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Abstract 20 

The proliferation of single cell transcriptomics has potentiated our ability to unveil 21 
patterns that reflect dynamic cellular processes such as the regulation of gene 22 
transcription. In this study, we leverage a broad collection of single cell RNA-seq data to 23 
identify the gene partners whose expression is most coordinated with each human and 24 
mouse transcription regulator (TR). We assembled 120 human and 103 mouse scRNA-25 
seq datasets from the literature (>28 million cells), constructing a single cell 26 
coexpression network for each. We aimed to understand the consistency of TR 27 
coexpression profiles across a broad sampling of biological contexts, rather than 28 
examine the preservation of context-specific signals. Our workflow therefore explicitly 29 
prioritizes the patterns that are most reproducible across cell types. Towards this goal, 30 
we characterize the similarity of each TR’s coexpression within and across species. We 31 
create single cell coexpression rankings for each TR, demonstrating that this 32 
aggregated information recovers literature curated targets on par with ChIP-seq data. 33 
We then combine the coexpression and ChIP-seq information to identify candidate 34 
regulatory interactions supported across methods and species. Finally, we highlight 35 
interactions for the important neural TR ASCL1 to demonstrate how our compiled 36 
information can be adopted for community use. 37 

Author Summary 38 

A common way to analyze gene expression (transcriptomics) data is to correlate gene 39 
transcript levels across samples for every pair of genes (coexpression). Coordinated 40 
expression between genes may imply a shared biological function, though this warrants 41 
cautious interpretation given assumptions about cellular processes inferred from RNA 42 
abundances alone. Still, coexpression inference is often used to nominate genes whose 43 
expression may be controlled by transcription regulators (TRs). The rapid generation of 44 
diverse single cell transcriptomics data has unlocked our ability to discover 45 
coexpression patterns across individual cells — though these signals are often noisy. 46 
Reproducible patterns across studies can help distinguish meaningful biological 47 
relationships from spurious correlations. We used this study to analyze a broad 48 
collection of single cell data spanning numerous tissues in human and mouse to infer 49 
global TR coexpression patterns. We aimed to learn which interactions were generally 50 
observable, to better potentiate future examinations of reproducible coexpression in 51 
specific contexts. We evaluate the predictive performance of these global single cell 52 
coexpression rankings using independent gene regulation evidence, and highlight TR-53 
gene pairs that are supported across data modalities as well as species. By 54 
disseminating these rankings, we hope that other researchers can extract insight for 55 
their own TRs of interest.  56 
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Introduction 57 

The widespread adoption of single cell genomic methodologies, particularly single 58 
cell/nucleus RNA sequencing (herein, scRNA-seq), has significantly advanced our 59 
ability to characterize dynamic cellular processes. The scale with which scRNA-seq 60 
data has been generated has created an unprecedented opportunity to understand the 61 
reproducibility of these cellular patterns. This is important because, despite its power, 62 
scRNA-seq results in sparse gene transcript counts due to both biological and technical 63 
factors (Crow et al., 2016; Heumos et al., 2023). 64 

Gene regulation is a field that stands to greatly benefit from the single cell era. A 65 
primary objective is to map the temporal and context-specific interactions between 66 
transcription regulators (TRs) and their target genes. However, understanding the sets 67 
of genes regulated by each TR — regardless of context — remains a challenge. Despite 68 
the availability of genetic tools, linking TRs to direct gene targets is hindered by multiple 69 
factors. These include the cost and difficulty of collecting experimental data implicating 70 
direct regulation, such as TR binding information from chromatin immunoprecipitation 71 
sequencing (ChIP-seq), and the inherent complexity of the underlying biology (Lambert 72 
et al., 2018, Rothenberg 2019). 73 

Gene coexpression is a traditional and widely adopted approach for predicting TR-target 74 
relationships. This analysis is often cast as generating a predicted gene regulatory 75 
network, where the strength of covariation between gene transcript levels serves as 76 
edge weights (Sonawane et al., 2019). The fundamental assumption is that if a TR 77 
protein influences a gene’s transcription, the TR gene itself must also be expressed. 78 
However, this assumption may be compromised when the dynamic expression of TRs 79 
and their targets are uncoupled. Further, this covariation does not implicate a causative 80 
directionality (i.e., regulatory influence) between gene pairs. Despite these limitations, 81 
coexpression analysis has been extensively applied as a cost-effective and genome-82 
wide strategy to investigate gene regulation and is commonly integrated with other data 83 
modalities (Aibar et al., 2017; Bravo González-Blas et al., 2023).  84 

The emergence of scRNA-seq has made it possible to study coexpression at a finer 85 
level of granularity than afforded by bulk tissue, mitigating cell type compositional 86 
effects that impact bulk tissue interpretation (McCall et al., 2016; Farahbod and Pavlidis, 87 
2019; Farahbod and Pavlidis, 2020; Zhang et al., 2021). However, cautious 88 
interpretation is still warranted due to the sparsity of scRNA-seq data. Correspondingly, 89 
the benefits of a meta-analytic framework (Lee et al., 2004; Mistry et al., 2013; Ballouz 90 
et al., 2015) have been extended to single cell coexpression to tasks such as gene 91 
function prediction (Crow et al., 2016; Crow and Gillis, 2018) and understanding 92 
reproducible patterns in the brain (Harris et al. 2021; Suresh et al. 2023; Werner and 93 
Gillis 2023). Importantly, these studies typically focused on the preservation of the 94 
global coexpression network structure, rather than any specific gene profile.  95 

We drew inspiration from these works and our experience in aggregating ChIP-seq and 96 
TR perturbation studies to identify reproducible TR-target interactions (Morin et al., 97 
2023). This stemmed from the recognition that the evidence from various lines of gene 98 
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regulation methods often do not intersect, necessitating comprehensive data 99 
compilation (Hu et al., 2007; Gitter et al., 2009; Cusanovich et al., 2014; Garcia-Alonso 100 
et al., 2019; Kang et al., 2020). In this study, we adopt a “TR-centric” approach towards 101 
aggregating single cell coexpression networks, with the primary goal of learning 102 
reproducible TR interactions. Specifically, our focus was to assemble a diverse range of 103 
scRNA-seq data to better understand the coexpression range of all measurable TRs in 104 
mouse and human. Our key aim was to prioritize the genes that are most frequently 105 
coexpressed with each TR, hypothesizing that this prioritization can facilitate the 106 
identification of direct TR-target interactions. We further reasoned that this information 107 
would help establish expectations for more focused data aggregations. 108 

Methods 109 

All analyses were performed in the R statistical computing environment (R version 4.2.1 110 
http://www.r-project.org). The associated scripts can be found at 111 
https://github.com/PavlidisLab/TR_singlecell.  112 

