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to class-imbalance, a common problem in omics stud-
ies. The prediction of future classes with class-imbalance 
poses a challenge. Some datasets, for example, ones 
related to cancer studies, include healthy samples that 
vastly outweigh the case samples, causing large class 
imbalances [4]. In technical terms, class imbalance is 
a difficult problem when training classifiers, causing 
the model to better learn the over-represented class. 
Many traditional and machine learning methods usu-
ally assume a balanced class setting for developing mod-
els, and a lack of such a setting results in specificity and 
sensitivity issues in data analysis. This has become more 
important in multi-omics data analysis and translational 
research [1], where, for example, associations between 
the biomarker and a disease result in a greater rate of 
false-negative and false-positive classifications [5]. A 
false-positive classification will result in an initial, greater 
expenditure of resources, assessing a positive outcome 

Introduction
Many high-throughput omics studies involve differ-
ences in numbers of samples where one of the classes is 
higher in number compared to the other (e.g., number 
of healthy and number of disease samples) [1–3]. Usu-
ally, this number is more than three to fivefold and leads 
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Abstract
Class imbalance remains a large problem in high-throughput omics analyses, causing bias towards the over-
represented class when training machine learning-based classifiers. Oversampling is a common method used 
to balance classes, allowing for better generalization of the training data. More naive approaches can introduce 
other biases into the data, being especially sensitive to inaccuracies in the training data, a problem considering 
the characteristically noisy data obtained in healthcare. This is especially a problem with high-dimensional data. 
A generative adversarial network-based method is proposed for creating synthetic samples from small, high-
dimensional data, to improve upon other more naive generative approaches. The method was compared with 
‘synthetic minority over-sampling technique’ (SMOTE) and ‘random oversampling’ (RO). Generative methods were 
validated by training classifiers on the balanced data.
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until the false-positive is confirmed, but a false-negative 
can have an overall greater negative impact [4].

In the literature, methods have been designed to deal 
with the class imbalance problem when training clas-
sifiers. Common approaches to class balancing work by 
reducing the sample size of the over-represented class 
(undersampling), increasing that of the under-repre-
sented class (oversampling or generation), or a mixture of 
both (hybrid) [4]. Sara Fotouhi et al. conducted an analy-
sis of state of the art class balancing methods in cancer 
[4]. Results generally showed an increase in performance 
from oversampling techniques compared to undersam-
pling techniques. Four different classification techniques 
were employed (repeated incremental pruning to pro-
duce error reduction, multi-layer perceptron, K-nearest 
neighbors, and C4.5, across 15 different cancer types, and 
the best performing balancing technique for each clas-
sifier-cancer pair, a mean area under the receiver oper-
ating curve (auroc) improvement of 8.6% compared to 
that without the use of balancing techniques. Generally, 
greater imbalances showed better performance with the 
balancing techniques.

Generative Adversarial Networks (GANs) [6] form an 
approach that learns the underlying distributions of the 
feature data space [7] catering to the ability to generate 
synthetic data. GAN is used in many aspects, includ-
ing single cell genomics [8–10], RNA sequencing [11], 
and other omics studies for example metabolomics [12] 
already. The other application of GANs based techniques 
for addressing imbalance problems are already shown in 
the image data [13]. Some other examples are the meta 
analysis in the cancer image data [14]. Greater accuracy 
can be achieved over other popular methods, such as 
‘synthetic minority over-sampling technique’ (SMOTE) 
and ‘random oversampling’ (RO) [4, 15], due to the learn-
ing of inter-feature relationships within the data.

In this study, we proposed a GAN-based methodology 
for use on high-dimensional data sets with small sample 
sizes, that allows for the synthesis of new samples that 
represent original data types. We further compared the 
performance of our approach against SMOTE and RO, 
auroc when using the data to train a classifier. We per-
formed extensive simulations and applied the proposed 
methodologies on real world microarray and lipidomics 
data sets to demonstrate performance. We found evi-
dence for an improved ability of the proposed GAN-
based methodology to balance the classes of complex 
datasets with small sample sizes.

Methods
Generative adversarial networks
GANs are deep-learning-based, generative models that 
have grown in popularity in recent years [16]. GANs usu-
ally consist of two trained neural networks, a generator 

and a discriminator, with random noise classically used 
as input into the generator. The generator is trained to 
produce realistic (“fake”) data, from the noise input, to 
trick the discriminator, and the discriminator trained to 
distinguish between real and “fake” data. This resembles 
a zero-sum, non-cooperative game in game theory terms, 
hence the adversarial aspect to the architecture [17]. 
GANs have been widely applied to health research [7, 18, 
19] generally demonstrating an improved performance, 
albeit at the cost of increased computational complexity, 
in generative tasks when compared to variational autoen-
coders and normalising flow models (other popular deep-
learning, generative approaches) [20].

A GAN-based methodology is proposed here, that uti-
lises a Wasserstein GAN with weight penalty (WGAN-
WP) [21], alongside transfer learning and the addition 
of a distance metric to the generator loss function to 
increase variation in the generated results. We hypoth-
esise that use of the proposed GAN, on high-dimensional 
data with small sample size, will allow for the generation 
of samples with greater representability than SMOTE 
and RO. This will allow for the generation of more accu-
rate prediction models, using generation to balance 
classes of the data.

GAN Architecture
The workflow followed in this study is summarised in 
Fig. 1, and the general architecture of the proposed GAN 
is summarised in Fig. 2. The generator network layer sizes 
were defined as 50, 100, 200, with the input and output 
layers equal to the size of the input data. That of the critic 
was the same, but reversed, with the input layer equal to 
the size of the input data, and the output a single value 
(size 1).

