
the adolescent microbiome, several findings suggest that the
adolescent microbiome is more susceptible to environmental
and physiological stimuli. Multiple studies in rodents reported
that exposure to different environmental stimuli, such as
chemicals, early life stress, alcohol, exercise, or antibiotics
during adolescence led to long-lasting effects on microbiota
composition, but this did not occur when the exposure was
introduced in adulthood (Mika et al. 2015, Hu et al. 2016,
Lach et al. 2020, Lopizzo et al. 2021, Vetreno et al. 2021). In
humans, the gut microbial profiles of healthy adolescents and
adults as well as those with obesity differed; however, the main
differences in microbiota composition were found when com-
paring adolescents with obesity to healthy control adolescents
which might indicate that obesity has a larger influence on
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Table 1. Summary of included studies.

Abundance and diversity measures are only included in this table if they were assessed statistically. OTU: operational taxonomic unit; ASV: amplicon sequence
variant; ∗significantly different.

microbial profiles during adolescence than in adulthood (Del
Chierico et al. 2018). Findings from these studies suggest that
the adolescent and young adult microbiome is not as stable as
the adult microbiome, and environmental insults during this
period may lead to long-term consequences.

Adolescent and young adult versus child

In children versus adolescents and young adults, all four
included studies reported differences in the relative abundance
of taxa. When classifying significantly different species, genus,
family, and order level taxa at the phylum level, two studies
reported decreases in the Bacteroidetes phylum, while the
results for Firmicutes and Proteobacteria varied (Fig. 3) (Yuan
et al. 2020, Korpela et al. 2021). Figure 3 only reports signifi-
cant differences that are present in both males and females;
however, sex-specific effects were identified (Korpela et al.
2021). In females, the gut microbiome became more adult-
like as puberty progressed; however, the same development
was not observed in males, possibly due to the later onset
of puberty. Another study not only found differences in the
abundances of microbes of pre-pubertal and pubertal individ-
uals, but the abundances of several genera, including Adler-
creutzia, Dorea, Ruminococcus, Clostridium, and Parabac-
teroides, were also associated with levels of testosterone (Yuan
et al. 2020). For diversity, two studies identified higher alpha
and beta diversity in the adolescent gut microbiome compared
to the gut microbiome of children (Prince et al. 2019, Lif
Holgerson et al. 2020); however, another included study did

not identify any significant diversity differences between the
two groups (Yuan et al. 2020).

Aim 2: the adolescent microbiome is different in
those engaged in substance use versus controls

Only seven studies investigating the relationship between
substance use and the microbiome during adolescence and
young adulthood were identified (Table 1). All seven studies
reported significant microbial differences in youth who used
substances compared to controls.

Alcohol

Four studies reported microbial differences associated with
alcohol use during adolescence (Willis et al. 2018, Vetreno
et al. 2021, Segovia-Rodríguez et al. 2022, Carbia et al.
2023). The studies were conducted in humans (n = 3) and
rats (n = 1) and utilized either cross-sectional (n = 3) or lon-
gitudinal (n = 1) microbiome assessments. Only one study
examined the oral microbiome and all others focused on
the gut (n = 3). All studies assessed differences in the abun-
dance of taxa. Three out of four studies assessed differ-
ences in alpha and beta diversity. These three studies uti-
lized the Shannon index to assess differences in alpha diver-
sity. Other alpha diversity metrics included Simpson (n = 1),
Chao1 (n = 2), observed species (n = 1), phylogenetic diver-
sity (n = 1), and evenness (n = 1). Distance/dissimilarity met-
rics included weighted UniFrac (n = 1), Jaccard (n = 1), and
Aitchison (n = 1). Only one study used functional bioinfor-
matics. See Table 1 for details.
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Figure 2 Significantly different taxa reported between adolescents and adults. Taxa specifically reported in the text are in bold while associated
taxonomic levels are not. ∗Identifies oral microbiome studies while all others are gut microbiome studies. This table only includes significantly different
taxa; therefore, some identified studies in aim 1 are not included. NHP: non-human primate.

The longitudinal gut microbiome study in rats indicated
that adolescent intermittent alcohol (AIE) treatment, a model
of adolescent binge drinking, led to both immediate and
lasting changes in the microbiome, and that the lasting
microbial changes were also associated with alterations of
enteric neurotransmitters (Vetreno et al. 2021). Immediate
changes included decreases in the relative abundance of
several microbes such as Dehalobacterium, Lachnospiraceae,
CF231, Paraprevotella, Prevotella, and Actinobacteria and
increases in the relative abundance of other microbes,
including Allobaculum, Bifidobacterium, and Butyricimonas.
Most of these alterations returned to control levels by
adulthood due to time and/or abstinence, but the decrease
of Dehalobacterium and CF231 persisted, suggesting lasting

AIE-induced microbial changes. In addition, AIE treatment
resulted in some microbial alterations that did not manifest
until adulthood, including increases in the relative abundance
of Christensenella, Streptococcus, and Rothia. No differences
were found in alpha or beta diversity across aging or AIE
treatment.