Genomic tables 113 

Gene annotations were based on NCBI RefSeq Select (mm10 and hg38) 114 
(https://www.ncbi.nlm.nih.gov/refseq/refseq_select/). High-confidence one-to-one 115 
orthologous genes were accessed via the DIOPT resource (V9; Hu et al. 2011; Hu et 116 
al., 2025).  We kept only genes with a score of at least five that were also reciprocally 117 
the best score between mouse and human and excluded genes with more than one 118 
match. This resulted in 16,981 orthologous genes. Cytosolic L and S ribosomal genes 119 
were obtained from Human Genome Organization (groups 728 and 729; 120 
https://www.genenames.org/data/genegroup/#!/group/). This encompassed 89 human 121 
genes, which we subset to the 82 genes with a one-to-one mouse ortholog. 122 
Transcription regulator identities were acquired from Animal TFDB (V4; Shen et al., 123 
2023). 124 

scRNA-seq data acquisition and preprocessing 125 

We focused on datasets with count matrices that had cell identifiers readily matched to 126 
author-annotated cell types. This was primarily sourced through two means: 1) From the 127 
“Cell x Gene” database (https://cellxgene.cziscience.com/), which has pre-processed 128 
and annotated data. When a single submission (“collection”) contained multiple 129 
downloads (for example, different tissue lineages), we downloaded all and combined 130 
them into a single dataset keeping only unique cells. 2) Automated screening followed 131 
by human curation of the Gene Expression Omnibus (GEO) database (Barrett et al., 132 
2013). Here, we preserved the author-annotated cell types, save for when a biologically 133 
uninformative delimiter was used (e.g., “Neuron-1” and “Neuron-2”), in which case we 134 
collapsed these cell types into one to prevent overly sparse cell-type populations. We 135 
further acquired two tissue-panel datasets. The first was downloaded from the Human 136 
Protein Atlas (Uhlén et al., 2015; 137 
https://www.proteinatlas.org/download/rna_single_cell_read_count.zip, June 2023), 138 
covering 31 tissue-specific datasets which we collapsed into a single dataset and thus 139 
treated as a single network. Similarly, we downloaded each of 20 tissue datasets from 140 
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the Tabula Muris Consortium (2018; 141 
https://figshare.com/articles/dataset/Robject_files_for_tissues_processed_by_Seurat/58142 
21263; July 2023), which were also combined as one dataset.  143 

Following the advice of the Harvard Chan Bioinformatics Core 144 
(https://hbctraining.github.io/scRNA-seq_online/lessons/04_SC_quality_control.html), 145 
we uniformly applied relatively lenient filtering rules for all datasets. We required a 146 
minimum cell count of 500 UMI (or equivalent) and 250 expressed genes, and a ratio of 147 
the log10 count of genes over log10 UMI counts greater than 0.8 for all experiments, save 148 
for SMART-seq assays, where the cutoff was relaxed to 0.6 as this technology can 149 
result in greater read depth for select genes (Wang et al., 2021). We applied standard 150 
CPM library normalization on the raw counts of all datasets (Seurat V4.1.1 151 
NormalizeData “RC”), having observed that the log transformation in other normalization 152 
schemes resulted in elevated correlation reproducibility in our null comparisons.  153 

scRNA-seq network construction 154 

Aggregate single cell coexpression networks were constructed as described by Crow et 155 
al. (2016). Every dataset consists of a gene by cell normalized counts matrix, where 156 
each cell is associated to an annotated cell type. We fix genes to the RefSeq Select 157 
protein coding genes, setting unreported genes to counts of 0. This was done so that 158 
every resulting network had equal dimensionality. 159 

 For a given dataset, we performed the following steps for each cell type: 160 

1. Subset the count matrix to only cells of the current cell type. 161 
2. Set genes with non-zero counts in fewer than 20 cells to NA. 162 
3. Calculate the gene-gene Pearson’s correlation matrix. 163 
4. Set NA correlations resulting from NA counts to 0. 164 
5. Make the correlation matrix triangular to prevent double ranking symmetric 165 

elements. 166 
6. Rank the entire correlation matrix jointly, using the minimum ties method. 167 

The resulting rank matrices across cell types were then summed into one matrix that 168 
was re-ranked and standardized into the range [0, 1] by dividing each element by the 169 
maximum rank. Higher values correspond to consistently positive coexpressed gene 170 
pairs, and values closer to 0 represent more consistently negative pairs. Step 2 is 171 
applied to ensure noisy coexpression values are not calculated from overly sparse 172 
populations, as recommended by Ballouz et al. (2015). The zero imputation in Step 4 is 173 
to ensure the ranking procedure includes non-measured genes, placing them in 174 
between positive and negative correlations. Thus, each dataset is represented as a 175 
single gene by gene matrix of coexpression scores aggregated across all labeled cell 176 
types. A gene profile refers to a single gene vector (such as a TR gene) from a single 177 
matrix; a set of profiles is the collection of profiles extracted from the experiments that 178 
measured the given gene. 179 

Gene profile similarity 180 
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Coexpression profiles from any one dataset may not have a full complement of 181 
measured genes and thus contain tied ranks corresponding to missing values in our 182 
framework. Consequently, metrics of similarity that compare all of two lists, such as 183 
Spearman’s correlation, are inappropriate and so we focused on the agreement of the 184 
Top and Bottom K genes between profiles. We calculated various set overlap metrics 185 
between lists and, finding our conclusions to be consistent, opted for the interpretability 186 
of reporting the size of the TopK and BottomK overlaps. We restrict our reporting to TRs 187 
that were measured in at least five datasets. 188 

For each TR, we calculated the pairwise similarities among its set of profiles. Averaging 189 
these similarity metrics was used to infer the consistency of a TR’s coexpression profile 190 
across datasets. This process was also applied to each of the 82 ribosomal genes to 191 
provide a comparison with a set of genes known to be coexpressed. To generate a null 192 
comparison, a random TR was selected from each network to create a set of shuffled 193 
profiles, and pairwise similarities were calculated and averaged as above. This process 194 
was repeated 1000 times, generating a null distribution of average pairwise similarities. 195 
A TR with an average similarity greater than any of the 1000 nulls has an empirical p-196 
value < 0.001. 197 

Aggregating TR profiles and the effect of gene measurement sparsity 198 

To prioritize the gene partners most commonly coexpressed with each gene, we 199 
averaged the set of rank-standardized profiles for the given gene into one aggregate 200 
profile. As each dataset-level profile had variable gene measurement, there was 201 
variable delineation between the positive coexpression values, the non-measured gene 202 
pair ties, and negative coexpression values. Therefore, for a given gene’s set of profiles, 203 
we imputed all tied values to the median value before averaging, standardizing the 204 
values of non-measured gene pairs. A schematic is shown in Supplemental Fig. 1C. 205 

Gene set enrichment 206 

For each aggregate profile, we performed GO enrichment analysis of “biological 207 
process” terms with the “precRecall” R implementation of ermineJ 208 
(https://github.com/PavlidisLab/ermineR; Ballouz et al., 2016), using the aggregate 209 
values as scores. This approach considers the full scored list to find enriched terms but 210 
places greater emphasis on the top of the gene list. We analyzed 3,284 terms that had 211 
20-200 genes and set the false discovery rate at 0.05 for considering terms significant. 212 
For the orthologous coexpression rankings we used human genes to map GO 213 
annotations. 214 

ChIP-seq data acquisition and summarization 215 

All ChIP-seq data was downloaded from the Unibind database (Puig et al., 2021; 216 
https://unibind.uio.no/downloads/; September 2022). For every TR experiment, we 217 
scored gene binding intensity using the same approach as in Morin et al., 2023, using a 218 
continuous scoring function (Ouyang et al., 2009; detailed in the Supplement). To 219 
generate an aggregate binding profile, we averaged the gene binding vectors specific to 220 
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each TR. A “consensus” list of ASCL1 bound regions consisted of the union of all its 221 
peaks across ASCL1 Chip-Seq datasets (detailed in Supplement). 222 

Literature curation evaluation 223 

TR-target interactions supported by low-throughput experimental evidence were 224 
collected from our prior study (Chu et al., 2021), which compiled information from other 225 
resources (see Supplement for details) and then significantly expanded upon 226 
neurologically-relevant TRs. Since Chu et al. (2021) was published, we have further 227 
expanded this collection, to a total of 27,629 experiments encompassing 772 TRs and 228 
5,899 gene targets. We then used each TR’s aggregate profile’s ranking as a score and 229 
its curated targets as labels, calculating AUC metrics (AUPRC: area under the precision 230 
recall curve and AUROC: area under the receiver operator curve) using the ROCR 231 
package (Sing et al., 2005; V1.0-11). To generate a null comparison for each TR, we 232 
randomly sampled from the entire literature curation corpus a number of targets equal to 233 
the count of curated targets for the given TR, and calculated AUCs using the TR’s 234 
aggregate profile as a score and the shuffled targets as labels. This process was 235 
repeated 1000 times to generate a null distribution of AUC values. The observed AUCs 236 
(using the TR’s true curated targets) were then compared to this distribution of null 237 
AUCs. A quantile of 1 means that the observed AUC was better than every single null 238 
AUC (empirical p-value < 0.001). We restrict our reporting to TRs that had at least five 239 
curated targets. 240 