Defining the loss function
A Wasserstein GAN was used over a classic GAN, where 
the Wasserstein distance is used to define the loss func-
tion, as opposed to binary predictions of ‘real’ or ‘fake’ 
[6]. Results have shown Wasserstein GANs to be highly 
effective at reducing key problems, such as mode collapse 
[6, 20]. Using two equal sized batches of input (noise and 
real), the critic loss was defined by the mean of the fake 
data prediction minus the mean of the real data predic-
tion. A classic Wasserstein GAN would define the gener-
ator loss to be the mean of the fake data prediction from 
the critic multiplied by -1.

Due to the small sample size of the training data, the 
data would have a high likelihood of under-representing 
the true sample space. To prevent this, the log L2-matrix 
norm was calculated for the generated data during train-
ing, where a greater value would decrease the loss calcu-
lated. This was done to force the model to better cover 
the true sample space. A constant (alpha) was multiplied 
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by the log L2-matrix norm to control the effect of this 
factor on the function, treated as a hyperparameter.

Where yF  and yR  are the fake and real predictions. 
|xF |  is the L2-matric norm of the generated data.

	 Losscritic = yF − yR

	 Lossgen = (−1) (yF )− α |xF |

Weight regularisation (α) was utilised during the training 
of the critic. It has been found that weight regularisation 
has a large effect on the mode of collapse of GANs [22]. 
Without regularisation, the critic tends to escalate the 
gradients during training, resulting in the critic learning 

Fig. 1  Study Workflow. Flowchart summarising the methodology of the study. Each of the 3 main parts of the study are highlighted in different colours. 
“Pre-training” is red, re-training is green, and validation is purple. Generative adversarial network (GAN); area under the receiver operating characteristic 
curve (auroc)
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a subset of samples well and the generator learning to 
generate samples that are not encompassed by the critic. 
Critic weight regularisation involves enforcing a Lip-
schitz constraint on the weights, limiting the gradients 
found to fall within set bounds. Our approaches adopted 
the WGAN-WP method, as described by Gulrajani et al. 
[21]. WGAN-WP generates a better gradient distribution 
across the Lipschitz bounds than classic Lipschitz con-
straints, providing more meaningful gradients to the loss 
function for training the generator.

Architectural considerations to improve training 
performance
To increase the ability of the generated GAN to extract 
effective features from limited data during training, 
transfer learning was utilised [23]. A dataset would be 
generated from an “external” dataset (no class labels) and 

used to train a GAN. The “external” data would consist of 
the same data modality as the “real” data, using the same 
features. Once sufficiently trained, the network would be 
retrained on the “real” data, to allow effective use of the 
network in the new context (a specific class). As such, the 
model was pre-trained to learn general features to extract 
from the modality of interest, giving the final network 
more power to learn effectively, than would be possible 
using raw input.

To allow for efficient training of the network, a progres-
sive growing GAN was used [24]. The training involves 
the gradual addition of new layers, reducing the number 
of parameters to train at each epoch, which is important 
considering the small amount of data used for training.

The SELU activating function was used between each 
fully connected layer of the network to introduce non-
linearity to the network, as recommended by [16]. This 

Fig. 2  GAN Architecture Overview. Diagram showing the architecture of the neural network used as the GAN. Layers are displayed with approximate size 
scaling. Generative adversarial network (GAN); fully-connected layer (FC)
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is a self-normalising activating function, preventing the 
need for batch normalisation between layers, reducing 
computational complexity. Use of this required specific 
weight-initialisation and dropout functions (kaiming 
normal and alpha-dropout respectively).

Model validation
To assess the ability of the trained GAN to improve the 
performance of prediction models, by balancing classes 
through generation, the validation method proposed by 
Huang et al. was employed [16]. Training data and test 
data were assumed to the “real” data and “validation” data 
respectively. Data was balanced through generation using 
GAN, SMOTE and RO. GAN was also used to increase 
the sample sizes of both classes, termed ‘expanded gener-
ation’, which was employed so as to double the number of 
samples of the over-represented class, and balance this in 
the under-represented class. The balanced data was then 
used to train a classifier, using the ‘HistGradientBoost-
ingClassifier’ method from Scikit-learn [25]. Five-fold 
cross validation was used to tune the hyperparameters. 
For the HistGradientBoostingClassifier, learning rates 
of 10− 4, 10− 3, 10− 2, 1 and 10, and minimum samples per 
leaf values of 1, 10, 25, 50, 75 were used in tuning (other 
parameters were left as default). 100 classifiers were 

produced, using the corresponding hyperparameters, 
generating new data (balancing) for each iteration. Mean 
auroc scores (with standard deviation) were computed. 
We defined the score difference between the 0.5 baseline 
and the validation scores (these values are reported in 
Figs. 3, 4, 5 and 6).

Where GAN and ExpandGAN were employed, the 
alpha combination that resulted in the greatest mean 
auroc was used to compare to other methods. The effects 
of different values of alpha were analysed separately.

Differences in auroc, across each set of experiments 
(simulated, microarray, or lipidomics), were tested 
for significance using Welch’s t-test (BSDA R package 
[26]), adjusting p-values using the Benjamini-Hochberg 
method.

Additionally, a classic WGAN-WP [21] was built using 
the same methodology as the proposed GAN method to 
assess the effect of the pre-training procedure. The classic 
WGAN-WP was trained with no distance penalty to the 
generator loss (alpha = 0), no pre-training loop, and no 
growing (all layers were initialised together).

