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Abstract: Dynamic functional network connectivity (dFNC) analysis is a widely used approach for 13 

studying brain function and offering insight into how brain networks evolve over time. Typically, dFNC 14 

studies utilized fixed spatial maps and evaluate transient changes in coupling among time courses 15 

estimated from independent component analysis (ICA). This manuscript presents a complementary 16 

approach that relaxes this assumption by spatially reordering the components dynamically at each 17 

timepoint to optimize for a smooth gradient in the FNC (i.e., a smooth gradient among ICA connectivity 18 

values). Several methods are presented to summarize dynamic FNC gradients (dFNGs) over time, 19 

starting with static FNC gradients (sFNGs), then exploring the reordering properties as well as the 20 

dynamics of the gradients themselves. We then apply this approach to a dataset of schizophrenia (SZ) 21 

patients and healthy controls (HC). Functional dysconnectivity between different brain regions has been 22 

reported in schizophrenia, yet the neural mechanisms behind it remain elusive. Using resting state fMRI 23 

and ICA on a dataset consisting of 151 schizophrenia patients and 160 age and gender-matched healthy 24 

controls, we extracted 53 intrinsic connectivity networks (ICNs) for each subject using a fully automated 25 

spatially constrained ICA approach. We develop several summaries of our functional network 26 

connectivity gradient analysis, both in a static sense, computed as the Pearson correlation coefficient 27 

between full time series, and a dynamic sense, computed using a sliding window approach followed by 28 

reordering based on the computed gradient, and evaluate group differences. Static connectivity analysis 29 

revealed significantly stronger connectivity between subcortical (SC), auditory (AUD) and visual (VIS) 30 

networks in patients, as well as hypoconnectivity in sensorimotor (SM) network relative to controls. 31 

sFNG analysis highlighted distinctive clustering patterns in patients and HCs along cognitive control 32 

(CC)/ default mode network (DMN), as well as SC/ AUD/ SM/ cerebellar (CB), and VIS gradients. 33 

Furthermore, we observed significant differences in the sFNGs between groups in SC and CB domains. 34 

dFNG analysis suggested that SZ patients spend significantly more time in a SC/ CB state based on the 35 

first gradient, while HCs favor the SM/DMN state. For the second gradient, however, patients exhibited 36 

significantly higher activity in CB domains, contrasting with HCs’ DMN engagement. The gradient 37 

synchrony analysis conveyed more shifts between SM/ SC networks and transmodal CC/ DMN networks 38 

in patients. In addition, the dFNG coupling revealed distinct connectivity patterns between SC, SM and 39 

CB domains in SZ patients compared to HCs. To recap, our results advance our understanding of brain 40 

network modulation by examining smooth connectivity trajectories. This provides a more complete 41 

spatiotemporal summary of the data, contributing to the growing body of current literature regarding the 42 
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functional dysconnectivity in schizophrenia patients. By employing dFNG, we highlight a new 43 

perspective to capture large scale fluctuations across the brain while maintaining the convenience of brain 44 

networks and low dimensional summary measures. 45 

Keywords: Dynamic functional network connectivity (dFNC), Gradient, Dynamic functional network 46 

connectivity gradient (dFNG), Independent Component Analysis (ICA), Schizophrenia 47 

1. Introduction 48 

Functional connectivity (FC) refers to the functional coactivation of brain activity between spatially 49 

segregated brain regions regardless of their apparent physical connectedness [1]. FC is most often 50 

measured during resting state fMRI as a statistical relationship (e.g., correlation) based on temporal 51 

similarities to study functional brain networks [1],[2],[3]. Building on the same concept, functional 52 

network connectivity (FNC), refers to the interaction between spatially separable, overlapping, 53 

temporally coherent brain networks (also known as intrinsic connectivity networks or ICNs) [4]. 54 

Traditionally, functional connectivity assumes a constant connectivity pattern over the data acquisition 55 

time period [5]. However, dynamic functional connectivity analysis has shown that far from being static, 56 

the functional networks captured with fMRI reveal brain fluctuations on the scale of seconds to minutes. 57 

These changes are often summarized as movements from one short term state to another, rather than 58 

continuous shifts [5], though such measures can also be easily represented via smoothly varying 59 

transitions [6], or as overlapping dynamic movies [7]. Dynamic functional connectivity has also 60 

demonstrated that the blood oxygenation level dependent (BOLD) signals measured during resting state 61 

include important spatio-temporal dynamic properties [8],[9]. Many studies have replicated such 62 

reproducible patterns of network activity that move throughout the brain [5], [9],[10]. 63 

The emergence of dynamic functional connectivity has revolutionized our ability to study underlying 64 

brain systems by providing information about the temporal changes in brain connectivity and various 65 

types of brain dynamic properties [9]. There has been a growing interest in studying the temporal 66 

reconfiguration of brain functional connectivity suggesting that the spatial and temporal properties of 67 

neural activity interact through several spatiotemporal scales [11],[12]. The spatial dynamics of the brain 68 

constitute a multifaceted domain of inquiry within neuroscience. These dynamics pertain to the intricate 69 

patterns of functional connectivity and organization that underlie cognitive processes and behaviors 70 

[9],[13]. Functional networks, composed of spatially distributed brain regions, form the basis of these 71 

dynamics, and their organization reflects the underlying neural architecture [13]. Understanding the 72 

spatial dynamics of the brain is pivotal not only for advancing our fundamental knowledge of brain 73 

function but also for elucidating the pathophysiology of neurological and psychiatric conditions. 74 