Cross-species coexpression profile comparison 241 

There were 1,246 TRs with a one-to-one orthologous match between mouse and 242 
human that were also measured in at least 5 datasets in each species. For each of 243 
these TRs, we subset their aggregate profiles to the 16, 981 orthologous genes. Each 244 
orthologous TR thus has a mouse and human aggregate profile, generated separately 245 
across the respective species’ datasets. To generate a consensus orthologous profile 246 
for each TR, we took the rank product between its human and mouse aggregate 247 
profiles. To compare ortholog aggregate profiles, we calculated Spearman’s correlation 248 
and TopK and BottomK overlaps. Null comparisons were generated in a manner 249 
consistent with the individual profile comparison: similarities were calculated between 250 
randomly shuffled aggregate profiles between species over 1000 iterations.  251 

To learn the specificity of a TR’s aggregate coexpression profile with its matched 252 
ortholog in the reciprocal species, we combined the framework applied in this study with 253 
prior studies examining the conservation of coexpression (Patel et al., 2012; Suresh et 254 
al., 2023). For each TR in a species, we selected the given TR’s top 200 coexpressed 255 
partners (Top200). We next calculated the overlap of this gene set with the Top200 gene 256 
sets of each of the 1,246 TRs in the other species. We then treated the mismatched 257 
(non-orthologous) overlaps as a distribution and represented the matched (ortholog) 258 
TR’s Top200 as a quantile with respect to this distribution. We refer to this quantile as the 259 
Ortholog retrieval score. A score of 1 means that the given TR’s ortholog shared more 260 
top coexpressed partners than any other TR in the other species. This procedure was 261 
then repeated for the reciprocal species. The result is a pair of Ortholog retrieval scores 262 
for each TR: how well a human TR’s aggregate profile recovered its mouse ortholog 263 
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relative to all other mouse TRs (human in mouse), and the recovery of the mouse 264 
ranking across human TRs (mouse in human). 265 

Integrating coexpression and ChIP-seq profiles 266 

For TRs with ChIP-seq data, we took the rank product of the TR’s aggregate 267 
coexpression profile and its aggregate binding profile, re-ranking the result (Breitling et 268 
al., 2004; Wang et al., 2013; Morin et al., 2023). This orders genes by placing equal 269 
weight on their (positive) coexpression evidence and their binding evidence. We further 270 
report a second prioritization scheme for each TR, categorizing genes based on a cut-271 
off of the rankings for both data types and species: 272 

1. Stringent: Required a gene’s presence in the Top 500 of both coexpression 273 
and binding in both species (orthologous genes only). 274 

2. Elevated: Genes needed to make the Top 500 cut-off for both data types in 275 
one species and in one data type for the other species (orthologous genes only). 276 

3. Species-specific: Top 500 cut-off for both data types in one species only. 277 
Notably, this may include genes absent from the one-to-one orthologous set, or 278 
TRs that had ChIP-seq data in one species only. Consequently, this tier had 279 
greater coverage than the others.  280 

4. Mixed-species: Allowed genes ranked in the Top 500 in both data types, but 281 
each in only one species (orthologous genes only). 282 

Results 283 

Assembling a broad corpus of single cell RNA-seq data 284 

To establish a diverse range of biological contexts for constructing single cell 285 
coexpression networks, we acquired scRNA-seq data from public resources (Methods). 286 
Our focus was strictly on datasets that included author-annotated cell type labels in the 287 
metadata, and all identified datasets underwent consistent preprocessing. In total, we 288 
analyzed 120 human datasets and 103 mouse datasets (Fig. 1A; Metadata in 289 
Supplemental Table 1). This corpus spans a wide range of biological contexts, scRNA-290 
seq technologies, and counts of assayed cells. After filtering, the median human dataset 291 
measured 15,341 protein coding genes across 74,148 cells and 14 cell types; in mouse 292 
13,996 genes across 36,755 cells and 12 cell types (Fig. 1B; Supplemental Figs. 1A,B). 293 
There was appreciable spread in these counts, with tissue atlas studies typically 294 
exhibiting the broadest coverage. The complete dataset is over 2.8 x107 cells. 295 

Constructing single cell coexpression networks 296 

We constructed aggregated single cell coexpression networks for each dataset using 297 
the approach outlined by Crow et al., 2016 (Methods). In brief, this entails generating a 298 
gene-by-gene correlation matrix for each cell type within a dataset, ranking each cell 299 
type correlation matrix, and consolidating them into a single network per dataset (Fig. 300 
1C). Notably, unlike in Harris et al. (2021), where information was consolidated across  301 
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 302 
Figure 1. Overview of study design. (A) Counts of datasets by source, technology, and species. 303 
(B) Top panel: Counts of cells across the dataset corpus. Bottom panel: Counts of cell types. 304 
(C) Schematic of the single cell coexpression aggregation framework and the interpretation of 305 
an individual gene coexpression profile. (D, E) Examples of the most reproducible positively 306 
coexpressed gene pairs. Each bar represents a dataset/network, and each point represents the 307 
gene pair’s correlation in a cell type within the dataset. (F) Example of one of the most 308 
reproducibly negative coexpression gene pairs.  309 
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datasets for a single cell type, we first aggregate across cell types within a dataset 310 
before aggregating across datasets. In doing so, we explicitly prioritize signals shared 311 
across cell types. This strategy also minimizes effects due to expression differences 312 
between cell types, which we consider a separate question from “within cell” regulatory 313 
interactions (Farahbod and Pavlidis, 2020). 314 

This procedure aims to rank coexpression partners, as illustrated in Fig. 1C, by ordering 315 
from “top” to “bottom”: consistently high positive interactions across cell types; 316 
mixed/specific positive interactions; weak-to-no coexpression; non-measured gene 317 
pairs; and then the increasingly most reproducibly negative coexpressed pairs. From 318 
this network, it is possible to extract a single gene column (herein, gene profile), such as 319 
for a TR, with the relative ordering reflecting the strength of its aggregate transcript 320 
covariation with all other genes. 321 

While the focus of this study is on TRs, we first examined the globally most consistent 322 
coexpressed gene pairs (Figs. 1D-F). Top examples include TRs that dimerize to form 323 
the pleiotropic AP-1 complex, such as JUNB and FOS, as well as members of the 324 
ribosomal complex. Given the known biological coexpression of ribosomal genes (Li et 325 
al., 2016), we use a set of 82 large (L) and small (S) ribosomal genes that are highly 326 
conserved between mouse and human as a positive control when examining TR-gene 327 
coexpression in the following analyses (Methods). We also show one of the most 328 
consistently negative coexpressed TR-gene pairs in human. Aligning with our prior 329 
observations (Lee et al., 2004), the magnitudes of these values are smaller and less 330 
consistent than the positive coexpression profiles, contributing to the complexity in 331 
identifying repressive interactions (discussed in the Supplemental Material). 332 

Similarity of TR-target profiles 333 

Before prioritizing reproducible TR-gene interactions, we examined the concordance of 334 
the TR coexpression profiles between datasets. We expected that distinct profiles 335 
generated for the same TR and similar contexts would have elevated similarity relative 336 
to mismatched contexts or gene profiles. At the same time, the underlying data we used 337 
was from differing cell types, as datasets could be from different tissues. While we 338 
expected this would affect the degree of similarity, a total absence of overlap between 339 
profiles would raise questions about the efficacy of our framework in finding 340 
reproducible interactions. 341 

