Table 2.
Benchmarks of the DAT QSAR models trained with the XGBoost algorithm
| release | binding Ki | |||||||
|---|---|---|---|---|---|---|---|---|
| R2 | MSE | Rp | Rs | |||||
| ChEMBL33 | 0.77 | 0.03 | 0.35 | 0.04 | 0.88 | 0.02 | 0.86 | 0.02 |
| ChEMBL31 | 0.77 | 0.04 | 0.37 | 0.06 | 0.88 | 0.02 | 0.86 | 0.03 |
| ChEMBL29 | 0.75 | 0.03 | 0.42 | 0.07 | 0.87 | 0.02 | 0.85 | 0.02 |
| ChEMBL27 | 0.74 | 0.03 | 0.43 | 0.06 | 0.86 | 0.02 | 0.85 | 0.02 |
| ChEMBL25 | 0.72 | 0.04 | 0.43 | 0.08 | 0.85 | 0.03 | 0.85 | 0.03 |
We construct 10 distinct QSAR models for each indicated ChEMBL release to mitigate any stochastic effects. For each reported metric, the first value is the average across the 10 QSAR models, which is followed by the standard deviation.