One of the cross-sectional human studies found associations
between binge drinking and alterations in microbiome com-
position (Carbia et al. 2023). Importantly, this study focused
on binge drinking in the absence of AUD to identify potential
early microbiome markers of change. While no differences in
alpha diversity were identified between young binge-drinkers
and controls, beta diversity differences were related to the
number of drinks per drinking session. There were also several
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Figure 3 Significantly different taxa reported between adolescents and children. Taxa specifically reported in the text are in bold while associated
taxonomic levels are not. This table only includes significantly different taxa identified in both males and females; therefore, some identified studies in
aim 1 are not included.

differences in the abundances of bacteria, such as lower species
of the genus Alistipes and higher Veillonella, associated with
binge drinking. Recent binge drinking was associated with
even more widespread changes, including alterations in Bac-
teroides spp., Alistipes spp., Blautia wexlerae, Ruminococcus
lactaris, and Coprococcus euctactus, in addition to others.
Furthermore, reductions in Ruthenibacterium lactiformans
were associated with craving both at baseline and the 3-month
follow-up.

Segovia-Rodríguez et al. also identified alcohol-related
associations in the gut microbiome of university students
(Segovia-Rodríguez et al. 2022). Similar to Carbia et al., no
differences were identified in alpha diversity; however, there
were differences between individuals who engage in heavy
episodic drinking and controls in beta diversity. In addition,
all taxonomic levels of Actinobacteria besides genus and
species were increased in youth who used alcohol compared
to controls.

The other cross-sectional oral microbiome study in humans
did not look specifically at alcohol, but rather identified
alcohol as one of the factors that impacts the oral microbiome
during adolescence among other lifestyle, diet, hygiene, socioe-
conomic, and environmental parameters (Willis et al. 2018).
Alcohol consumption during adolescence was associated with
high levels of several bacterial genera including Mycoplasma,
Filifactor, Treponema, and Desulfobulbus. Diversity measures
were not assessed in this study.

Cannabis

One study investigated the impact of repeated cannabis
exposure in adolescent mice and found significant differences
in composition of the microbiome in adulthood (Wan
et al. 2022); however, the direct effects of cannabis on
the microbiome were not assessed during adolescence. In
the WIN55,21-2 group, several genera (Acetoanaerobium,
Dehalobacter, Desnuesiella, Jeotgalibacillus, Lysobacter,
Mobilitalea, Prevotella, Rikenella, and Thermosyntropha) and
species (Prevotella baroniae, Clostridium bolteae, Rikenella
microfusus, Prevotella dentasini, Butyricicoccus faecihomi-
nis, Desnuesiella massiliensis, Blautia hydrogenotrophica,

Mobilitalea sibirica, Acetoanaerobium sticklandii, Jeot-
galibacillus malaysiensis, Thermosyntropha tengcongen-
sis, Paraprevotella xylaniphila, Lysobacter oligotrophicus,
and Dehalobacter restrictus) had significantly higher rel-
ative abundances than the control group. In contrast,
eight genera (Adlercreutzia, Akkermansia, Dorea, Eisen-
bergiella, Gellertiella, Hungatella, Photobacterium, and Phyl-
lobacterium) and nine species (Eisenbergiella massiliensis,
Dorea formicigenerans, Hungatella hathewayi, Adlercreutzia
muris, Blautia hominis, Gellertiella hungarica, Photobac-
terium damselae, Phyllobacterium loti, and Akkermansia
muciniphila) had lower abundances in the WIN55,212-
2 group. No differences in alpha or beta diversity were
found.

Tobacco

Two studies investigating tobacco use during adolescence
were identified (Kumar et al. 2011, Tishchenko et al. 2022).
Both studies reported differences in microbial composition
and diversity associated with tobacco use. In particu-
lar, opportunistic pathogens belonging to Fusobacterium,
Cardiobacterium, Synergistes, Selenomonas, Haemophilus,
Pseudomonas, and Streptococcus were higher in youth who
used tobacco compared to controls. Higher alpha diversity
was also associated with tobacco use in both studies, although
different diversity metrics were utilized.