Alongside these endeavors, recent years have witnessed empirical studies focused on a novel 75 

approach investigating the temporally static spatial topography of brain connectivity known as spatial 76 

gradients [14]. Recent research has also underscored the importance of cortical gradients [14], which 77 

reveal smooth transitions in connectivity patterns across the cortex. These gradients provide valuable 78 

insights into the spatial organization of the brain's functional networks, shedding light on their interplay 79 

and facilitating the identification of individual differences and alterations associated with neurological 80 

disorders [15],[16]. Adopting a macroscale perspective on cortical organization has already provided 81 

insights into how cortex-wide patterns relate to cortical dynamics [17]. 82 

Building upon this understanding, we propose two innovative approaches in our study. Firstly, we 83 

introduce subject-specific reordering of independent component analysis (ICA) networks (i.e., ICNs) 84 

based on the inter-component functional connectivity gradient (i.e., FNG). Cortical gradients help us 85 

understand the spatial organization of functional connectivity patterns across the brain. The use of low-86 
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dimensional representations of functional connectivity provides a unified perspective to efficiently 87 

explain core organizing properties of the human cerebral cortex, linking specific regions, networks, and 88 

functions. Cortical gradients establish a framework to study brain organization and the covariation 89 

between spatial and temporal factors [15] through quantifying topographic principles of macroscale 90 

organization [18], thus providing insight into brain organization in healthy individuals as well as in 91 

individuals with mental disorders [19]. By leveraging higher order statistics and spatial constraints, we 92 

automatically separate canonical networks and subsequently re-order them based on smooth gradients at 93 

the individual subject level. To put it simply, we initially identify the well-known brain networks, and 94 

then, we organize them in a way that ensures a seamless and gradual transition between these networks 95 

using gradients, all while considering the unique connectivity patterns of each individual subject's brain. 96 

This process allows us to create a more personalized and precise understanding of how these brain 97 

networks function in each person, considering individual variability. These two strategies are 98 

complementary, as ICA naturally identifies and separates reliable and replicable overlapping spatial 99 

networks (regardless of their topological smoothness) using higher order statistics, whereas gradient 100 

approaches focus on smoothly varying patterns which are typically orthogonal and ordered by variance. 101 

This joint approach enables a more spatially precise and personalized characterization of brain 102 

connectivity patterns while also leveraging higher order statistics in the original network determination. 103 

Secondly, we present the novel concept of dynamic gradient reordering, recognizing the need to study 104 

how the brain's functional organization changes over time. Most dynamic functional network studies 105 

assume fixed spatial maps and evaluate transient changes in coupling among independent component 106 

time courses [4],[20]. In contrast, cortical gradients offer an insight into the smooth and continuous 107 

transition of states across the brain by representing brain connectivity in a continuous, low-dimensional 108 

space to identify the brain functional hierarchies. Furthermore, they identify spatially distributed patterns 109 

of connectivity which reflect the underlying architecture of the brain [14], and how it dynamically 110 

reconfigures in response to different cognitive process, suggesting that the temporal dynamics tend to be 111 

shaped by the functional geometry [21]. By examining the dynamic nature of cortical gradients, we aim to 112 

open a window into the temporal dynamics of atypical macroscale organization across clinical conditions 113 

and provide insights into the flexibility and adaptability of brain networks. These innovations can 114 

potentially pave the way for a comprehensive investigation of the spatiotemporal organization of the 115 

human brain, offering a deeper understanding of its functional dynamics and potential implications for 116 

various neurological and psychiatric conditions.  117 

In addition, incorporating both spatial and temporal properties into the summarization step of 118 

functional connectivity analysis can be especially important in the context of complex mental illnesses 119 

such as schizophrenia since the dynamic nature of brain disruptions can be captured, accounting for 120 

inter-individual variability, and monitoring of treatment responses, thus offering comprehensive insights 121 

into the disorder's pathophysiology and potential biomarkers. Schizophrenia is one of the most 122 

debilitating psychiatric disorders characterized by hallucinations, delusions, and disordered thinking 123 

[22],[23],[24]. A growing body of evidence supports alterations in functional connectivity within and 124 

between brain networks associated with the illness [20],[23],[25]. 125 

Traditional static functional connectivity analyses using task-based and resting-state functional 126 

magnetic resonance imaging have provided valuable insights into the aberrant connectivity associated 127 

with schizophrenia [26],[27]. These studies have identified disrupted connectivity within and between 128 

different functional networks, including the default mode network, salience network and executive 129 

control network [28]. However, these approaches have used static functional connectivity, ignoring 130 

different states of brain dynamics. Furthermore, the alterations in task-related connectivity are often 131 

related to impaired task performance since it presents a challenge in interpreting the nature of the 132 
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relationship between altered brain connectivity and impaired task performance. For instance, it may be 133 

unclear whether the observed alterations in connectivity are specific to the task being performed or are 134 

indicative of a more generalized disruption in brain function. 135 

Previous approaches to resting state dynamic functional connectivity in schizophrenia have shown 136 

significantly stronger connectivity between the thalamus and sensory network, and reduced connectivity 137 

between putamen and sensory network [20],[24],[4]. However, most existing studies regarding 138 

schizophrenia focus on specific brain regions or networks rather than the whole brain or disregard the 139 

dynamic properties of the brain. 140 

In the context of schizophrenia, applying gradient-based approaches to dynamic functional network 141 

connectivity analysis holds great potential for expanding our understanding of the disorder [19]. By 142 

exploring the dynamic functional network connectivity gradients (dFNGs), we aim to uncover links 143 

between schizophrenia and the hierarchical organization and transition of functional brain networks. 144 