We report here on the size of the overlap (K) of the top positively coexpressed (TopK) 342 
genes between each pair of gene profiles (negative coexpression is discussed in the 343 
Supplemental Material). We examined a range of K, from 200 — approximately the top 344 
1% of protein coding genes — to 1000, finding that our main conclusions were robust to 345 
this cut-off. To contextualize the similarity between TR profiles, we generated null 346 
similarities, iteratively sampling TRs across datasets and calculating the overlap of the 347 
shuffled TR profiles. We also report the similarity of the set of 82 L/S ribosomal genes.  348 

First, for each TR we pairwise compared its profiles across studies. As expected, the 349 
most similar pairs were supported by datasets investigating similar biological contexts. 350 
For example, the best pairing in human (Top200 = 163/200) was between FOXM1 351 
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profiles from two studies that both assayed the developing human intestine (Fawkner-352 
Corbett et al., 2021; Elmentaite et al., 2021). The highest Mouse Top200 (150/200) was 353 
associated with E2f8, derived from two studies of the blood-brain barrier (Posner et al., 354 
2022; van Lengerich et al., 2023). The magnitude of the best ribosomal gene pairs was 355 
comparable: the best global human ribosomal pairing (Top200 = 161/200) belonged to 356 
RPS13, originating from two immune cell studies (Liu et al., 2021; Domínguez Conde et 357 
al., 2022). 358 

While these observations support the ability to find consistent coexpression patterns 359 
within pairs of similar contexts, our ultimate aim was to combine information across 360 
contexts. Seeking a more global summary of TR profile overlap, we calculated the mean 361 
Top200 overlap for each TR profile across all unique pairs of networks measuring the 362 
TR. We again use the similarities from the pairs of randomly sampled TRs and the 82 363 
ribosomal genes as reference. 364 

In Figs. 2A,B, we show the average Top200 of shuffled TR pairs across 1000 iterations. 365 
The typical null sample had an average Top200 value of 2.7/200 in human and 2.6/200 in 366 
mouse. The ribosomal genes, approximating an empirical “upper bound,” averaged 367 
61/200 in human and 44/200 in mouse. The distribution of average Top200 values was 368 
highly skewed for TRs, with 67% of human TRs and 68% of mouse TRs having an 369 
average Top200 value greater than the maximum value achieved across all of the null 370 
samples (empirical p-value < 0.001; represented as red lines in Figs 2A, B). And while 371 
the best individual ribosomal data pairs were equivalent in overlap size compared to the 372 
best individual TR pairs, ribosomal genes typically had a much greater average Top200 373 
than even the best TR. This underscores the unusual uniformity of ribosomal protein 374 
gene coexpression across distinct cellular contexts — it is an outlier. A similar 375 
comparison for the Bottom200 is provided in Supplemental Figs. 2A-D. 376 

TRs with the highest mean Top200 values, indicative of the most consistent positive 377 
coexpression profiles across studies, were often associated with fundamental cellular 378 
housekeeping processes. For example, E2F8 led in human (mean Top200 40.4/200), 379 
with mouse E2f8 similarly having one of the most consistent profiles (Figs. 2A,B). The 380 
E2F family are well characterized regulators of the cell cycle (Emanuele et al., 2020), 381 
and other E2F members also ranked high in both species, as did regulators involved in 382 
early transcriptional response to environmental signals, such as AP-1 complex 383 
members FOS and JUN. In mouse, the highest mean Top200 belonged to Mxd3, a MYC-384 
antagonist whose human ortholog also had elevated similarity. More broadly, there was 385 
appreciable correlation between human and mouse orthologous TRs (Methods) in the 386 
consistency of their positive and negative coexpression profiles (Supplemental Figs. 387 
3A,B).   388 

TRs with context-restricted activity might be expected to exhibit relatively low cross-389 
dataset similarity in our broad corpus. However, this is not necessarily the case. For 390 
example, the neural regulator NEUROD6 (Tutukova et al., 2021) had one of the most 391 
consistent TR profiles in human (mean Top200 rank 44th out of 1,605 TRs), despite 392 
being only measured in 22 of 120 datasets. This shows that restricted expression does 393 
not preclude the identification of reproducible patterns. In contrast, human PAX6 —  394 
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395 
 396 
Figure 2. Similarity of TR profiles. (A) Inset: distribution of the mean Top200 overlaps for the null 397 
background, 82 ribosomal genes, and 1,605 human TRs. The null was generated through 1000 398 
iterations of sampling one TR profile from each of 120 human datasets and calculating the 399 
average size of the Top200 overlap between every pair of sampled profiles. The ribosomal genes 400 
represent a “base case” scenario. Main: The average Top200 overlap of all human TRs, with the 401 
red line indicating the best null overlap. (B) Same as in A, save for 103 mouse experiments and 402 
1,484 TRs. (C,D) Saturation analysis of global TR profiles for human (C) E2F8 and (D) PAX6. 403 
Left panels show the spread of Top200 overlaps between individual dataset profiles and the 404 
global E2F8 and PAX6 profiles. Right panels show the spread of overlaps when iteratively 405 
subsampling and aggregating datasets at increasing steps. Dotted lines indicate the average 406 
number of sampled datasets required to reach 80% of the global profile. E2F8 recovers its 407 
global profile with relatively fewer datasets than does PAX6.   408 
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necessary for the development and function of several nervous and pancreatic tissues 409 
(Wen et al., 2009; Yeung et al., 2016) — had a mean Top200 value marginally above the 410 
null, improving slightly at K=1000 (Supplemental Figs. 2E,F). Although PAX6 can also 411 
be described as a context-restricted, it was detected in 85 of 120 datasets, suggesting 412 
greater heterogeneity in its coexpression profiles compared to NEUROD6.  413 

Ranking aggregated coexpression to prioritize TR-target candidates 414 

The preceding section demonstrated that similar TR profiles could be identified across 415 
this biologically heterogeneous corpus, supporting the potential to find reproducibly 416 
coexpressed gene pairs. We thus turned to our primary aim of prioritizing these 417 
consistent interactions, generating a unified gene ranking for each TR using all 418 
compiled data. This process involves aggregating information at two levels: first, across 419 
cell types within a dataset (as in the previous section; Fig. 1C), and then, for each TR, 420 
aggregating their profiles across datasets (Methods, Supplemental Fig. 1C). This 421 
approach aims to maintain the interpretability of an aggregate profile relative to a profile 422 
from an individual network (Fig. 1C): the extremes represent the most consistent 423 
positive and negative correlations, while the middle of the list encompasses weak and 424 
non-measured coexpression gene pairs.  425 

As before, we used the set of ribosomal genes to validate that our aggregation workflow 426 
prioritized known biological coexpression (Supplemental Material; Supplemental Figs. 427 
4A,B). We next performed GO biological process enrichment on all aggregate profiles 428 
(Supplemental Fig. 4C), finding that most TRs (91% human, 86% mouse) were 429 
associated with at least one term (FDR 0.05). E2F8 coexpression partners were 430 
enriched for multiple terms relating to cytokinesis and chromosomal organization, as 431 
expected for its known role in these processes (Emanuele et al., 2020). We also 432 
frequently observed that terms affiliated with tissue-specific processes were enriched for 433 
TRs implicated in those tissues. Examples include glial development and myelination 434 
terms for the oligodendrocyte TRs OLIG1/2 (Szu et al., 2021), neuronal synaptic 435 
functionality for the aforementioned NEUROD6 (Tutukova et al., 2021), leukocyte and 436 
cytokine processes for IRF8 (Salem et al., 2020), and hematopoietic terms for the 437 
erythroid GATA1 (Ferreira et al., 2005). Some tissue-selective TRs were enriched for 438 
more general regulator terms (e.g., “cell fate commitment” for mouse Pax6) or had 439 
disparate tissue-specific terms (e.g., “regulation of osteoblast differentiation” and 440 
“regulation of neuron differentiation” for SOX4), potentially reflecting data heterogeneity. 441 
While GO is an imperfect resource, these results agree with our other observations that 442 
our analysis yields biologically-relevant signals. 443 