Discussion

This scoping review highlights differences in the adolescent
and young adult gut and oral microbiomes compared to other
stages of the lifespan (aim 1), as well as the effects of substance
use on the gut and oral microbiomes during adolescence and
young adulthood (aim 2). Accounting for adolescence/young
adulthood is an important consideration for future micro-
biome research as most studies investigate the microbiome of
children or adults, missing a critical piece of the microbiome
development. This may be due to previous studies claiming
that the gut microbiome achieves an adult-like composition
as early as 3 years of age (Yatsunenko et al. 2012); however,
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the studies identified in this review indicate that both the gut
and oral microbiomes are still developing during adolescence
and young adulthood and may be particularly vulnerable to
certain exposures. Several studies identified in aim 1 also
suggest an association between sex and the microbiome (Del
Chierico et al. 2018, Lif Holgerson et al. 2020, Yuan et al.
2020, Korpela et al. 2021, Lopizzo et al. 2021). Females
and males differ slightly in their vulnerability to psychi-
atric disorders, such as substance use disorders. Increased
understanding of sex differences in the microbiome, especially
during adolescence when sex differences and psychiatric dis-
orders typically emerge, may lead to advances in the under-
standing of risk for psychiatric disorders and lead to better
treatments.

Previous studies have started to investigate the link between
SUDs and the microbiome in adulthood (Temko et al. 2017,
Kosciolek et al. 2021, Russell et al. 2021). Some of our ado-
lescent and young adult substance use findings are consistent
with what is reported in adult studies; however, key differ-
ences were identified as well. All three adolescent alcohol stud-
ies that assessed differences in gut alpha diversity reported null
findings. This is different from adult studies that mostly report
decreases in gut alpha diversity. The findings on gut beta
diversity are conflicting with two studies reporting significant
differences (Segovia-Rodríguez et al. 2022, Carbia et al. 2023)
and one reporting null findings (Vetreno et al. 2021). It is pos-
sible these differences are due to the model species, as the two
studies reporting significant findings are in humans and the
one with null findings is in rats. Finally, all four studies iden-
tified differences in the abundances of several bacteria associ-
ated with alcohol use in adolescence. When classifying all sig-
nificant taxa at the phylum level, differences were reported in
Actinobacteria, Bacteroidetes, Firmicutes, and Desulfotomac-
ulota. Actinobacteria was directly assessed in two studies and
both reported increases with alcohol use (Vetreno et al. 2021,
Segovia-Rodríguez et al. 2022), which is in line with the adult
alcohol literature (Bull-Otterson et al. 2013, Lowe et al. 2017).
Multiple other findings, including increases in Rothia and
Allobaculum and decreases in Paraprevotella, Prevotella, and
Lachnospiraceae, are also reported in adults (Bull-Otterson
et al. 2013, Dubinkina et al. 2017, Puri et al. 2018, Xiao et al.
2018, Bjørkhaug et al. 2019, Ames et al. 2020, Piacentino
et al. 2021, Du et al. 2022). Importantly, several of the gut
microbes identified as being influenced by alcohol in adoles-
cence were also identified in aim 1 as being different between
adolescents and adults (Bifidobacterium, Prevotella, CF231,
Lachnospiraceae, Christensenella, Allobaculum, Streptococ-
cus; Fig. 4). Similar to the gut, some adolescent oral micro-
biome findings were comparable to those of adults while some
differed. An adult AUD study reported similar findings to
Willis et al. (2018) for several genera (Barb et al. 2022). Desul-
fobulbus was identified in AUD patients but not in control
participants, and abstinence from alcohol was associated with
decreases in Filifactor. However, the study reported opposite
findings for Treponema, which was highly abundant in HMP
participants but represented at less than 0.2% average abun-
dance in patients with AUD (Barb et al. 2022).

Associations between cannabis use and the microbiome
are vastly understudied, in both adolescents/young adults
and adults (Fig. 5). The adolescent cannabis study reported
increases in Prevotella, which is conflicting with previous
reports in adults of decreased Prevotella (Panee et al. 2018).
Prevotella was identified in aim 1 as a differentially abundant

genera between adolescents and adults. In addition to this, the
decrease in taxa A. muciniphila in the adolescent cannabis
study is inconsistent with findings from another study in
diet-induced obese mice treated with THC during adulthood,
suggesting a possible age-dependent effect (Cluny et al. 2015).
The adolescent study included in this review used a synthetic
cannabinoid, WIN55,212-2, which is a potent CB receptor
agonist instead of natural THC exposure which may also
contribute to the differences in results.