Fig. 3  Simulation Validation Performance. Validation scores are summarised across experiments using the simulated data for GAN, ExpandGAN, SMOTE 
and RO methods. Boxes represent 1 standard deviation from the mean, and the horizontal line, of the box, the mean. The ‘AUC Diff’ defines the score 
difference between the 0.5 baseline (red, separated lines) and the validation score. Adjacent, same-coloured bars define results using different alpha 
hyperparameters, in order of 0/0, 1/0, 1/1 for ExpandGAN and 0 and 1 for GAN. Area under the receiver operating characteristic curve (AUC)
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Data acquisition
Data simulation
For the simulated data, the ‘Umpire’ R package [27] 
was used to simulate a microarray dataset. Two clus-
ters were simulated with 150 features, representative of 
the feature space after feature selection of the microar-
ray data (described below). Noise from the gamma dis-
tribution (default) was added to the features (shape = 2, 
scale = 0.5). 700 samples were used for validation and 
300 as the “external” dataset. The “external” dataset con-
sisted of a mixture of the two clusters, without labels. The 
number of samples of each cluster was changed for each 

experiment, altering the number of control samples and 
the level of class imbalance (Table 1). The same “external” 
and validation data were used across all experiments, but 
each experiment used different generated “real” data.

Public omics data sets
We have obtained the following public data sets from 
the published papers and the Gene Expression Omnibus 
(GEO) database [28]. A detailed information of the data 
listed in the Table 2.

Fig. 4  Microarray Validation Performance. Validation scores are summarised across experiments using the microarray data for GAN, ExpandGAN, SMOTE 
and RO methods. Boxes represent 1 standard deviation from the mean, and the horizontal line, the mean. The ‘AUC Diff’ defines the score difference be-
tween the 0.5 baseline (red, separated lines) and the validation score. Adjacent, same-coloured bars define results using different alpha hyperparameters, 
in order of 0/0, 1/0, 1/1 for ExpandGAN and 0 and 1 for GAN. Where/if SMOTE varied across experiments with changed alpha, the results are shown in 
multiple adjacent bars. Area under the receiver operating characteristic curve (AUC)
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Fig. 6  Lipidomics Validation Performance. Validation scores are summarised across experiments using the lipidomics data for GAN, ExpandGAN, SMOTE 
and RO methods. Boxes represent 1 standard deviation from the mean, and the horizontal line, of the box, the mean. The ‘AUC Diff’ defines the score 
difference between the 0.5 baseline (red, separated lines) and the validation score. Adjacent, same-coloured bars define results using different alpha 
hyperparameters, in order of 0/0, 1/0, 1/1 for ExpandGAN and 0 and 1 for GAN. Area under the receiver operating characteristic curve (AUC)

 

Fig. 5  Classic WGAN-WP Comparison Results. Validation scores are summarised across experiments using the microarray data for GAN, ExpandGAN, 
ClassicGAN and ClassicExpand methods. Boxes represent 1 standard deviation from the mean, and the horizontal line, of the box, the mean. The ‘AUC Diff’ 
defines the score difference between the 0.5 baseline (red, separated lines) and the validation score. GAN and ExpandGAN results shown are those using 
the alpha hyperparameter combination resulting in the greatest mean validation score. Area under the receiver operating characteristic curve (AUC); 
Wasserstein generative adversarial network with weight penalty (WGAN-WP)
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Microarray data sets
In this study we have used public Hepatocellular car-
cinoma microarray data set. Microarray technology 
[29] is an efficient tool employed in molecular biology 
and genomics to examine the expression of many genes 
simultaneously. Gene expression [30] levels in a spe-
cific sample, which offers valuable information about 
the functioning of genes in different conditions (for 
example: cancer vs. non cancer) or tissues (for example: 
mucosal tissue vs. tumour tissues). Microarray data set 
were obtained from the GEO database [28]. GSE14520, 
GSE25097, and GSE36376 accessions were used for 
“external” “validation,” and “real” data, respectively [31]. 
Datasets were filtered for all cancer samples and adja-
cent, non-cancer samples. The ‘GEOquery’ R package 
was applied to obtain the datasets [32], using the sample 
accessions obtained from the Entrez Programming Utili-
ties [33]. The “real” data was randomly sampled to obtain 
the corresponding number of control samples and class 
imbalance for each experiment (Table 1). The gene ontol-
ogy and pathway analyses were conducted on selected 
features (explained below) from the “real” data, using 
‘EnrichR’ [34–36].

Lipidomics data sets
Lipids data can be generated through various experimen-
tal and analytical techniques, as lipids are a diverse group 
of molecules that include fats, oils, phospholipids, and 
steroids. We have performed direct infusion high-reso-
lution mass spectrometry (HRMS) method with plasma/
serum samples to generate lipids. Multiple lipidomics 
data sets were obtained from previously published Cam-
bridge Baby Growth Study (CBGS) cohorts [37]. Lipido-
mic profiles were compared between infant groups who 
were either exclusively breastfed, i.e., human milk (HM), 
exclusively formula-fed or mixed-fed at various levels. 
The three datasets considered were CBGS_1, CBGS_2 
and Pregnancy Outcome Prediction Study (POPS), used 
for the “real”, “external,” and validation datasets, respec-
tively. All available lipidomics features were used. “real” 

and “validation” sets were filtered for ‘Formula’ and ‘HM’ 
classes, for binary classification. “External” data used 
both the above classes and ‘HM & Formula” (all classes 
available).

Model training
Our training approach is summarised in Fig.  1. First, 
regarding the simulated and public microarray datasets, 
the data underwent feature selection, reducing the fea-
ture space to ∼ 150 features. Differential gene expression 
analysis for the microarray data was performed prior to 
this study [31]. The top 200 genes, by decreasing Ben-
jamini-Hochberg adjusted p-value (adj.P), were selected 
from the “real” differential gene expression results. The 
genes were then filtered to remove any genes, across 
the three datasets, that had any missing values across all 
three, leaving 135 genes. The simulation data was simply 
simulated with 150 samples, representing a dataset after 
feature selection.