We examined the relationship between the aggregated global TR profiles and the 444 
constituent datasets through two analyses. First, we assessed how well individual 445 
experiments aligned with the global profiles to identify potential biases (Supplemental 446 
Material). As shown in Supplemental Figs. 2H-L, datasets with the highest agreement 447 
were large studies of broad tissues using the 10X Chromium platform, though 448 
consistencies between platforms were still observed (Supplemental Fig. 2G).  449 

Second, we performed a saturation analysis to determine how many datasets are 450 
needed, on average, to recover each TR’s global profile (≥80% overlap in Top200 451 
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genes). By iteratively subsampling and aggregating datasets, we evaluated the 452 
convergence of sampled TR profiles to the global set. For example, E2F8 (Fig. 2C) 453 
required an average of 18 of 92 datasets to reach saturation, while PAX6 (Fig. 2D) 454 
showed a linear trend, indicating saturation has not yet been achieved. These results 455 
suggest future work is needed to explore not only replicable context-specific patterns for 456 
TRs such as PAX6, but also the extent to which globally consistent partners can be 457 
found when using more data. 458 

Recovery of literature-curated TR-target interactions 459 

Equipped with a unified single cell coexpression profile for each human and mouse TR, 460 
we aimed to assess their concordance with an orthogonal line of regulation evidence. 461 
While coexpression is expected to prioritize both direct and indirect regulatory 462 
interactions (the latter we would consider false positives), the rankings should still 463 
demonstrate a greater ability to recover true direct interactions relative to a null 464 
expectation. 465 

In a previous study (Morin et al., 2023), we evaluated the utility of aggregating TR 466 
perturbation and ChIP-seq experiments, using literature-curated low-throughput 467 
interactions as positive labels and calculating area under the curve (AUC) metrics 468 
(Marbach et al., 2012; Garcia-Alonso et al., 2019). We applied the same framework 469 
here, using curated TR-target interactions we have collected (Chu et al., 2021, since 470 
expanded) and assembled from other resources (see Supplement for further 471 
discussion). We considered TRs that had a minimum of five curated targets, resulting in 472 
451 TRs analyzed in human (median count of curated targets = 18) and 434 in mouse 473 
(median count = 17). 474 

We first examined the effectiveness of the aggregate profiles in recovering curated 475 
targets relative to the individual TR profiles that compose each aggregate. On average, 476 
the aggregate profiles outperformed (better prioritized curated targets) the expected 477 
AUC value from an individual profile (Supplemental Fig. S5A). Therefore, aggregating 478 
the coexpression networks typically maintains or improves performance on this 479 
benchmark. 480 

Next, we evaluated the efficacy of the coexpression rankings in recovering curated 481 
targets relative to a null distribution of AUCs (Quant_coexpression). While the raw AUC 482 
values were typically better than random (Fig. 3B, Supplemental Fig. 5B), we report the 483 
quantile of the observed value relative to a null to standardize the comparison across 484 
TRs (discussed in Supplemental Material). This null was created by size-matching and 485 
randomly sampling from the pool of curated targets from the entire literature-curation 486 
corpus. The latter helps account for biases in the coverage of targets in the low-487 
throughput literature. A Quant_coexpression value of 1 indicates that an aggregate 488 
profile outperformed every null sample. 489 

ASCL1 is provided as an example of this procedure for one TR in Fig. 3A. As illustrated 490 
in Fig. 3C, the coexpression aggregates consistently exceeded the null AUCs, reflected 491 
by a median AUROC Quant_coexpression of 0.95 in human and 0.93 in mouse. The 492 
pile-up of quantiles near or equal to 1 indicates that, while not universal, a majority of  493 
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494 

Figure 3. Recovery of literature curated targets by aggregate rankings. (A) Schematic of 495 
literature curation evaluation. (B) Distributions of the observed AUROCs for 451 human and 434 496 
mouse aggregate TR coexpression profiles, along with the distribution of the median null 497 
AUROCs generated for each profile. (C) Histograms of the AUROC and AUPRC coexpression 498 
quantiles for human and mouse. (D) Scatter plot of the AUROC quantiles for the coexpression 499 
and binding profiles of 253 human TRs that had binding data and at least five curated targets. 500 
Green box indicates TRs for which both genomic methods were effective in the benchmark, 501 
grey box for only one method, and red box for neither method being effective. 502 
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TR single cell coexpression rankings excelled in prioritizing matched curated targets 503 
over randomly sampled targets. These observations strongly suggest that these 504 
aggregate rankings are capable of prioritizing regulatory interactions that were identified 505 
through targeted biochemical assays. 506 

To further contextualize these performances, we conducted a similar null AUC analysis, 507 
this time using aggregate ChIP-seq signals. In brief, we applied the same approach as 508 
in Morin et al., 2023, scoring gene-level binding intensity for each ChIP-seq experiment, 509 
then averaging these signals within each TR’s set of experiments to create a single 510 
unified ranking of gene binding for each TR. In total, we considered 4,115 human 511 
experiments for 253 TRs and 3,564 mouse experiments for 241 TRs from the Unibind 512 
database (Puig et al., 2021, Methods) that had at least five curated targets. As with the 513 
aggregate coexpression signal, we compared the unified binding ranking’s ability to 514 
recover TR-specific curated targets relative to a null of sampled targets 515 
(Quant_binding).  516 

We anticipated that TR ChIP-seq, as a more direct form of regulatory inference, might 517 
outperform coexpression (Garcia-Alonso et al., 2019). However, in our hands the 518 
aggregate binding evidence was on par with single cell coexpression in its ability to 519 
predict known targets (Supplemental Fig. 5C), further motivating integration of both data 520 
types. Supporting this, integrating the coexpression and binding rankings for available 521 
TRs typically led to elevated performance in the benchmark (Supplemental Fig. 5D).  522 

Among TRs with both binding and coexpression data, many performed well in the 523 
benchmark for both data types separately, as demonstrated for human TRs in Fig. 3D. 524 
In human, 134 of 253 (53%) TRs had AUCs (AUPRC or AUROC) Quant_binding > 0.9 525 
and Quant_coexpression > 0.9; in mouse 126 of 241 (52%). This signifies that, for these 526 
specific regulators, aggregated coexpression and binding profiles both effectively 527 
prioritize curated TR targets relative to sampled targets. This alignment highlights TRs 528 
whose activity may be more readily identified through distinct data modalities. Further, 529 
of the TRs performant in both lines of evidence, more than half did so in both species 530 
(human 83 of 134, mouse 83 of 126), suggesting convergence of evidence across not 531 
only experiments, but also species. 532 

This agreement of evidence encompassed broadly active TRs, such as those involved 533 
in the AP-1 complex. However, it also included more specialized factors, such as the 534 
neuronal-specifying ASCL1, and the aforementioned PAX6. This suggests that, even 535 
though the average overlap of PAX6 profiles was weak (Fig. 2D; Supplemental Figs. 536 
2E,F), there was still a consensus of recurrent curated PAX6 targets within these 537 
smaller intersects. We also find cases where only one data type was performant. LEF1, 538 
for example, had an AUROC Quant_coexpression value of 1 in both species but a 539 
Quant_binding value of 0 and 0.22 in human and mouse, respectively.  540 

Finally, because negative expression correlations might be of interest for identifying 541 
repressive interactions, we conducted an analysis of the reproducibility and 542 
performance of the relations predicted from the bottom of the rankings. We found that 543 
for some TRs, negative correlations performed better than positive correlations in the 544 
benchmark, though this was the exception (Supplemental Fig. 5B). This suggests that 545 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2025. ; https://doi.org/10.1101/2024.02.15.580581doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.15.580581
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 