In this study we propose a novel approach, which aims to investigate the temporal dynamics of 145 

functional network connectivity gradients, and we explore the alterations in connectivity gradients in a 146 

group of individuals with schizophrenia (SZ) in comparison with healthy controls (HC) matched with the 147 

patients in terms of mean age and gender distribution. To our knowledge, no fMRI studies have focused 148 

on the dynamics of the whole brain organization using a gradient-based approach, nor have they 149 

combined smoothly varying gradients with whole brain networks defined via ICA. To this end, we first 150 

compute the reordered FNC in static and dynamic sense, ordered by the variance explained in the initial 151 

functional connectivity matrix. The proposed method then uses k-means clustering to cluster the 152 

reordered dFNG into a set of distinct states, and computes several global dynamic metrics that are 153 

compared between groups.  154 

 155 

 156 

2. Materials and Methods 157 

2.1.  Participants 158 

We evaluate our framework on resting-state functional magnetic resonance imaging (rs-fMRI) data 159 

from a cohort consisting of 160 healthy controls (115 males, 45 females, mean age 37.03) and 151 160 

individuals with schizophrenia (115 males, 36 females, mean age 38.76) with similar mean age and 161 

gender distribution. The subjects were recruited across seven different sites in the United States as a part 162 

of the Functional Imaging Biomedical Informatics Research Network. All patients included in the study 163 

had been diagnosed with schizophrenia based on the Structured Clinical Interview for DSM-IV-TR Axis I 164 

Disorders (SCID-I/P). Exclusion criteria for both schizophrenia patients and healthy volunteers included a 165 

history of major medical illness, contraindications for MRI, poor vision even with MRI compatible 166 

corrective lenses, an IQ less than 75, a history of drug dependence in the last five years, or a current 167 

substance abuse disorder. Patients with extrapyramidal symptoms and healthy volunteers with a current 168 

or past history of major neurological or psychiatric illness (SCID-I/NP) or with a first-degree relative with 169 

Axis-I psychotic disorder diagnosis were also excluded. All the participants provided written informed 170 

consent prior to scanning in accordance with the Internal Review Boards of corresponding institutions 171 

(University of California Irvine, University of California Los Angeles, University of California San 172 

Francisco, Duke University/University of North Carolina, University of New Mexico, University of Iowa, 173 

and University of Minnesota).   174 

 175 

 176 
 177 
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2.2. Neuroimaging Data and Preprocessing 178 

Imaging data were acquired on a Siemens Tim Trio 3T scanner at six, and on a 3T General Electric 179 

Discovery MR750 scanner at one of the seven sites. A total of 162 volumes of BOLD rs-fMRI were 180 

collected using echo planner imaging sequences (TR/TE = 2s/ 30ms, FOV = 220 mm, FA = 77°, 32 181 

sequential ascending axial slices of 4 mm thickness with 1 mm gap). All participants were instructed to 182 

keep their eyes closed during the scanning.  183 

rs-fMRI data were preprocessed using the statistical parametric mapping 184 

(SPM12, http://www.fil.ion.ucl.ac.uk/spm/) toolbox within Matlab 2020b. The first five scans were 185 

removed for the signal equilibrium and participants’ adaptation to the scanner’s noise. We performed 186 

rigid body motion correction using the toolbox in SPM to correct subject head motion, followed by the 187 

slice-timing correction to account for timing differences in slice acquisition. The rs-fMRI data were 188 

subsequently warped into the standard Montreal Neurological Institute (MNI) space using an echo-189 

planar imaging (EPI) template and were slightly resampled to 3 × 3 × 3 mm isotropic voxels. The 190 

resampled fMRI images were further smoothed using a Gaussian kernel with a full width at half 191 

maximum (FWHM = 6 mm). 192 

 193 

2.3. Spatially Constrained Independent Component Analysis 194 

Independent component analysis (ICA) is a data-driven method capable of recovering a set of 195 

maximally independent sources from multivariate data [29]. ICA is a widely-used exploratory tool to 196 

study functional brain networks [29]. However, one of the challenges of the standard ICA approach is 197 

“order ambiguity”, which indicates that the order of the independent components (ICs) estimated by the 198 

standard ICA is arbitrary [30]. Additional prior information can contribute to the solution to this 199 

problem. Spatially constrained independent component analysis uses anatomical priors or templates to 200 

extract functional brain networks that are similar predetermined templates and maximally independent 201 

[31]. Spatially constrained ICA is thus a hybrid approach which allows individual subject ICA analysis 202 

while also providing component ordering and correspondence among subjects. This approach leverages 203 

the inherent spatial information to guide the decomposition of functional data into meaningful spatially 204 

coherent components [31], [32]. 205 

After data preprocessing, the functional data for both control and patient groups were analyzed using 206 

spatially constrained ICA employing the Neuromark fMRI 1.0 template as implemented in the GIFT 207 

toolbox (http://trendscenter.org/software/gift) [8], resulting in 53 intrinsic connectivity networks (ICNs). 208 

The Neuromark fMRI 1.0 is an automatic ICA-based template (downloadable from 209 

http://trendscenter.org/data) that enables estimation of brain functional networks from functional 210 

magnetic resonance imaging to identify reproducible fMRI markers of brain disorders [33]. The ICNs are 211 

partitioned into seven subcategories: subcortical (SC), auditory (AUD), visual (VIS), sensorimotor (SM), 212 

cognitive control (CC), default mode network (DMN) and cerebellar (CB) components (see Figure 1). 213 
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 214 
Figure 1. Composite maps of the 53 identified intrinsic connectivity networks (ICNs), divided into seven functional domains. 215 
subcortical (SC), auditory (AUD), sensorimotor (SM), visual (VIS), cognitive control (CC), default mode network (DMN) and 216 
cerebellar (CB) network. 217 

2.4. Functional Network Connectivity Gradients 218 

We computed the static functional network connectivity (sFNC), described as the covariation between 219 

ICN full timeseries for each subject, resulting in a 53x53 matrix. Gradients along the sFNC space were 220 

computed using the diffusion map approach [18] implemented within the BrainSpace toolbox 221 