Two ‘ColumnTransformers’ were then built using the 
‘Scikit-learn’ Python package [25], one for the “external” 
data and one for the “real” data. The column transform-
ers consisted of a robust scaler and a power transformer 
(Yeo-Johnson method) [25]. Columns would automati-
cally be designated one of the two scaling methods, using 
the ‘skewtest’ method (‘Scipy’ Python package) [38]. A 
significant difference would be assessed between the 
distribution of each feature and the normal distribution, 
and if significant (p < 0.05), the power transformer would 
be used, otherwise, the standard scaler would be used. 
“External” and “real” datasets were then scaled using 
the corresponding ‘ColumnTransformers’. The"external” 
transformer was built using 200 random samples from 
the “external” data.

A GAN was then trained on the “external” data. Fully-
connected layers were added progressively to the net-
work, training the network before adding a new layer. 
Once trained, transfer learning was conducted, re-train-
ing the network on the “real” data. Two GANs would be 
produced here, both using the pre-trained weights and 
biases as a base before re-training. Each GAN would be 
re-trained on one class of the “real” data.

GANs necessitate, due to convergence difficulties, 
being assessed frequently throughout training to ensure 
the best performing parameters are used in the training 
procedure [16]. The GAN results were assessed at regu-
lar epochs (20 epochs), using the loss-values to assess the 
model. An early-stopping-like method was used, specify-
ing a large number of epochs to train, and selecting an 
optimal epoch. Each epoch was selected by first remov-
ing all values past the 1st instance of a critic loss > 15 or 
<-10. An objective function was then fitted to the curve 
using the ‘curve_fit’ method of scipy [38]. The ‘KneeLoca-
tor’ method (kneed package) [39] was then used to find 

Table 1  Experiment input data summary
Experiment ID Number of control samples Class imbalance
1 40 0.4
2 80 0.4
3 120 0.4
4 40 0.5
5 80 0.5
6 120 0.5
7 40 0.6
8 80 0.6
9 120 0.6
Table summarising the number of control samples and class imbalance for each 
experiment. Class imbalance is multiplied by the number of control samples to 
define the number of samples in the other class
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the elbow point of the curve generated from the objective 
function.

To reduce the effect of mode collapse on the network, 
higher dropout probabilities, with smaller learning rates, 
were used on the GAN layers during transfer learning, 
due to the small amount of data used.

The hyperparameters for the re-training loops were 
tuned using an automated method. A larger initial learn-
ing rate (lr_1) was used, followed by a smaller learning 
rate (lr_2). Learning rates of 0.0005, 0.0001 and 0.001 
were assessed for lr_1 and 0.00001, 0.00005 and 0.0001 
for lr_2. Lr_1 was trained to a maximum of 5000 epochs, 
and the learning rate resulting in the smallest critic loss 
above 3 was used. Lr_2 was trained for 5000 epochs, 
and a function was defined to balance speed and stabil-
ity of training. First, the first instance of a critic loss of 
> 15 or <-10 was removed. The apexes were then found 
across this curve (representing the noise), and the differ-
ence between the corresponding apexes was calculated. 
Instability was defined by the mean of the top 50 greatest 
differences. The speed of training was defined by the dif-
ference between the mean of the 1st 500 epochs and the 
last 500 epochs of the curve. The lr_2 that resulted in the 
smallest ‘3*instability - difference’ was selected.

The batch sizes used were 10 and 20 for the underrep-
resented, overrepresented classes, respectively. The pre-
training used a batch size of 30.

The effect of the alpha hyperparameter, controlling the 
effect of the log L2-matrix norm in the generator loss 
function, was assessed with different values. Regarding 
the under-represented class GAN and the over-repre-
sented class GAN respectively, values of 1/1, 1/0 and 0/0 
were used. Therefore, for each experiment, three sets of 
results would be produced (one for each set of alpha val-
ues). Alpha was set at 0 during the pre-training loops.

Variable number of samples for expandGAN
The effect of number of generated samples, past the num-
ber of samples of the overrepresented class, on the per-
formance of a predictor model was assessed. The number 
of samples to generate was determined by multiplying 
the number of samples of the overrepresented class by a 
“multiplier” value, adding this to the number of samples 
of the overrepresented class, and generating samples 
until both classes had reached this number. The “multi-
plier” values used were 0.25, 0.5, 0.75 and 1.0, where 1.0 
would double the number of samples of the overrepre-
sented class.

Feature selection using regularization methods
Feature reduction was carried out using two feature 
selection techniques, namely Least Absolute Shrinkage 
and Selection Operator (LASSO) [40], and Elastic Net 
[41]. These regularization methods automatically identify 

significant variables by reducing the coefficients of irrel-
evant predictors to zero, achieving a sparse representa-
tion. To implement biologically relevant feature selection 
using the LASSO and Elastic Net (EN) algorithms, we 
systematically optimized the penalty parameter asso-
ciated with each method in an unbiased manner. This 
involved randomly dividing the samples into a training 
set, comprising 75% of the total samples, and a test set 
with the remaining 25% of samples. A 10-fold cross-vali-
dation was then conducted on the training set (inner loop 
set) to determine an optimized penalty parameter that 
could be employed in the LASSO and EN models. Math-
ematically, both LASSO and EN models can be charac-
terized using a single penalty function denoted as “α. 
We performed a stability analysis i.e iterated the process 
multiple times and derived important features based on 
frequency over 10 iterations. We took the top 25% of the 
features that appeared in both EN and LASSO and used 
them for further downstream analysis [42]. We have used 
regularization methods using DEG genes and the all the 
lipids features.