17 
 

for some TRs, repressive activity might be inferable from coexpression (see 546 
Supplement for discussion; Supplemental Tables 2-3). 547 

Identification of conserved interactions 548 

It has been observed that, despite the high evolutionary turnover of regulatory DNA 549 
sequences, TR-target relations exhibit relatively high conservation (Yue et al., 2014), 550 
with coexpression providing an attractive means to nominate common and divergent 551 
interactions (Monaco et al., 2015; Lee et al., 2020; Suresh et al., 2023). Here, our aim 552 
was to identify the extent to which individual TR aggregate coexpression profiles were 553 
preserved between mouse and human, focusing on orthologous genes (Methods). A 554 
meta-analytic comparison of TR single cell coexpression profiles between these two 555 
species is lacking, and we reasoned that evidence of conservation using this global data 556 
corpus would provide future support for studies that focus on specific TR patterns in a 557 
more focused context. 558 

Figure 4A demonstrates the similarity distributions between ortholog aggregate 559 
coexpression profiles, overlaid with the median observed and shuffled null values. 560 
Although there was appreciable spread in these similarity metrics, most orthologs 561 
shared more similarity in their profiles than would be expected from shuffled TRs, 562 
suggestive of conserved TR coexpression. While there are TRs that agree less well 563 
between species, we are cautious in interpreting this as species-specific regulatory 564 
rewiring, given the relatively modest effect size and the absence of an exact match in 565 
cellular contexts covered across both species.  566 

Given our emphasis on reproducible interactions, we focused on the overlap at the 567 
extremes of these species rankings (Figs. 4B,C; Supplemental Fig. 6C). To quantify the 568 
specificity of this overlap, we applied a slightly modified framework of the TopK overlap 569 
used in this study, consistent with prior studies (Methods; Patel et al., 2012; Suresh et 570 
al., 2023) and illustrated in Fig. 4B. The result is a pair of ortholog retrieval scores for 571 
each TR: how well a human TR’s ranking recovered its mouse ortholog relative to all 572 
other mouse TRs (human in mouse), and the recovery of the mouse ranking across 573 
human TRs (mouse in human), with a value of 1 indicating perfect retrieval. 574 

As demonstrated in Fig. 4C, there was considerable preservation of single cell 575 
aggregate TR coexpression profiles between mouse and human. The median ortholog 576 
retrieval score for human was 0.969, with 175/1,246 (14%) TRs having a perfect value 577 
of 1; in mouse these values were 0.973 and 172/1,246 (14%), respectively. These 578 
relative values correspond to a median Top200 overlap of 14 genes, with FOXM1 and 579 
HMGB2 each having a maximal Top200 of 149 genes (Fig. 4A). While the most 580 
conserved TRs (by Top200 overlap) were led by regulators of housekeeping processes 581 
such as cell division, we also observed this preservation among more specific TRs, 582 
such as the aforementioned NEUROD6 (human in mouse and mouse in human = 1, 583 
Top200 = 50). Logically, many of these highly preserved TRs also had similar profiles 584 
across datasets within species (as shown in Figs. 2A,B), and those that were weakly 585 
preserved generally lacked consistency within species (Supplemental Figs. 6A,B). 586 
These findings collectively contribute to characterizing the extent to which each TR can  587 
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588 
Figure 4. Preservation of mouse and human single cell coexpression profiles. (A) Distribution of 589 
coexpression agreement between the aggregate single cell coexpression profiles of 1,246 590 
orthologous TRs. Black lines indicate the median value for the TRs, grey lines indicate the 591 
median of null values generated by shuffling pairs of orthologous TRs. (B) Top: Schematic of 592 
the ortholog retrieval workflow, adapted from Suresh et al., 2023. Bottom: Scatterplot of the 593 
resulting ortholog retrieval scores (C) Scatter plot of the ASCL1 Top200 overlaps. (D) The top 15 594 
GO terms when combining the human and mouse top ASCL1 coexpressed gene partners. 595 
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be defined by a set of coexpressed gene partners, facilitating inferences into their 596 
biological roles.   597 

In Fig. 4C we illustrate this overlap procedure for ASCL1, an essential pioneer nervous 598 
system regulator that is also relevant to cancer (Castro et al., 2011). Of the 200 genes 599 
that were most consistently coexpressed with human ASCL1, 32 of their mouse 600 
orthologs were also in the mouse Ascl1 Top200 set. This marked the largest overlap 601 
human ASCL1 had with any mouse TR (human in mouse = 1). In the reciprocal 602 
comparison, where mouse Ascl1 was queried against all human TRs, human ASCL1 603 
ranked 30th (mouse in human = 0.98). The 29 human TRs with a greater overlap with 604 
mouse Ascl1 did not have a sizable overlap in the reciprocal comparison, save for 605 
HMGB3. Conversely, TRs other than ASCL1 with elevated overlap across species 606 
included the ASCL1 curated targets INSM1, HES6, and DLX5 (Castro et al., 2006; 607 
Nelson et al., 2009; Kito-Shingaki et al., 2014). Other TRs are well-characterized for 608 
operating in a regulatory network with ASCL1 — though not necessarily as direct 609 
downstream targets — such as DLX1/2/6, GSX1/2, SP8, and OLIG2 (Wang et al., 2013; 610 
Al-Jaberi et al., 2015; Liu et al., 2017; Aslanpour et al., Lunden et al., 2019; 2020). GO 611 
enrichment of the top ASCL1 coexpressed gene partners using information from both 612 
species returned numerous terms that are consistent with ASCL1’s role in brain 613 
development (Fig. 4D). 614 

Combining single cell coexpression and aggregated binding reveals numerous 615 
reproducible interactions 616 

Up to this point, we have presented evidence supporting the existence of recurrent 617 
single cell TR-gene coexpression patterns within (Fig. 2) and across species (Fig. 4), 618 
demonstrating that this information can prioritize curated experimental interactions (Fig. 619 
3). One of our primary motivations is to prioritize the direct gene targets of TRs (Morin et 620 
al., 2023). However, the correlation of TR-gene transcripts serves as an indirect form of 621 
gene regulation evidence — it does not confer information about the causative 622 
directionality of this covariation. We thus now turn to identifying interactions 623 
corroborated by TR binding evidence, using the same aggregated Unibind ChIP-seq 624 
data examined in the literature curation evaluation. We reasoned that, as in our earlier 625 
work, knowledge of binding can help focus attention on expression patterns more likely 626 
to reflect direct regulatory relations. 627 

We present two straightforward strategies for prioritizing reproducible interactions, 628 
acknowledging the use of relatively arbitrary cut-offs for the sake of reporting. All 629 
summarized rankings are made available for researchers interested in conducting their 630 
own exploration. We first combined the single cell coexpression and binding profiles into 631 
a final ordered ranking for TRs with ChIP-seq data, using the common rank product 632 
summary (Breitling et al., 2004; Wang et al., 2013; Morin et al., 2023). This was done 633 
separately for each species (317 TRs in human, 305 in mouse), as well as across 634 
species for orthologous TRs with available data (216 TRs). This establishes convenient 635 
lists that order the protein coding genes most associated with each TR based on their 636 
aggregated single cell coexpression and binding profiles.  637 
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638 