(https://brainspace.readthedocs.io/en/latest/), which generates efficient representation of complex 222 

geometric structures [34], followed by resorting the matrix based on its gradient value. A gradient is an 223 

axis of variance along which areas fall in a spatially continuous order [18]. Areas that resemble each other 224 

with respect to the feature of interest occupy similar positions along the gradient [35]. Using a diffusion 225 

map embedding algorithm that reduces data dimensionality through the nonlinear projection of the 226 

vertices into an embedding space, we identified gradient components, estimating the low-dimensional 227 

embedding from the high-dimensional connectivity matrix.  228 

Sub-cortical (SC: 5) 

 
X= -14.5 mm                      Y= -0.5 mm                      Z= 3.5 mm 

Auditory (AUD: 2) 

                       
X= 44.5 mm                    Y= -16.5 mm                     Z=13.5 mm 

Sensorimotor (SM: 9) 

            
X= 32.5 mm                     Y= -16.5 mm                    Z= 55.5 mm 

Visual (VIS: 9) 

 
X= -35.5 mm                     Y= -74.5 mm                    Z= -10.5 mm 

Cognitive control (CC: 17) 

 
X= -20.5 mm                     Y= 41.5 mm                    Z= 28.5 mm 

Default-mode network (DMN: 7) 

 
X= 13.5 mm                     Y= -46.5 mm                     Z= 28.5 mm 

Cerebellar (CB: 4) 

 
X= 20.5 mm                     Y= -67.5 mm                       Z= -37.5 mm 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2024. ; https://doi.org/10.1101/2024.03.06.583731doi: bioRxiv preprint 

https://brainspace.readthedocs.io/en/latest/
https://doi.org/10.1101/2024.03.06.583731
http://creativecommons.org/licenses/by-nc-nd/4.0/


Recent empirical studies propose a non-static nature of functional connectivity among different brain 229 

regions [9]. To date, the most widely used strategy for examining dynamics in resting state functional 230 

network connectivity has been a sliding window approach [8],[5],[10]. This approach involves dividing a 231 

continuous timeseries of brain activity into overlapping or non-overlapping windows of fixed duration. 232 

By sliding the window along the timeseries, functional connectivity can be computed within each 233 

window, capturing the temporal evolution of brain dynamics [8],[10],[36]. Windowed functional network 234 

connectivity (windowed-FNC) is computed for each subject using a sliding window approach with a 235 

window size of 44 seconds (22 TRs) and strides of 2 seconds (1 TR) [10]. Similar to the static analysis, 236 

cortical gradients were computed for each windowed-FNC using the BrainSpace toolbox and reordered 237 

subsequently using the diffusion map associated with each time window.  238 

Furthermore, we also developed an approach to track the reordering trajectory, allowing us to create 239 

an inter-component ordering synchrony associated with each component for each subject. In our 240 

analytical procedure, we begin by generating a sort order matrix for each subject, providing information 241 

on the ordering of independent component networks (ICNs), capturing the temporal dynamics of ICN 242 

reordering. To assess the level of synchronization across these dynamic changes, we compute cross-243 

correlations across all time lags, followed by extracting the maximum of all lags. This extracted value is 244 

subjected to a comparative analysis, allowing us to discern potential differences in the temporal 245 

reconfiguration of ICNs between patients and control subjects. 246 

2.5. Clustering and Dynamic Functional Network Connectivity Gradient Measures 247 

We used k-means algorithm to cluster the dFNG timepoints, partitioning the data into five distinct 248 

clusters. The optimal number of clusters was estimated using the elbow criterion, consisting of 249 

computing the explained variance as a function of the number of clusters and picking the elbow of the 250 

curve [20]. The whole procedure is depicted in Figure 2. k-means clustering is a widely used 251 

unsupervised algorithm, aimed to partition a given dataset into k distinct clusters based on the similarity 252 

of data points. The core concept of k-means clustering involves finding the centroids of k clusters and 253 

assigning the data points to the nearest centroid. 254 

Each FNC gradient represents a weighted combination of the component maps; however, the 255 

computed gradients should be corrected for sign ambiguity, since the gradients computed separately 256 

from different individuals may not be directly comparable due to sign ambiguity of the eigenvectors. To 257 

this end, we utilize group-average gradient matrix as a reference and reverse the sign of each gradient to 258 

induce positive correlation before applying clustering analysis. To visualize the weighted combination of 259 

the component maps, a spatial map for static functional connectivity gradient (sFNG) was created by 260 

thresholding and normalizing each component map (i.e., the largest voxel value equal to one), multiplied 261 

by its sign-corrected gradient value and summing them together. We then repeat for all windows to 262 

create the dFNG spatial maps. Using the gradient vectors associated with each time point and each 263 

subject as the input to k-means clustering, we identified clusters with similar sorting profiles and used 264 

the normalized cluster centroids as the weight for the component maps to create spatial maps. 265 

Complementary to examining dynamic changes in connectivity patterns, typical dynamic summary 266 

measures [8] such as occupancy, dwell time, and periodicity were calculated to capture the key aspects of 267 

dFNG. Occupancy refers to the amount of time a brain network spends in a particular state or 268 

configuration over the course of a given period, quantifying the number of timepoints each subject 269 

spends in each state, providing insight into the stability of a functional state. Dwell time refers to the 270 

duration or amount of time that a brain network remains in a specific state or configuration before 271 

transitioning to another state, reflecting the temporal persistence of a particular functional state. 272 

Periodicity, however, allows us to assess the oscillatory behavior across brain states.  273 
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 274 

 275 

Figure 2. Schematic depicting the proposed method. The fMRI data was preprocessed using standard procedures, and then spatially 276 
constrained ICA was run on the data using the Neuromark fMRI 1.0 template, resulting in 53 ICNs. Next, FNC was calculated using 277 
sliding window approach. A diffusion map (gradients) was computed for each windowed-dFNC. Each dFNC matrix was reordered 278 
based on its gradient, followed by k-means clustering of the reordered dFNC. This resulted in 5 dynamic FNC gradients (dFNGs). 279 