For the experiments using lasso feature selection, the 
same pipeline was used, as was used in the corresponding 
analyses above (including statistical testing).

Scripts and tools
R [43] and Python [44] were used to build the scripts, 
using R-studio and Spyder integrated development envi-
ronments, respectively [45, 46]. The GAN methods used 
were built and trained using the ‘Pytorch’ Python pack-
age [47]. Models were trained using either a 6th genera-
tion Intel® Core™ i5 CPU, RTX 2060 super GPU, and 24 
GB RAM, or an M2 Macbook pro, 8 GB RAM. Both used 
a solid state drive to store model outputs. Where time 
taken to train noticeably changes across experiments, 
this may be due to the different machines used to train 
the models.

Results
Training results
Overall, the pre-training took 1,815 s for 15,500 epochs, 
and 1,742 s for 15,000 epochs for simulation and micro-
array data, respectively. Regarding re-training, across the 
microarray experiments (not including classic WGAN-
WP), GANs were trained at a mean of 471 s, per GAN. 
Across the simulation experiments, a mean of 280 s.

Hyperparameter tuning
The hyperparameters used to train the models are sum-
marised in Table 3. Due to pre-training showing greater 
instability upon adding the third layer, the critic: genera-
tor ratio was changed to 2:1, and dropout probability to 
0.7, to help stabilise training. This dropout probability 
and ratio was maintained throughout re-training.
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Classification performance
Results comparison
The classification performances differed largely between 
the simulation and microarray datasets. The best results 
among different combinations of alpha value for each 
experiment across each method, are summarised in sup-
plementary Fig. 1. Generally, the simulation results show 
that the classification methods managed to identify some 
patterns that enabled distinguishing between differ-
ent classes (Fig. 3). All mean auroc scores were > = 0.70. 
The microarray experiments showed reduced classifica-
tion performances compared to the simulation results, 
where all but 1 SMOTE/RO experiments scored < = 0.65. 
All ExpandGAN results were similarly < 0.65, but GAN 
results showed 4 experiments where auroc > = 0.65. This 
data showed greater distinctions between the SMOTE/
RO and GAN-based methods. The microarray experi-
ments showed greater variances than the simulation 
experiments, ranging from 0 to 0.15, and 0 to 0.05 respec-
tively (Figs.  3 and 4). All microarray proposed GAN-
based methods reported standard deviations > = 0.06, 
greater than the range of SMOTE/RO (all 0).

Simulation results
The results obtained across the simulation experiments 
(Fig.  3), showed that for 40 and 80 control samples, 
SMOTE/RO outperformed the GAN-based methods, 
with all differences being significant. With 120 samples, 
GAN (not ExpandGAN) showed closer performance 
to SMOTE/RO, with an average difference of 0.076 
(SMOTE/RO performing better). Despite this, SMOTE/
RO¬ auroc remained significantly greater.

Public microarray datasets
The results obtained across the microarray experiments 
are shown in Fig. 4. All reported GAN auroc scores were 
significantly different from both SMOTE and RO, apart 
from the experiment using 120 control samples with class 
imbalance 0.5. GAN performed significantly better than 
SMOTE/RO in 7 of these 8 experiments. These improved 
differences ranged from 0.02 to 0.18, with a mean of 0.12. 
GAN and SMOTE/RO reported 0.05 difference in mean 
auroc in the insignificant experiment, although GAN did 
have greater standard deviation of 0.11, compared to 0. 
SMOTE/RO significantly outperformed GAN with 40 
samples and 0.6 class imbalance, 0.05 difference. Gener-
ally, ExpandGAN performed worse than GAN. All dif-
ferences were significant, apart from 120 controls and 
0.4 class imbalance, and 40 controls and 0.5 class imbal-
ance. Out of the significant results, GAN outperformed 
ExpandGAN in all but the experiment with 40 control 
samples and 0.4 class imbalance. When analysing the 
validation results for the case of classic WGAN-WP, 
‘ClassicGAN’ methods were compared with GAN, and 
‘ClassicExpand’ methods with ‘ExpandGAN’ (Fig.  5). 
‘ClassicGAN’ results ranged from 0.74 to 0.52, and ‘Clas-
sicExpand’ 0.60 to 0.53. This compares to 0.76 to 0.56 and 
0.63 to 0.54 for GAN and ExpandGAN respectively.

Differences between GAN and ClassicGAN were sig-
nificant in all experiments apart from experiment 7. In all 
but one of these experiments (experiment 3), mean auroc 
scores of GAN exceeded that of ClassicGAN. These dif-
ferences ranged from 0.17 (experiment 2) to 0.03 (experi-
ment 5), mean 0.08, and ClassicGAN exceeded GAN by 
0.06 in experiment 3. Differences between ExpandGAN 
and ClassicExpand were less significant, but significance 
was found in experiments 2, 3 and 9, where mean auroc 
scores of ExpandGAN exceeded that of ClassicExpand. 