Finally, the findings from the adolescent tobacco study are
consistent with findings in adult humans showing tobacco use
impacts the oral microbiome, particularly increased diversity
and levels of opportunistic pathogens (Fig. 6) (Mason et al.
2015, Wu et al. 2016). Increased Streptococcus is reported in
both adolescent/young adult and adult tobacco use despite
being one of the genera identified in aim 1 as different
between adolescents and adults. There were also several gen-
era uniquely associated with tobacco use in the adolescent
studies compared to those in adults. Differences in these
findings may be due to age; however, they could also be due
to heated tobacco rather than burning through conventional
methods.

Gaps in literature

This review identified a substantial gap in the literature on
how substance use during adolescence/young adulthood influ-
ences the microbiome. Across rodents, non-human primates,
and humans, only seven studies on the adolescent and young
adult microbiome and substance use were identified (four
on alcohol use, one on cannabis use, and two on tobacco
use), which highlights the fact that more research on this
age group is needed. In addition, many of the microbes that
were associated with substance use during adolescence/young
adulthood (aim 2) were also identified as being different
between adolescents/young adults and adults (aim 1).

Another gap identified in this scoping review is the lack of
studies assessing the oral microbiome. Out of the 26 studies
identified through both searches, only 5 investigated changes
in the oral microbiome. Compared to the gut microbiota, the
oral microbiota is understudied, especially regarding SUDs.
Several studies have documented extensive transmission of
microbes from the mouth to the gut (Schmidt et al. 2019),
and oral-derived bacteria have been shown to colonize the
intestines (Atarashi et al. 2017, Du Teil Espina et al. 2019).
The oral cavity is a promising target for future microbiome
studies as the oral cavity is the start of the gastrointestinal
tract, is linked both physically and chemically to the gut,
and has close proximity to the brain. In addition, given the
ease and flexibility of collection, the oral microbiome may be
a favorable alternative to classic stool collection, but much
additional research is needed.

Finally, this review points to the inconsistencies among stud-
ies in microbiome methods. For identification of microbes,
most studies (n = 21) utilized 16S rRNA sequencing; however,
several different variable regions were used. Given this
inconsistency, it is hard to generalize the results across studies
as there may be inaccuracies in reported bacterial community
compositions due to amplification bias of the targeted
hypervariable region. This limitation could be avoided
by using shotgun metagenomic sequencing which involves
sequencing random fragments of DNA that contain a mixture
of both bacterial and host DNA. This method is preferred as it
allows for taxonomic profiling, metabolic function profiling,
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Figure 4 Alcohol-related microbial differences in adolescents and young adults. Taxa specifically reported in the text are in bold while associated
taxonomic levels are not. Filled in arrows indicate the direction of abundance in substance using adolescents compared to adolescent controls. Arrows
with no fill represent the direction of abundance reported in adult literature (Kirpich et al. 2008, Bull-Otterson et al. 2013, Tsuruya et al. 2016, Dubinkina
et al. 2017, Lowe et al. 2017, Fan et al. 2018, Puri et al. 2018, Xiao et al. 2018, Bjørkhaug et al. 2019, Ames et al. 2020, Piacentino et al. 2021,
Rodríguez-González et al. 2021, Yang et al. 2021, Barb et al. 2022, Du et al. 2022). Taxa marked with ∗ were identified in aim 1 as being different in
adolescent and young adults compared to adults. Underlined taxa represent oral taxa while all others are gut taxa.

and antibiotic resistance gene profiling (Jovel et al. 2016,
Laudadio et al. 2018); however, it is more expensive than
amplicon sequencing and requires a large amount of input
DNA, the availability of reference genome sequences, and
more rigorous IRB approval for human studies. In addition
to using different variable regions, some studies identified
taxa using sequence-based clustering (producing OTUs),
while others used denoising methods (producing ASVs). ASV

approaches allow for more precise identification of microbes,
and therefore, there are many arguments that the field
should be moving away from OTU-based analyses (Callahan
et al. 2017). Other methods for bacterial identification and
quantification included microbiota array- and culture-based
counting methods. While these methods eliminate the need
for high-throughput sequencing and are more convenient,
efficient, and affordable, they are not as precise and may not
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Figure 5 Cannabis-related gut microbial differences in adolescents and young adults. Taxa specifically reported in the text are in bold while associated
taxonomic levels are not. Filled in arrows indicate the direction of abundance in substance using adolescents compared to adolescent controls. Arrows
with no fill represent the direction of abundance reported in adult literature (Cluny et al. 2015, Panee et al. 2018). Taxa marked with ∗ were identified in
aim 1 as being different in adolescent and young adults compared to adults.

be effective at identifying the presence of novel microbes or
known but unculturable microbes. Finally, several different
diversity metrics were used throughout the studies. Each
diversity measure has unique characteristics, advantages,
and disadvantages. The wide range of methods and indices
used among the studies in this scoping review limits the
generalizability of the findings. Expert recommendations and
guidelines for the analysis and reporting of the microbiome
should be referenced to guide future work (Mirzayi et al.
2021, Bastiaanssen et al. 2022).