 280 

3. Results 281 

We propose a novel approach to leverage the use of higher-order statistics to capture brain networks, 282 

coupled with the calculation of gradients to identify a network ordering which maximizes the 283 

smoothness in the connectivity. This is then extended to a dynamic connectivity approach, capturing the 284 

changes in connectivity over time. We also propose several summary measures and compare these 285 

between schizophrenia patients and healthy controls. 286 

 287 

3.1. Group Differences in static Functional Network Connectivity Gradient (sFNG) 288 

After computing the sFNC for each subject, defined as the temporal correlation between ICNs full 289 

time courses, as well as the sFNG, the average sFNC and sFNG for 151 schizophrenia patients (SZ) and 290 

that of 160 healthy controls (HC) are computed. Differences in sFNC and sFNG between schizophrenia 291 

patients (SZ) and healthy controls (HC) were assessed via two-sample t-test. Figure 3 is illustrative of the 292 

average of original sFNC for all subjects (a) and the average of reordered FNC based on gradient 1 (b) 293 

and gradient 2 (c). 294 
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 295 

Figure 3. The average of a) original static FNC, b) reordered FNC based on gradient 1, and c) reordered FNC based on gradient 2. 296 

 297 
 298 

The average of the sign-corrected cortical gradients was computed for patient (SZ) and control (HC) 299 

groups and plotted in 2D space and assigning them color. These colors can be informative about the 300 

multidimensional interaction between gradients. For HC the three lines correspond to VIS (green), 301 

SC/AUD/SM/CC/DMN/CB (blue) and CC/DMN (red) networks. Regarding the SZ, the three lines 302 

correspond to VIS (green), SC/AUD/SM/CB (blue) and CC/DMN (red) networks. Figure 4 provides 303 

information about the first two cortical gradient interactions. 304 

 305 

(a) (b) (c) 
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 306 
Figure 4. Visualization of the interaction between the average of the first two cortical gradients for a) patients (SZ) and b) control 307 
(HC) groups in 2D view. The three dotted patterns correspond to VIS (green), SC/AUD/SM/CC/DMN/CB (blue) and CC/DMN (red) 308 
networks for HC and VIS (green), SC/AUD/SM/CB (blue) and CC/DMN (red) networks for SZ. 309 
 310 
 311 
Regarding the sFNC analysis, compared to the HC, the SZ group showed significantly stronger 312 

connectivity between SC, VIS, and SM networks, and significantly weaker connectivity between AUD, 313 

SM and VIS networks. As depicted in Figure 5, the schizophrenia patients (SZ) showed significantly 314 

weaker connectivity in the subcortical (SC) and cerebellar (CB) domains when compared to controls. 315 

(a
) 

 

 

(b
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316 
Figure 5. a) The average reordered FNC based on the first gradient associated with schizophrenia patients (SZ), b) the group 317 
differences between schizophrenia patients (SZ) and healthy controls (HC) defined as −10	 log!"(𝑝𝑣𝑎𝑙𝑢𝑒) × 𝑠𝑖𝑔𝑛(𝑡𝑣𝑎𝑙𝑢𝑒), and c) the 318 
spatial map associated with the difference between HC and SZ. Regarding the sFNG analysis, the SZ group showed 319 
hypoconnectivity in subcortical (SC) and cerebellar (CB) domains. 320 
 321 
 322 

3.2. Group Differences in dynamic Functional Network Gradients (dFNG) 323 

Figure 6 represents the k-means cluster centroids associated with dFNC, and dFNGs based on the first 324 

and second gradient. A two-sample t-test was applied to investigate the difference in occupancy and 325 

dwell time of each state.  326 

 327 

 328 

(a) (c) 

 

 

(b) 
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 329 
Figure 6. Schematic depicting the state transition (cluster centroids) for a) original dFNC, b) dFNG based on gradient #1, and c) 330 
dFNG based on gradient #2.  331 
 332 

As is evident in Tables 1 and 2, regarding the dFNG based on the first gradient, the patients (SZ) tend 333 

to spend significantly higher duration in state 4 (CB), yet the HCs show a significantly higher occupancy 334 

and dwell time in state 3 (SM). However, the second gradient results showed a significantly higher 335 

occupancy of the HC group in state 5 (DMN), whereas the SZs spent significantly longer duration in state 336 

1 (CB). All significant results are shown in bold, with those survived after FDR correction are identified 337 

with an asterisk.  338 

 339 

Table 1. Statistical Results associated with dFNG based on gradient #1 340 

dFNG (gradient #1) 
Mean Standard Deviation Statistic 

SZ HC SZ HC t-value p-value 

O
cc

up
an

cy
 State 1 (VIS) 24.8344 26.2563 12.1937 11.5368 -1.0566 0.2915 

State 2 (SC) 26.3642 22.9938 16.4458 15.2478 1.8784 0.0618 

State 3 (SM) 10.8278 21.4625 17.3154 27.5117 -4.0524 6.42e-05* 

State 4 (CB) 48.7682 38.6750 26.3351 23.1616 3.5939 3078e-04* 

State 5 (DMN) 26.2053 27.6125 12.4725 11.7093 -1.0262 0.3056 

D
w

el
l-t

im
e 

State 1 (VIS) 16.1788 17.8125 9.2413 9.2186 -1.5601 0.1198 

State 2 (SC) 24.5629 21.4563 16.4534 14.9338 1.7425 0.0824 

State 3 (SM) 10.6878 21.2688 17.1799 27.4076 -4.0513 6.44e-05* 

State 4 (CB) 46.2583 36.4125 26.6542 23.2226 3.4785 5.76e-04* 

State 5 (DMN) 17.9868 19.6313 9.6540 10.0186 -1.4725 0.1419 

* Significant at p < 0.05 FDR corrected 341 

 342 

(a
) 