Table 3  Datasets Summary
Data set Number of the 

case and control 
samples

Number of 
the features 
(after 
selection)

Reference

GSE14520 225, 220 135 Roessler S, Jia HL, Budhu A, Forgues M et al. A unique metastasis gene signature enables predic-
tion of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Res 2010 Dec 
15;70 [24]:10202-12. PMID: 21,159,642

GSE25097 268, 243 135 Tung EK, Mak CK, Fatima S, Lo RC et al. Clinicopathological and prognostic significance of 
serum and tissue Dickkopf-1 levels in human hepatocellular carcinoma. Liver Int 2011 Nov;31 
[10]:1494 − 504. PMID: 21,955,977

GSE36376 240, 193 135 Lim HY, Sohn I, Deng S, Lee J et al. Prediction of disease-free survival in hepatocellular carcinoma 
by gene expression profiling. Ann Surg Oncol 2013 Nov;20 [12]:3747-53. PMID: 23,800,896

Cambridge 
Baby Growth 
Study (CBGS) 
cohorts

CBGS-1 85 HM, 
87 FM; CBGS-2 
43 HM, 25 FM, 27 
HM + FM; POPS 16 
HM, 11 FM

218 Acharjee, A., Prentice, P., Acerini, C. et al. The translation of lipid profiles to nutritional biomark-
ers in the study of infant metabolism. Metabolomics 13, 25 (2017). https://doi.org/10.1007/
s11306-017-1166-2

Summary of public datasets used in this study. Reference refers to the earliest citation present on the corresponding NCBI Gene Expression Omnibus [28] page. 
Number of features reflects the input data to the corresponding GAN model

https://doi.org/10.1007/s11306-017-1166-2
https://doi.org/10.1007/s11306-017-1166-2
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These differences ranged from 0.09 (experiments 2 and 
9) to 0.06 (experiment 3). This part of the analysis (com-
parison with ClassicGAN ClassicExpand) was run on an 
older version of the pipeline. This version only imple-
mented the ‘HistGradientBoostingClassifier’, but due to 
the better performance of this method over SVC, when 
using the GAN-based methods, we did not predict this to 
make any significant difference to the results.

Effect of the distance metric on the generator loss
The effects of altering the contribution of the distance 
metric to the generator loss varied across the experi-
ments (Figs.  3 and 4). Overall, two different values of 
alpha (the constant multiplied by the distance metric) 
were assessed for both the under-represented and over-
represented classes (1 and 0), but the combination of 0/1 
for under-represented, over-represented respectively, 
was not assessed.

Regarding the simulation data with the ExpandGAN 
method, the most notable differences, when using differ-
ent combinations of this hyperparameter occurred when 
using 0.6 class imbalance with 40 and 80 controls sam-
ples, 0.4 class imbalance with 80 and 120 control sam-
ples, and 0.5 class imbalance with 120 control samples. In 
all but one of these cases, an increase in performance can 
be seen when utilising this, and the other a decrease in 
performance. This hyperparameter had minimal effect on 
the experiments using the GAN method, although some 
evidence of decreased performance can be seen with 80 
controls, 0.4 class imbalance, and 40 controls, 0.5 class 
imbalance.

Regarding the microarray data, altering alpha for the 
under-represented class, generally resulted in little dif-
ference when using the GAN method. One more notice-
able result happened when using 120 controls with 0.4 
class imbalance, where altering alpha increase the per-
formance, with reduced standard deviation. When using 
the ExpandGAN method, the hyperparameter had little 
effect on performance, where most differences consisted 
of a minor change in mean and standard deviation. A 
couple of noticeable differences can be seen with 40 con-
trol samples and 0.4 class imbalance, and 80 samples and 
0.6 class imbalance, where altering alpha had a noticeable 
effect on the standard deviation. 120 controls with 0.4 
class imbalance was also noticeable, although showing 
reduced performance when altering alpha.

Public lipidomics datasets
The lipidomics results (Fig.  6) were compared in the 
same way as with the other datasets, where the greatest 
mean auroc score for each experiment and each method 
(resulting from different combinations of alpha) were 
used for comparison. All methods were significantly dif-
ferent from each other, apart from SMOTE vs. RO, and 

all methods reported mean auroc of > 0.89. ExpandGAN 
mean auroc was significantly smaller than all other meth-
ods and GAN smaller than SMOTE/RO (by 0.03). The 
inclusion of alpha (the distance metric) made little dif-
ference to the results, although improving the standard 
deviation of the GAN method (reduced).

Gene ontology and pathway enrichment
The microarray data Gene Pathway (GP) enrichment 
results are provided in the supplementary Tables 1 and 
2. The results show genes associated with hepatocellular 
carcinoma, such as replication and transcription [48], 
and zinc homeostasis [49].

Variable number of samples for expandGAN
The effect of increasing the number of additional sam-
ples generated by the ExpandGAN method was anal-
ysed. Across the public, microarray experiments, the 
results showed wide standard deviation of the auroc 
scores, therefore there is unlikely to be any significance 
between altering the number of additional samples gen-
erated. Where there were smaller standard deviations 
found, the auroc scores found were low. Across the simu-
lation experiments, the standard deviations found were 
smaller than the public, microarray experiments. There 
was limited evidence to suggest a general trend in the 
performance of the method when altering the number 
of additional samples generated. Despite this, the Hist-
GradientBoostingClassifier experiments with 120 sam-
ples and class imbalance of 0.6 showed some evidence 
of increasing performance, with increased numbers of 
samples generated. In the experiment not using alpha 
(alpha = 0), auroc of multiplier of 0.25 was 0.72 (0.05 stan-
dard deviation), and multiplier of 1.0 was 0.84 (0.03 stan-
dard deviation).

Effect of the feature selection on the data sets
We used selected features from both microarray and 
lipidomics to investigate the performance of the model. 
When comparing the results described above to the same 
analysis but using LASSO and EN feature selection on the 
“real” data to select input features, final classification per-
formances were varied. When using the lipidomics data 
(Fig. 7), RO significantly outperformed all other methods. 
The rest of the methods did not significantly deviate from 
each other. GAN methods showed greater standard devi-
ation around auroc scores. All mean aurocs (of the results 
used in the statistical tests) were above 0.9. The microar-
ray results (Fig.  8), showed poor performance across all 
methods, with all mean auroc scoring less than 0.6.