Limitations

This scoping review provides a comprehensive summary of
studies comparing the adolescent/young adult and young

adult microbiome with other stages of the lifespan, as well as
the impact of substance use on the microbiome during ado-
lescence and young adulthood. However, this review should
be read within the context of certain caveats. First, there is no
agreed upon age range for adolescence/young adulthood. For
this review, we defined adolescence and young adults as ages
10–25 years in humans, 2–7 years in non-human primates,
and PND 21–65 in rodents to be comprehensive; however, this
led to some studies with overlapping age ranges (Table 1). In
addition, it is a strength that we included studies in multiple
model species including rodents, non-human primates, and
humans to synthesize all the available data; however, it is
not completely clear how the timepoints of rodents and non-
human primates translate into human developmental stages.
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Figure 6 Tobacco-related oral microbial differences in adolescents and young adults. Taxa specifically reported in the text are in bold while associated
taxonomic levels are not. Filled in arrows indicate the direction of abundance in substance using adolescents compared to adolescent controls. Arrows
with no fill represent the direction of abundance reported in adult literature (Wu et al. 2016, Vallès et al. 2018, Al-Zyoud et al. 2019, Chopyk et al. 2021,
Jia et al. 2021, Suzuki et al. 2022). Taxa marked with ∗ were identified in aim 1 as being different in adolescent and young adults compared to adults.

It is also important to consider that host genetics influence
the microbiome and may limit cross-species comparisons.
The studies identified in this review also varied in study
design and protocols which may hinder the identification
of consistent changes. Only 13 of the 26 included studies
included both sexes, and of those only 8 controlled for sex
or investigated sex-specific effects. Out of the 12 human
studies, 9 controlled for antibiotic use, 7 controlled for or
examined diet, and 1 controlled for psychiatric disorders.
Future longitudinal studies that control for these variables,
incorporate species level data, and include multi-omic
techniques such as transcriptomics, proteomics, and/or

metabolomics will answer important questions on trajectories
of normal microbial development and different factors that
may lead to microbial changes. Finally, as a scoping review,
there was no formal assessment of the methodological quality
of the studies included. The goal of this review was not to
provide a systematic review of the available literature, but
rather provide an up-to-date integration of two different
topic areas, including (i) differences in the microbiome
between youth and other life stages and (ii) substance-
associated microbial changes in adolescence and young
adulthood to draw attention to this understudied area of
research.
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Conclusion

The adolescent and young adult microbiome is an under-
studied area of research, especially in the context of youth
substance use. The studies reviewed here suggest that the
adolescent and young adult oral and gut microbiomes con-
tain distinct microbial profiles compared to other stages of
development. In addition, the adolescent and young adult
microbiome appears to be particularly sensitive to different
stimuli, including several commonly used substances during
adolescence. Given the differences identified in this review, it
is vital to tailor future microbiota research to adolescent and
young adult populations rather than generalizing from child
and adult literature.

Microbiome manipulation may be a potential treatment
or adjunctive therapy for neuropsychiatric disorders such as
SUDs (Chinna Meyyappan et al. 2020, Verma et al. 2020,
Pizarro et al. 2021); however, it is first important to under-
stand how the microbiome is influenced by substances during
the adolescent/young adult period. There are currently only
seven microbiome-related studies, across species, investigating
substance use during adolescence and young adulthood and
there are no human adolescent or young adult studies with
a longitudinal design. Future studies should aim to charac-
terize changes associated with the oral and gut microbiome
during adolescence/young adulthood to determine if there
are consistent changes. If consistent changes are noted across
studies, certain bacterial strains can be targeted and tested, as
probiotics or prebiotics could potentially be given to promote
the growth of certain bacteria. Pathogenic bacteria can also be
eliminated through techniques like antibiotic administration
or phage therapy. In addition to characterizing microbial
signatures of change, emphasis should also be placed on the
functional profiles of microbes as changes may be taxonom-
ically distinct but function in similar ways or vice versa. In
this case, therapeutic development may focus on targeting
microbiome-related metabolomic products, administration of
microbial products, and/or genetic engineering of microbes for
certain functions. While much work still needs to be done,
understanding the connection between the adolescent/young
adult microbiome and SUDs may further elucidate the patho-
physiology of SUDs and offer an avenue for future therapeutic
prevention and intervention options.
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