State 1 State 2 State 3 State 4 State 5 

     

(b
) 

     

     

(c
) 
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Table 2. Statistical Results associated with dFNG based on gradient #2 343 

dFNG (gradient #2) 
Mean Standard Deviation Statistic 

SZ HC SZ HC t-value p-value 

O
cc

up
an

cy
 State 1 (CB) 59.4172 50.9312 21.184 19.0326 3.72 0.0002* 

State 2 (SC) 35.1324 37.3062 16.1285 16.3534 -1.1794 0.239 

State 3 (SM) 15.5496 17.3312 7.5733 7.3891 -2.0995 0.0365* 

State 4 (VIS) 15.6887 17.25 6.4406 6.6389 -2.1030 0.0362* 

State 5 (DMN) 11.2119 14.1812 7.9712 8.9659 -3.0798 0.0023* 

D
w

el
l -t

im
e  

State 1 (CB) 54.8013 45.9938 22.0436 19.7543 3.7149 0.0002* 

State 2 (SC) 32.2980 34.6125 16.1352 16.1471 -1.2638 0.2072 

State 3 (SM) 7.7682 8.7063 5.3968 5.4997 -1.5170 0.1303 

State 4 (VIS) 7.2252 8.5 4.7975 5.2974 -2.2202 0.0271* 

State 5 (DMN) 7.7947 10.6188 7.1380 8.0820 -3.2587 0.0012* 

* Significant at p < 0.05 FDR corrected 344 

 345 

Figures 7 and 8 show a surface-based visualization of the spatial maps associated with each state of 346 

dFNG based on first and second gradient respectively. We also provide a montage view of the 3D spatial 347 

maps based on the first and second gradient associated with each state in the appendix. 348 

 349 
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 350 
Figure 7. The 3D spatial maps associated with each state based on gradient #1. A spatial map of the dFNGs was created by 351 
thresholding and normalizing each component map, followed by using the normalized cluster centroids obtained from gradient #1 352 
k-means clustering as the weight for the component maps to create spatial maps. 353 
 354 
 355 

State 1 State 2 

  
State 3 State 4 

  
State 5 Cluster centroids 
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 356 
Figure 8. The 3D spatial maps associated with each state based on gradient #2. A spatial map for dFNG was created by thresholding 357 
and normalizing each component map, followed by using the normalized cluster centroids obtained from gradient #2 k-means 358 
clustering as the weight for the component maps to create spatial maps.  359 
 360 
 361 

State 1 State 2 

  
State 3 State 4 

  
State 5 Cluster centroids 
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3.3. Inter-Component Ordering Synchrony Analysis 362 

Regarding the sort order analysis, no significant differences were found in periodicity between SZ and 363 

HC. Periodicity, in this context, refers to the regularity or pattern of sort order across time. Upon closer 364 

examination of the data, a notable symmetric pattern emerged in the sort orders of both groups. This led 365 

to further investigation into the periodicity of these patterns, which revealed that despite the observed 366 

symmetry, there were no statistically significant differences in how participants with schizophrenia (SZ) 367 

and healthy controls (HC) exhibited periodicity in their sorting behaviors. 368 

However, the inter-component ordering synchrony analysis, which used to follow the trajectories of 369 

sorting orders for each independent component and subjects- capturing the changing order of these 370 

components over time- showed significant differences between groups. Initially, distinct sort order 371 

patterns emerged over time for each component. Subsequently, cross-correlation analyses were 372 

conducted to compare the sort order profiles of each component within each subject, between the two 373 

groups. This method allowed for the examination of the degree of similarity in the organization of items 374 

over time, providing insights into the underlying cognitive processes and potential differences between 375 

subjects diagnosed with schizophrenia and healthy controls. Figure 9 revealed the dynamic gradient 376 

ordering vectors associated with one of the healthy controls and the inter-component ordering synchrony 377 

plot for component #53. 378 

 379 
Figure 9.  (top) Dynamic gradient ordering vectors for a healthy subject (bottom), dynamic gradient ordering associated with 380 
component #53 (middle), and the associated inter-component ordering synchrony plot for component #53. 381 

 382 

 383 

Figure 10 provides information about the difference between schizophrenia patients (SZ) and healthy 384 

controls (HC) in terms of inter-component ordering synchrony. The middle components (DMN/CC/SM) 385 

showed significantly higher values in healthy controls in comparison with patients; however, the cross 386 

correlation between the end components (SC/CB) were significantly lower in schizophrenia patients. 387 
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 388 
Figure 10.  The group difference map associated with inter-component ordering synchrony plot defined as − log!"(𝑝value) 	×389 
	sign	(tstatistics) for a) gradient #1 and b) gradient #2. After demeaning and smoothing the index order to create inter-component 390 
ordering synchrony plot associated with each component for each subject, the cross correlation across all lags is computed, followed 391 
by taking the maximum lag for each subject and comparing between patients and healthy controls. The DMN/CC/SM showed 392 
significant higher value in healthy controls in comparison with patients, however, the cross correlation between end components 393 
(SC/CB) were significantly lower in schizophrenia patients. 394 
 395 
 396 

The dwell time/occupancy results for the first and second gradient is provided in Table 3 and 4. After 397 

computing the gradients followed by k-means clustering, the dwell time and occupancy associated with 398 

each state is computed. A two-sample t-test is applied to investigate the group differences. All significant 399 

results are shown in bold, with those survived after FDR correction are identified with an asterisk.  400 