The number of selected features was 33 and 34 for 
microarray and lipidomics respectively; much less com-
pared to the number of features used in the main anal-
ysis. roc curves for these experiments are shown in 
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Fig. 8  Features Selected Lipidomics Data Validation Performance. Validation scores are summarised across experiments using the lipidomics (LASSO and 
EN feature selection) data for GAN, ExpandGAN, SMOTE and RO methods. Boxes represent 1 standard deviation from the mean, and the horizontal line, 
of the box, the mean. The ‘AUC Diff’ defines the score difference between the 0.5 baseline (red, separated lines) and the validation score. Adjacent, same-
coloured bars define results using different alpha hyperparameters, in order of 0/0, 1/0, 1/1 for ExpandGAN and 0 and 1 for GAN.
 Area under the receiver operating characteristic curve (AUC).

 

Fig. 7  Features Selected Microarray Data Validation Performance. Validation scores are summarised across experiments using the microarray (LASSO and 
EN feature selection) data for GAN, ExpandGAN, SMOTE and RO methods. Boxes represent 1 standard deviation from the mean, and the horizontal line, 
the mean. The ‘AUC Diff’ defines the score difference between the 0.5 baseline (red, separated lines) and the validation score. Adjacent, same-coloured 
bars define results using different alpha hyperparameters, in order of 0/0, 1/0, 1/1 for ExpandGAN and 0 and 1 for GAN. Where/if SMOTE varied across 
experiments with changed alpha, the results are shown in multiple adjacent bars
 Area under the receiver operating characteristic curve (AUC).

 



Page 14 of 17Cusworth et al. BMC Medical Informatics and Decision Making           (2024) 24:90 

supplementary Figs.  6 and 7 (microarray, lipidomics 
respectively).

Discussion
In this research, we introduced a methodology based 
on GANs designed for high-dimensional datasets with 
limited sample sizes. In the realm of high-dimensional 
data analysis, GANs play a pivotal role by tackling issues 
associated with limited data availability, intricate distri-
butions, and the necessity for efficient representation 
learning. This methodology enables the generation of 
new samples that accurately capture the characteristics 
of the original data types. A brief overview of the struc-
ture of the GAN method can be found in Fig. 2 with the 
generator having layers of sizes 50, 100, 200, and input/
output layers matching the input data size. The critic, 
part of the GAN, had reversed layer sizes. Instead of a 
classic GAN, we used a Wasserstein GAN, employing the 
Wasserstein distance for the loss function, which helps 
address issues like mode collapse.

To date, imbalanced classes remain a great challenge for 
the application of machine/deep-learning methods, lead-
ing to an over-representation in the trained models [4]. 
This is problematic when using high-dimensional data, 
especially when only a small number of samples are avail-
able, where many balancing techniques, as well as the 
few data perturbing methods that can be used with high-
dimensional data, fail to allow effective generalisation of 
the classes [50]. When using the SMOTE/RO methods in 
this study, with the limited microarray data, the majority 
of experiments resulted in poor performance of the final 
trained classifiers, supporting this. Generative methods, 
using deep-learning techniques, have shown promising 
results in generalising over the underlying training data, 
potentially allowing for improvements in increasing the 
generalisability of the cancer samples in cancer analy-
sis [18, 19, 51]. Unfortunately, deep-learning, generative 
methods require large numbers of samples for effective 
training, with more samples required with higher dimen-
sional data, which is quite challenging when considering 
certain datasets, such as microbiota related ones [52]. 
GANs have typically been trained on data with regional 
dependencies (e.g., image, brain connectome, interac-
tion networks), or lower dimensional data [18, 19, 51] 
whereas their application across higher dimensional data 
with small sample sizes, for fully generative purposes, 
is limited. We therefore proposed a preliminary design 
of a GAN architecture that aimed to improve on these 
limitations.

The main drawbacks of GANs are their increased com-
plexity, compared to other methods mentioned [20]. The 
use of two separate networks in training GANs leads to 
increased computational complexity, with characteristi-
cally difficult convergence [22]. GANs also suffer from 

mode collapse, where the generator learns an effective 
output to “trick” the discriminator, limiting the gener-
alisability of the data generated. Modern variations of 
GANs have reduced these key problems [20], but care 
is still taken to avoid them (as described in the methods 
section).

Simulation study
The simulation datasets reported significantly greater 
performance of SMOTE/RO over both GAN-based 
methods, across all experiments. Considering the results 
seen across the microarray experiments, it has been 
hypothesised that the simulation data generated did not 
fully represent the complexity of real, microarray data.

Public data sets
Microarray data sets
The microarray data contrasted the results of the simu-
lation data, showing in all but 2 experiments a signifi-
cant increase in performance of GAN over SMOTE/
RO. To note, the GAN reported mean auroc scores devi-
ated much more than SMOTE/RO. ExpandGAN did 
not report any significant benefit over use of GAN, with 
evidence to suggest poorer performance when using 
ExpandGAN.

When comparing classic GAN-based methods to the 
proposed GAN-based methods, GAN was reported to 
significantly outperform ClassicGAN in the majority of 
experiments (7 out of 9), with 1 experiment showing no 
significant difference, and 1 ClassicGAN outperform-
ing GAN. In the experiments where GAN significantly 
outperformed ClassicGAN, a mean difference between 
scores of 0.08 was reported, therefore showing a mean-
ingful increase in performance. The differences between 
ExpandGAN and ClassicGAN were not found to be as 
meaningful, but in the minority of experiments where a 
significant difference was found (3 out of 9), ExpandGAN 
was found to outperform ClassicExpand, with differ-
ences in scores ranging from 0.09 to 0.06, showing some 
evidence of an improvement with the proposed method 
over a classic WGAN-GP here.