Figure 5. Count of interactions supported across methods and species. (A) Inset: criteria used 639 
to group interactions into tiers. Bar chart: Count of unique interactions gained in each 640 
orthologous tier (Stringent, Elevated, and Mixed-Species) for the 216 TRs with binding data in 641 
both species. (B) Count of Species-Specific interactions for 317 TRs in human (top) and 305 642 
TRs in mouse (bottom). TRs are split by those with ChIP-seq data in one species only (left) and 643 
thus are ineligible for consideration in the orthologous interactions, and those with ChIP-seq 644 
data in both species (right). Grey bars indicate the count of interactions already found in the 645 
Stringent and Elevated sets, coloured bars indicate the count of Species-Specific interactions 646 
that were gained due to lacking orthologs or because they had elevated ChIP-seq signal in one 647 
species and not the other.  648 
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Recognizing that a gene may be prioritized (have a better rank product) if ranked 649 
exceptionally well in one data type or species only, we introduce a second scheme for 650 
more balanced consideration across lines of evidence. For each TR, genes are 651 
categorized into tiers by their status across the rankings, as illustrated in the inset of 652 
Figure 5A. This collection provides examples of regulatory interactions supported by 653 
both binding and single cell coexpression evidence. 654 

Fig. 5A shows the counts of unique orthologous interactions gained in each tier of 655 
evidence for the available TRs. The Stringent level, representing the most reproducible 656 
interactions across both species and genomic methods, contains 545 TR-gene pairs 657 
corresponding to 101 TRs and 357 unique genes. The TRs with the largest Stringent 658 
collection featured multiple AP-1 members, led by FOSL1 with 29 genes, along with 659 
immunity TRs such as STAT1, STAT2, and IRF1. More specialized TRs also had 660 
among the largest Stringent sets, such as the hematopoietic factors SPI1 (n = 27), 661 
GATA1 (n = 16) and GATA2 (n = 11), and the hepatic HNF4A (n = 8). This once again 662 
suggests conservation of many regulatory interactions, although it is essential to note 663 
that this observation is influenced by the limited coverage of ChIP-seq data across 664 
biological contexts. 665 

The Elevated collection relaxes the criteria to allow orthologous genes reaching the cut-666 
off in three of the four rankings. This resulted in 3,106 Elevated TR-gene pairs, with 211 667 
of the 216 available TRs having at least one gene in their set (median = 10). TRs with 668 
the largest Elevated collection closely overlapped with those having the largest 669 
Stringent sets, reinforcing the notion of preserved target genes among these TRs. The 670 
Species-specific level encompasses two groups of TRs: those that have ChIP-seq data 671 
in both species and those in only one. This is reflected in Fig. 5B, where we show the 672 
count of reproducible interactions for each group. The left panels display TRs with ChIP-673 
seq in only one species and were thus ineligible for consideration in the Stringent or 674 
Elevated tiers. In human, this corresponded to 99 TRs with a median of 11 interactions. 675 
TFDP1 led with 93 genes supported by both aggregated single cell coexpression and 676 
binding evidence. In mouse, all 89 available TRs were associated with at least one gene 677 
(median = 18), with the interferon TR Irf8 having a maximum of 91 genes, including 678 
numerous immunity-associated genes such as Mpeg1, Ctss, Cd180, Xcr1, and 679 
Trim30a. 680 

Highlighting ASCL1 681 
We conclude by focusing on ASCL1, emphasizing that this exploration of ASCL1 682 
regulatory targets is just one example made possible by the information we have 683 
summarized and made available for community use. In Fig. 6A we present the genes in 684 
each tier of evidence for ASCL1, along with their curation status from the 39 available 685 
ASCL1 targets in the literature corpus. Human ASCL1 was measured in 61 of 120 686 
scRNA-seq datasets, and in mouse 65 of 103. Regarding ASCL1 binding data, there 687 
were 10 ChIP-seq datasets in human — largely in cancer cell lines — as well as 10 in 688 
mouse, mostly in neuronal and embryonic contexts. 689 

Two genes fit the Stringent criteria used for this report: the literature-curated ASCL1 690 
target and Notch signalling ligand DLL3 (Henke et al., 2009), and the cell cycling 691 
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phosphatase CDC25B, which was not in the low-throughput literature collection but is 692 
nevertheless discussed elsewhere as a target of ASCL1 (Castro et al., 2006). The 693 
Elevated set consisted of 26 genes, with 6 narrowly missing the Stringent criteria 694 
(indicated by lighter shading in Figure 6A). Among them are well-described and 695 
literature-curated ASCL1 targets, such as the Notch effector HES6 (Nelson et al., 2009) 696 
and the neuroendocrine regulator INSM1 (Jacob et al., 2009; Jia et al., 2015). ASCL1 697 
and INSM1 serve as markers for neuroendocrine tumours, such as for small cell lung 698 
carcinoma (SCLC; Zhong et al., 2022). Another Elevated ASCL1 gene, CKB, has 699 
upregulated expression in both SCLC (Borromeo et al., 2016; Qu et al., 2022) and 700 
ASCL1-high atypical teratoid/rhabdoid tumours (Tamrazi et al., 2019), suggesting an 701 
ASCL1 interaction with oncogenic potential across various contexts. We additionally 702 
draw attention to the BAF chromatin remodeler BCL7A, for which we found no ASCL1 703 
connection in the literature, and which is also associated with diverse cancers (Baliñas-704 
Gavira et al., 2020; Liu et al., 2021). 705 

Other Elevated interactions help characterize ASCL1 as a regulator of both neuronal 706 
and oligodendrocyte lineages. This includes the cell cycle regulator GADD45G (Huang 707 
et al., 2010), the neuronal tubulin TUBB2B (Mazurier et al., 2014; Lin et al., 2017), and 708 
acetylcholine receptor subunit CHRNA4 (Ueno et al., 2012). PPP1R14B and ASCL1 709 
expression was used to define a primitive oligodendrocyte progenitor population (Weng 710 
et al., 2019). We were unable to find (from a low-throughput study or otherwise) a direct 711 
connection between ASCL1 and the neuronal adhesion ADGRG1 (Simão et al., 2018), 712 
the cortical-marker and calcium-binding regulator KCNIP3 (Ragazzini et al., 2023), or 713 
the neuronal splicing factor CELF3 (Yu et al., 2017), although the latter is used as a 714 
neuroendocrine marker to characterize ASCL1-high SCLC subtypes (Zhang et al., 715 
2018). Finally, we highlight REPIN1, an Elevated gene that lacked any ASCL1 716 
connection in the literature that is also generally understudied. 717 

The next tier, of Species-Specific sets, each comprised 19 genes. PRDX2, for example, 718 
is a neuronal-enriched mitochondrial gene that has been shown to enhance ASCL1-719 
induced astrocyte-to-neuron reprogramming (Russo et al., 2021). HEPACAM2 is 720 
another gene implicated in cancer (Deprez et al., 2020; Yamada et al., 2022) that we 721 
could not find a direct ASCL1 association in the literature. TMEM61, lacking a 1:1 722 
mouse ortholog, was only eligible for consideration in the Human-specific set, while the 723 
reciprocal applied to the mouse Nbl1. Of the 27 genes in the final tier, the Mixed-724 
Species set, we highlight CXXC5. This zinc finger TR was initially characterized as a 725 
bone morphogenic-responsive regulator of Wnt signaling in neural stem cells 726 
(Andersson et al., 2009), and has been further described as a signal integrator in 727 
development and homeostasis with tumour suppressive qualities (Xiong et al., 2019). 728 
These examples collectively illustrate the diverse roles of essential TRs, such as 729 
ASCL1, in development and disease. 730 

Lastly, we summarize the compiled evidence for the Notch ligand encoding DLL3, a 731 
well-established and curated ASCL1 target (Henke et al., 2009) that was present in the 732 
Stringent collection. DLL3 ranked fourth in the ASCL1 coexpression rankings in both 733 
species, making it one of ASCL1’s most reproducible coexpression partners. Figs. 6B,C 734 
illustrates the distribution of Pearson’s correlations for the 238 annotated cell types from  735 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2025. ; https://doi.org/10.1101/2024.02.15.580581doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.15.580581
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 