 401 

 402 

Table 3. Statistical Results associated with unsigned gradient #1 403 

gradient #1 
Mean Standard Deviation Statistic 

SZ HC SZ HC t-value p-value 

O
cc

up
an

cy
 State 1 (VIS) 40.8278 45.0937 32.6271 28.5149 -1.2295 0.219 

State 2 (SC) 15.2582 21.8187 15.1078 19.2438 -3.3309 0.0009* 

State 3 (SM) 26.8145 22.8125 23.9792 17.7112 1.6806 0.093 

State 4 (CB) 12.298 19.25 15.4578 19.8988 -3.4267 0.0006* 

State 5 (DMN) 41.8013 28.025 31.5480 24.7236 4.2992 2.3 e-05* 

D
w

el
l-t

im
e  

State 1 (VIS) 39.9337 44.0375 32.5245 28.600 -1.1832 0.237 

State 2 (SC) 14.1589 20.5875 14.9381 19.0726 -3.2961 0.001* 

State 3 (SM) 25.8543 21.9187 23.7532 17.5531 1.6681 0.096 

State 4 (CB) 11.6622 18.3937 15.24680 19.6023 -3.3667 0.0008* 

State 5 (DMN) 40.5761 26.9937 31.6253 24.6069 4.2403 2.95 e-05* 

* Significant at p < 0.05 FDR corrected 404 
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Table 4. Statistical Results associated with unsigned gradient #2 405 

gradient #2 
Mean Standard Deviation Statistic 

SZ HC SZ HC t-value p-value 

O
cc

up
an

cy
 State 1 (CB) 18.0132 22.1750 16.6741 16.6089 -2.2043 0.028* 

State 2 (SC) 26.0198 23.7687 15.6087 14.7976 1.3056 0.192 

State 3 (SM) 29.8410 28.2125 16.5328 14.7573 0.9175 0.3595 

State 4 (VIS) 28.7483 32.8375 15.0891 14.2770 -2.4557 0.014* 

State 5 (DMN) 34.3774 30.00625 16.6247 16.0335 2.3603 0.018* 

D
w

el
l -t

im
e  

State 1 (CB) 16.5232 20.4813 16.2693 16.1654 -2.1513 0.0322 

State 2 (SC) 23.7881 21.4063 15.5395 14.5811 1.3945 0.1642 

State 3 (SM) 27.5828 26.0125 16.1610 14.5226 0.9022 0.3676 

State 4 (VIS) 26.5430 30.40 15.0806 14.4545 -2.3029 0.0219 

State 5 (DMN) 31.4305 27.2688 16.6259 15.7671 2.2657 0.0242 

* Significant at p < 0.05 FDR corrected 406 

 407 

The cross correlation between the cluster centroids (states) were also computed for HC and SZ. Figure 408 

11 provide information about the difference in correlation between the gradient centroids. The HC-SZ 409 

plot showed that the connectivity between the second centroid (SC) with SM and CB is positive in 410 

controls and negative in patients for both the third centroid (SM) and the fourth centroid (CB). 411 

 412 

413 
 414 
Figure 11.  The cross correlation between cluster centroids for a) healthy controls (HC), b) patients with schizophrenia (SZ), and c) 415 
healthy controls – patients (HC – SZ). The HC-SZ map is representative of the positive connectivity between the second centroid 416 
with SM and CB in controls and negative connectivity in patients for both the third centroid (SM) and the fourth centroid (CB). 417 
 418 

4. Discussion 419 

Recent empirical studies report on the temporal reconfiguration of functional connectivity and 420 

dynamic properties of the brain [9],[37]. Their findings suggest that the spatial and temporal properties of 421 

neural activity interact on several spatiotemporal scales [5],[9]. This has encouraged the development of 422 

new approaches focused on temporally static spatial topography (e.g., spatial cortical gradients) of brain 423 

connectivity [15],[38],[39]. Gradient-based approaches provide an organizational framework for 424 

capturing the complex large-scale structural and functional organization of the brain [39],[40]; However, 425 

a) b) c) 
HC SZ HC-SZ 
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brain activity is ever changing and the functional topography may change accordingly [41]. Furthermore, 426 

there has not yet been a focus on studying the degree to which these gradients might fluctuate over a 427 

short time frame, and how this might provide insights into the spatio-temporal behavior of fMRI data 428 

and its application to understand the pathophysiology of schizophrenia. 429 

This study highlights the potential of dFNGs as a new method for understanding the spatiotemporal 430 

dynamics of brain and dysfunction. We investigate the smooth transitions caused by dFNGs from ICNs, 431 

as well as sFNG. In parallel with the proposed approach, the effects of cortical gradient were also studied 432 

in a group of 151 individuals with schizophrenia (SZ) in comparison with age and gender-matched 433 

healthy controls (HC). Our main findings are that: 1) multidimensional interactions of the first two 434 

gradients are clustered along three networks of CC/ DMN, SC/ AUD/ SM/ CB and VIS in both SZ (Figure 435 

4a) and HC (Figure 4b); 2) that sFNG differ in the SC, CB, and DMN between SZ and HC; 3) that 436 

occupancy of state 4 (CB) is higher in SZ compared to HC based on the first cortical gradient, 4) that 437 

occupancy of state 1 (CB) is higher in SZ comparison to HC based on the second cortical gradient; 5) that 438 

compared to HC, SZ shift more between the end (SC/ SM) and middle components (CC/ DMN) based on 439 

the inter-component ordering synchrony analysis, and 6) there is positive connectivity between the 440 

second centroid with SM and CB region in HC, and negative connectivity for both the third (SM) and 441 

forth centroids (CB) in SZ based on the gradient centroids cross correlation analysis. 442 

These findings suggest that sFNG and dFNG can aid in characterizing differences in the global 443 

organization of functional brain networks, and dynamic changes in brain connectivity between SZ and 444 