To note, these methods were performed with an earlier 
implementation of the scripts. These scripts were very 
similar, but differed mainly in the use of the SVC clas-
sifier, in addition to the histGradientBoosting classifier. 
Due to the better performance seen using the histGra-
dientBoosting classifier over the svc in the other experi-
ments, we left the results how they were, as we did not 
expect them to change with use of SVC.

Lipidomics data sets
The differences between GAN and SMOTE/RO were 
small, but significant, in the case of lipidomics data, with 
SMOTE/RO performing better. ExpandGAN, following 
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the findings from the microarray experiments, per-
formed significantly worse than GAN, therefore also per-
forming worse than SMOTE/RO. We emphasise the use 
of less complex data here, compared to the simulation 
and public microarray datasets, which may have made 
the data simpler to distinguish between the two classes of 
the underlying data. As such, the results obtained across 
this study show evidence towards the beneficial use of 
the proposed GAN-based methods on more complex 
datasets, with low numbers of samples, over SMOTE/
RO. Importantly, the GAN method resulted in good per-
formance when using the lipidomics datasets, of small 
difference (although significant) to that of SMOTE/RO, 
therefore showing evidence that the proposed method 
does not underperform when data is less complex.

One question that may arise lies with the choice to use 
the “external” dataset to pre-train the network, rather 
than its use to balance the “real” data. This choice was 
made out of the need to make the proposed methodology 
more flexible. High flexibility has been observed in trans-
fer learning, such as the use of a network pre-trained on 
image data, transferred to connectome matrices [23]. It 
was hypothesized that less similar data could be used in 
place of the “external” data, for datasets that were less 
widely available. An example would be to use a different 
cancer for the “external” data, but of the same modality 
and features as the “real” data. Additionally, three classes 
were used for the pre-training with the “external” data, 
when using the lipidomics data, due to the data sharing 
the same features as the classes the classifier was trained 
against.

The genes selected for use in the microarray experi-
ments showed evidence for the reflectiveness of the over-
lying disease. GO and GP results show the significance 
of TOP2A, which is involved in growth of hepatocellu-
lar carcinomas [48]. Additionally, zinc homeostasis is an 
important prognostic/predictive factor in hepatocellular 
carcinomas [49], where 6 of the genes (supplementary 
Table 2) were found to be associated with this pathway.

Limitations of the study
This study has multiple limitations. Altering the alpha 
hyperparameters (effect of log L2-matrix norm on gener-
ator loss), affected experiments differently, showing posi-
tive effects of the performance of the produced GANs on 
validation if tuned correctly. When using small amounts 
of data, this aided in the prevention of generated data 
becoming too similar, ensuring their better distribution, 
and generalising better over the real distributions of the 
overlying data. If the value of alpha was set too high, the 
distributions would become unrealistically wide, causing 
overlap between the two classes, hindering further model 
generation from distinguishing between the two classes. 
The hyperparameter alpha (effect of the L2-matrix norm) 

did not obviously affect the loss curves during training, 
therefore, this could only be tuned from the auroc results 
obtained after the training of the classifiers (validation). 
In a real scenario, this could not be done, due to bias 
introduced if tuning using the validation data. Another 
training dataset could be set aside to tune this hyperpa-
rameter, but with the purpose of this method being used 
when data is limited, this would limit the data further, 
likely causing reduced performance of the final classifier. 
Further work would be required to investigate the use of 
clustering and distance metrics in the training of such 
networks. We did not evaluate the effect of different sizes 
of external training data, but the idea is that the more 
external samples, and the more similar the external data 
is to the “real” data, the less re-training that needs to be 
done to make the model specific to the “real” data. This 
is especially important when there are limited samples in 
the “real” data. This process can be performed in a sys-
tematic way of evaluating the external data.

This study used microarray data, and simulated micro-
array data. This method requires all samples to have the 
same variables for training. Additionally, no processing 
was done to correct for the variations across multiple 
experiments (ex: batch effect) generated from different 
studies. Further work should investigate these aspects, to 
make a more flexible and compatible tool.

We employed feature selection methods in this study 
for the following purposes: (a) In biomarker studies, the 
application of feature selection can enhance interpret-
ability and potentially pinpoint more relevant target 
genes or metabolites, thereby improving overall clas-
sification performance. (b) In high-throughput stud-
ies such as microarray and RNA sequencing, where the 
number of expressed genes is substantial (e.g., 20–50 K), 
not all genes may be associated with the outcome vari-
able of interest. Therefore, selecting “important” features 
can reduce dimensionality and alleviate computational 
burden. (c) To individually target specific gene sets, it is 
essential to identify genes with greater significance (i.e., 
lower p values).

In our analysis, we utilized filter-based methods relying 
on univariate selection. In addition, we have used LASSO 
and EN based methods, which automatically select fea-
tures based on regularization. Feature selection resulted 
in large differences between microarray experiment 
final classification performances, and some differences 
between lipidomics experiments (although all lipidomics 
experiments scoring high). Despite these differences, this 
study was to compare GAN and SMOTE/RO, in which 
the impact of LASSO and EN feature selection reported 
little evidence of benefiting some class-balancing tech-
niques over others. Despite this, these experiments 
demonstrate the importance of selecting an appropriate 
feature selection method when using the above methods.
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Conclusions
A GAN-based generative method has been designed 
to improve performance when using very small sample 
sizes. Evidence of improved performance, in the use of 
smaller, more complex data, over more naive approaches 
such as SMOTE and RO were found when training a 
‘HistGradientBoostingClassifier’ and SVC on the bal-
anced data, as well as some evidence to suggest improve-
ments in performance compared to a classic WGAN-WP 
[21].
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