
 1 

TITLE PAGE 
Title:  

A multidimensional investigation of sleep and biopsychosocial 
profiles with associated neural signatures 
 
Authors: 
Aurore A. Perrault1,2,3D*, Valeria Kebets4,5,6,7,8D*, Nicole M. Y. Kuek4,5,6, Nathan E. Cross1,2,9, Rackeb 
Tesfaye8, Florence B. Pomares1,2, Jingwei Li4,5,6,10,11, Michael W.L. Chee5, Thien Thanh Dang-Vu1,2, B.T. 
Thomas Yeo4,5,6,12,13,14 

 
Affiliations:  
1. Sleep, Cognition and Neuroimaging Lab, Department of Health, Kinesiology and Applied Physiology 

& Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada 
2. Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l’Ile-

de-Montréal, QC, Canada  
3. Sleep & Circadian Research Group, Woolcock Institute of Medical Research, Macquarie University, 

Sydney, NSW, Australia 
4. Department of Electrical and Computer Engineering, National University of Singapore, Singapore 
5. Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo 

Lin School of Medicine, National University of Singapore, Singapore 
6. N.1 Institute for Health, National University of Singapore, Singapore 
7. McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), McGill University, 

Montreal, QC, Canada 
8. McGill University, Montreal, QC, Canada 
9. School of Psychology, University of Sydney, NSW, Australia 
10. Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, 

Germany  
11. Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich 

Heine University Düsseldorf, Germany 
12. Department of Medicine, Human Potential Translational Research Programme & Institute for Digital 

Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 
13. Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 
14. Martinos Center for Biomedical Imaging, Massachussetts General Hospital, Charlestown, MA, USA 
 
D Authors contributed equally.  
 
*Corresponding authors: 
Aurore A. Perrault 
Concordia University, Montreal, Canada 
aurore.perrault@gmail.com 
Valeria Kebets 
McGill University, Montreal, Canada 
valkebets@gmail.com   

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 21, 2024. ; https://doi.org/10.1101/2024.02.15.580583doi: bioRxiv preprint 

mailto:aurore.perrault@gmail.com
mailto:valkebets@gmail.com
https://doi.org/10.1101/2024.02.15.580583
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

ABSTRACT 
 
Sleep is essential for optimal functioning and health. Interconnected to multiple biological, 
psychological and socio-environmental factors (i.e., biopsychosocial factors), the multidimensional 
nature of sleep is rarely capitalized on in research. Here, we deployed a data-driven approach to identify 
sleep-biopsychosocial profiles that linked self-reported sleep patterns to inter-individual variability in 
health, cognition, and lifestyle factors in 770 healthy young adults. We uncovered five profiles, including 
two profiles reflecting general psychopathology associated with either reports of general poor sleep or 
an absence of sleep complaints (i.e., sleep resilience) respectively. The three other profiles were driven 
by the use of sleep aids and social satisfaction, sleep duration and cognitive performance, and sleep 
disturbance linked to cognition and mental health. Furthermore, identified sleep-biopsychosocial 
profiles displayed unique patterns of brain network organization. In particular, somatomotor network 
connectivity alterations were involved in the relationships between sleep and biopsychosocial factors. 
These profiles can potentially untangle the interplay between individuals' variability in sleep, health, 
cognition and lifestyle — equipping research and clinical settings to better support individual’s well-
being. 
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INTRODUCTION 
 
Decades of research have established that sleep is interconnected to multiple biological, psychological 
and socio-environmental factors (i.e., biopsychosocial factors)1–4. Importantly, sleep difficulties are 
among the most common comorbidities of mental and physical disorders5–8, highlighting the central 
role of sleep in health. Despite the recognition that sleep is a unique marker for optimal health9,10 and 
a potential transdiagnostic therapeutic target, its multidimensional and transdisciplinary nature is rarely 
capitalized on in research. Traditionally, single-association studies have investigated the relationship 
between a single dimension of sleep (e.g., duration, quality, onset latency) and/or a single outcome of 
interest. Such uni-dimensional studies have demonstrated links between insufficient or poor sleep with 
a multitude of negative outcomes separately, including cognitive difficulties11,12, brain connectivity 
changes13–15, decreased physical health7,16, mental health and well-being8,17, as well as increased risks 
for cardiovascular disease7,18,19, neurodegenerative disease20,21 and psychiatric disorders8,22. However, 
by treating sleep as a binary domain (e.g., good vs. poor sleep, short vs. long), these studies fail to 
capture the multidimensional nature of sleep and the multiple intricate links with biological, 
psychological, and socio-environmental (i.e., biopsychosocial) factors.  Therefore, it remains unclear 
which biopsychosocial factors are most robustly associated with sleep traits and whether these factors 
are supported by similar neural mechanisms.  
 