HC, respectively. Dynamic analyses have revealed fluctuations in gradient strength and variability over 445 

time, reflecting the flexible reconfiguration of brain networks. In addition to the emerging consensus that 446 

gradients may represent important patterns of intrinsic brain organization [21],[40], it remains to be 447 

investigated how far these patterns constrain state-to-state variation in brain function.  In line with 448 

previous task-evoked studies, the magnitude of regional activity is high in unimodal networks (e.g., 449 

primary sensorimotor regions), but low in transmodal regions (e.g., DMN) in healthy controls [40]. Also 450 

pointing to hierarchy-dependent shifts in localized vs distributed processing. Recent advances in 451 

neuroimaging methods enable us to use cortical gradients as a dimensionality reduction method. 452 

Gradient approaches have been able to find the main axes of variance in the data through embedding 453 

techniques. The original dimensions of the data are replaced by a set of new dimensions, so that most of 454 

the variance in the data is captured by just a few of these dimensions [40],[42]. Each dimension is a large-455 

scale cortical gradient. To put it simply, each dimension can be representative of one aspect or network of 456 

cortical organization. In line with our results regarding the multidimensional interaction between the 457 

computed gradients which seems to be aligned along three domains of VIS, SC/AUD/SM/CB and 458 

CC/DMN networks. Furthermore, utilizing dynamic rs-fMRI analysis, Yousefi and colleagues 459 

demonstrate how intrinsic functional activity propagates along macroscale functional gradients [43], 460 

suggesting that these axes may play a role in constraining functional dynamics.  461 

The observed differences between SZ and HC in SC, CB, and DMN extend recent reports using ICA 462 

[20],[22],[44]. By investigating the whole brain functional connectivity, stronger connectivity between the 463 

thalamus and sensory networks (auditory, motor and visual), as well as weaker connectivity between 464 

sensory networks were reported [20]. Using seed-based connectivity, Woodward and colleagues also 465 

reported stronger functional connectivity between the subcortical and somatosensory regions in patients 466 

with schizophrenia compared to healthy controls [45]. Our sFNG results also suggest the weaker 467 

connection between SC and CB ICNs in patients. This, apparently novel, finding is present in data. The 468 

identification of this group difference, along with connectivity differences related to subcortical areas, 469 

speaks to the strength of our whole-brain, data-driven approach, which is not limited by the selection of 470 

any specific region of interest.  471 
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Using a dynamic analysis based on sliding windows and k-means clustering of cortical gradients, we 472 

identified five different states (Figure 7 and 8). We found that SZ, compared to HC, spend significantly 473 

longer duration in state 2 and 4, as well as 1 and 4, based on gradient 1 and gradient 2 respectively, which 474 

are associated with SC, CB and VIS. These findings are consistent with those from prior studies which 475 

have identified reproducible neural states in a data-driven manner and demonstrated that the strength of 476 

connectivity within those states differed between SZs and HCs [44]. 477 

4.1. Limitations 478 

While the presented study offers valuable insights into brain network dynamics using a novel 479 

approach of dynamic functional network connectivity gradient analysis, several limitations should be 480 

acknowledged. First, the generalizability of the findings may be constrained by the specific dataset 481 

utilized, consisting of 151 schizophrenia patients and 160 age and gender-matched healthy controls. 482 

Larger and more diverse samples could provide a broader representation of the population and enhance 483 

the robustness of the results. Furthermore, due to the use of the cross-sectional research design, we did 484 

not establish the developmental trajectories of altered cortical hierarchy in schizophrenia. Future 485 

longitudinal studies may evaluate the development of cortical hierarchy in schizophrenia across time. 486 

In sum, while the study advances the field by introducing a novel approach to characterizing brain 487 

network modulation, these limitations underscore the need for further research. Addressing these 488 

challenges could enhance the reliability, validity, and clinical relevance of dFNG analyses in the context 489 

of mental disorders and beyond. 490 

5. Conclusions 491 

The present study investigated the static and dynamic functional network connectivity using spatial 492 

gradients rather than assuming fixed spatial maps for evaluating the transient changes in coupling 493 

among independent component time courses. A summary of the sFNG, the dFNG and its reordering 494 

properties, and the dynamics of the gradients themselves were evaluated. This approach was applied to a 495 

dataset of individuals with schizophrenia and healthy controls to investigate group effects of these 496 

findings as well as the ability to detect differences between individuals with a clinical diagnosis and 497 

healthy controls. Regarding the sFNG analysis the gradients interaction showed the gradient values are 498 

relatively clustered along three networks of (CC/ DMN), (SC/ AUD/ SM/ CB) and (VIS) for both 499 

schizophrenia patients (SZ) and healthy controls (HC). Significant differences in the sFNGs were 500 

observed in SC and CB regions. dFNG analysis suggests that SZ, compared to controls, spend a longer 501 

duration in cerebellar network (CB). Furthermore, the ordering index cross-correlation of each 502 

component line plot was representative of the patients shifting between the end (SC/ SM) and middle 503 

components (CC/ DMN), and the cross-correlation between the gradient centroids of healthy controls 504 

showed aberrant pattern in connectivity pattern of second centroids with DMN and SC. Finally, by 505 

employing the dFNG from ICA, we leverage both higher order statistics and spatial smoothness, to 506 

provide a more complete spatiotemporal summary of the resting fMRI data. 507 
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Appendix 514 

 515 
Figure A1.  The 2D Spatial maps associated with each state based on the gradient #1. A spatial map of the dFNG was created by 516 
thresholding and normalizing each component map, followed by using the normalized cluster centroids obtained from the gradient 517 
#1 as the weight for the component maps to create spatial maps. 518 
 519 
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 520 
 521 

 522 
Figure A2.  The 2D Spatial maps associated with each state based on the gradient #2. A spatial map of the dFNGs was created by 523 
thresholding and normalizing each component map, followed by using the normalized cluster centroids obtained from the gradient 524 
#1 as the weight for the component maps to create spatial maps. 525 
 526 
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