23
 

 736 

Figure 6. Reproducible ASCL1 interactions. (A) Heatmap representing the tiered evidence for 737 
ASCL1 candidate targets. (B, C) Distribution of Pearson’s correlations for ASCL1-DLL3 in (B) 738 
human and (C) mouse, as in Fig. 1E-G. (D, E) Scatterplot of the CPM values for ASCL1 and 739 
DLL3 for the cells belonging to the cell type that had the highest correlation in the entire corpus 740 
for (D) human and (E) mouse. (F, G) Genome track plots centered on DLL3 (yellow boxes) in 741 
(F) human and (G) mouse, where the base of the red bars indicates ASCL1 binding regions, 742 
and the height indicates the count of ASCL1 ChIP-seq datasets with a peak in the region. 743 

23 
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54 human datasets in which ASCL1 and DLL3 were co-measured (275 cell types in 61 744 
datasets for mouse). Notably, despite being one of the most reproducible ASCL1 745 
coexpressions, this association is not universal across all cell types. Figs. 6D,E shows 746 
the scatter plots of the individual cell types in which the greatest correlation was found: 747 
in human, annotated as “neural cells” (r = 0.54; Garcia-Alonso et al., 2022), and in 748 
mouse, “GABAergic INs” (interneurons) (r = 0.63, Hamed et al., 2022). Given the 749 
importance of ASCL1 regulation of Notch signalling in neuronal cells (Castro et al., 750 
2006; Castro et al., 2011; Lampada and Taylor, 2023), these collective observations 751 
support that our resource can still prioritize specific interactions. 752 
In Figs. 6F,G, we demonstrate the ASCL1-DLL3 binding evidence; DLL3 was ranked 753 
493rd in the human aggregate binding profile and 81st in mouse. In human, this 754 
corresponded to 83 discrete bound regions (Methods) within 500Kb of either direction of 755 
the DLL3 TSS, and 25 within 100Kb; in mouse 73 regions within 500Kb and also 25 756 
within 100Kb. We calculated which regions were most frequently bound by ASCL1 757 
across datasets, reasoning that this may help prioritize functional ASCL1-DLL3 758 
enhancers (while being cognizant of biasing factors like open promoters). Using the 759 
500Kb cut-off in human, we found that 20 sites were bound in more than one dataset, 760 
and that a region approximately 775 base pairs upstream of the DLL3 TSS had a 761 
maximum count of 6. In mouse, 28 regions were bound across multiple datasets, with 762 
the most frequently bound region (nine of ten datasets) occurring approximately 400 763 
base pairs upstream of the DLL3 TSS. 764 

Discussion 765 

In this study we pursued two main objectives. First, we aimed to understand the 766 
behavior of the meta-analytic strategy of aggregating single cell coexpression networks 767 
(Crow et al., 2016), applying this methodology across a large and broad corpus of 768 
scRNA-seq studies. We believe this technique holds great potential in uncovering 769 
robust gene coexpression patterns free from the confounding effect of cellular 770 
composition. However, before considering specific cell types or conditions, we sought to 771 
calibrate expectations using a large collection of heterogeneous data. This objective 772 
aligned with our second aim of identifying reproducible transcription regulator 773 
coexpression patterns. We wished to assess how well this information aligns with other 774 
lines of regulation evidence, and to provide an organized summary of this information as 775 
a community resource (https://doi.org/10.5683/SP3/HJ1B24). 776 

While prior work has nominated TR-target interactions across a large and context-777 
independent corpus of data (Garcia-Alonso et al., 2019; Keenan et al., 2019; Müller-Dott 778 
et al., 2023), to our knowledge ours is the first to do so using a broad range of single 779 
cell transcriptomics. Our literature curation benchmark strongly supports the ability of 780 
this resource to prioritize curated targets, and we further find numerous examples of 781 
reproducible and conserved coexpressed TR-gene partners also supported by ChIP-782 
seq evidence. Collectively, this suggests that this information can help prioritize 783 
interactions when direct experimental evidence is lacking. Our benchmarks additionally 784 
provide insight into the TRs whose activity is more challenging to uncover, given the 785 
considered genomics data (Supplemental Tables 2-3). 786 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2025. ; https://doi.org/10.1101/2024.02.15.580581doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.15.580581
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 

25 
 

Our workflow prioritizes interactions that are most common across contexts, akin to our 787 
prior study (Morin et al., 2023). Overall, it is not surprising that the most reproducible 788 
relationships tend to relate to processes shared by many cell types. This may be partly 789 
a function of expression levels (Crow et al., 2016), but it is logical that the dynamics of 790 
processes like the cell cycle are more readily captured by changing transcript levels. We 791 
still find evidence for highly context-specific interactions: as long as there is enough 792 
supporting data such patterns can emerge. Conversely, if a TR’s activity is highly 793 
pleiotropic, our framework will tend to only prioritize the partners shared across data. 794 
That we are able to observe reproducible patterns in this heterogenous collection raises 795 
our confidence in applying this framework to specific contexts in future work, such as 796 
identifying tissue-specific versus global partners for TRs like PAX6. 797 

Repression is more difficult to infer from coexpression than activation, for reasons we 798 
discuss in the Supplemental Material. Similarly, differential interactions are more difficult 799 
to characterize than those that are reproducible, requiring evidence of absence. While 800 
these considerations motivated our focus on the top reproducible coexpression 801 
patterns, the data we have organized can help potentiate the discovery of divergent 802 
regulatory interactions. Suresh and colleagues (2023), for example, used single cell 803 
coexpression of human and primate data to nominate both conserved and human-novel 804 
coexpression patterns. Given that "TR-rewiring" (differential TR activity) is hypothesized 805 
to be a primary driver of phenotypic variation, it would be valuable to assess the degree 806 
to which differential coexpression between species in matched contexts can reveal 807 
distinct regulatory activity. 808 

Numerous methods have been developed for gene regulatory network reconstruction 809 
using single cell coexpression, with multiple benchmarks concluding that no algorithm 810 
dominates (Chen and Mar, 2018; Pratapa et al., 2020; Nguyen et al., 2021; McCalla et 811 
al., 2023). In particular, McCalla and colleagues (2023) emphasized the favorable 812 
performance of Pearson’s correlation (as used in this study) relative to more complex 813 
models. This aligns with observations by Harris et al., 2021, who found that aggregating 814 
single cell coexpression using the computationally efficient Pearson’s correlation 815 
provided results that were consistent with alternative similarity metrics (Skinnider et al., 816 
2019). Indeed, we feel that the most important ingredient in the analysis is the 817 
aggregation of data because the sparsity of the data is difficult to address otherwise. 818 
Our focus on simplistic approaches supports that our conclusions are generalizable to 819 
more complex forms of coexpression analysis (Crow et al., 2016). 820 

We believe that the organized information we provide will be a valuable community 821 
resource. Beyond lists of genes plausibly regulated by each TR, the interactions 822 
identified in this study can assist studies examining the conservation of regulatory 823 
interactions, or the chromatin factors commonly coexpressed with each TR. Highly 824 
ranked interactions could be used for benchmarking predictive methods, or further 825 
dissected towards our understanding of the chromatin and sequence features that are 826 
characteristic of reproducible interactions. Future work may find it fruitful to construct 827 
context-specific aggregations to contrast against this heterogeneous collection, or to 828 
further integrate this resource with other lines of regulation evidence, as we did with the 829 
ChIP-seq data. 830 
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Data Availability 831 

All summarized rankings, scored ChIP-seq experiments, and GO analysis results are 832 
made available as R objects in the Borealis data repository 833 
(https://doi.org/10.5683/SP3/HJ1B24). The identifiers and associated data links of the 834 
analyzed scRNA-seq experiments are found in Supplemental Table 1 and summaries of 835 
the curation benchmark are found in Supplemental Tables 2-3.  The code to reproduce 836 
the analysis is located at https://github.com/PavlidisLab/TR_singlecell.  837 
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