Adding to the complexity of these relationships is how sleep and good sleep health are defined. 
Characterizing sleep is a challenging task because of its multidimensional nature23. Sleep can be defined 
by its quantity (i.e., sleep duration) and quality (i.e., satisfaction, efficiency), as well as in terms of 
regularity, timing, and alertness. These dimensions are deemed particularly relevant when defining 
sleep health9, as they each have been related to biopsychosocial outcomes. Different sleep dimensions 
can also be described as either “good” or “bad” sleep, without necessarily affecting one another, e.g., 
short sleep duration is not systematically associated with poor sleep quality. Another important aspect 
of sleep is how it is subjectively characterized. For instance, our perception of sleep can influence 
daytime functioning24 and can be ascribed to certain behaviors that differ from objective reports25,26. 
Reconciling the multiple components of sleep and the complex connections to a myriad of 
biopsychosocial factors requires frameworks grounded in a multidimensional approach. The 
biopsychosocial model has long been used to assert that biological (e.g., genetics and intermediate brain 
phenotypes), psychological (e.g., mood and behaviors), and social factors (e.g., social relationships, 
economic status), are all significant contributors to health and disease2,3. Indeed, the biopsychosocial 
model has been used to establish current diagnostic and clinical guidelines, such as the World Health 
Organization’s International Classification of Functioning, Disability and Health, and is considered 
central to person-centered care27. Hence, statistical methods that enable us to interrogate the complex 
interconnected relationships within and between sleep and biopsychosocial factors can advance our 
understanding of optimal health and functioning across the lifespan. Multivariate data-driven 
techniques can help disentangle these complex interrelations, by deriving latent components that 
optimally relate multidimensional data sets in a single integrated analysis. A few studies have used such 
techniques to account for the multidimensional components of sleep and biopsychosocial factors 
separately15,28–32. However, no study has integrated both multidimensional components of sleep and 
biopsychosocial factors to derive profiles that can account for the dynamic interplay among 
biopsychosocial factors, and link such components with brain network organization.    
 
Deploying multivariate data-driven techniques requires a large sample size to identify latent 
components that can be generalised well33–35. One such optimal dataset is the Human Connectome 
Project dataset (HCP)36 as it comprises a wide range of self-reported questionnaires about lifestyle, 
mental and physical health, personality and affect, as well as objective measures of physical health and 
cognition from over a thousand healthy young adults. Moreover, the HCP dataset stands out as one of 
the rare large-scale datasets that implemented a detailed assessment of sleep health, i.e., the Pittsburg 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 21, 2024. ; https://doi.org/10.1101/2024.02.15.580583doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.15.580583
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

Sleep Quality Index (PSQI)37. This standardized sleep questionnaire, used both by clinicians and 
researchers, assesses different dimensions of sleep health in 19 individual items, creating 7 sub-
components defining different dimensions of sleep, including sleep duration, satisfaction, and 
disturbances.  
Beyond sleep-biopsychosocial profiling, the HCP dataset also provides the opportunity to explore the 
neural signatures of these sleep-biopsychosocial profiles using magnetic resonance imaging (MRI). 
Multiple studies have shown that neural signal fluctuation patterns during rest (i.e., resting-state 
functional connectivity; RSFC) are sensitive to sleep dimensions (e.g., sleep duration, sleep quality) 
14,15,32,38, but also predictive of psychopathology (e.g., depressive symptoms, impulsivity)39,40 and 
cognitive performance14,38. However, the way large-scale network organization may differentially affect 
individuals’ variability in sleep, psychopathology, cognition and lifestyle, remains to be characterized 
beyond unidimensional association studies. Such holistic biopsychosocial approaches are not only in line 
with established diagnostic frameworks but also with initiatives such as the NIMH’s Research Domain 
Criteria (RDoC) that encourage investigating mental disorders as continuous dimensions rather than 
distinct categories by integrating data from genomics, neural circuitry and behavior41–43. 
 
Identifying vulnerability markers constitutes a first step towards forecasting disease trajectories and 
designing multimodal multidimensional targeted therapies. Given the increasing recognition that sleep 
has a central role in health and well-being, we believe that sleep profiles should be included as a core 
aspect of these markers. Hence, in this study, we sought to take a multidimensional data-driven 
approach to identify sleep-biopsychosocial profiles that simultaneously relate self-reported sleep 
patterns to biopsychosocial factors of health, cognition, and lifestyle in the HCP cohort of healthy young 
adults36. We further explored patterns of brain network organization associated with each profile to 
better understand their neurobiological underpinnings.  
 

RESULTS 
We applied canonical correlation analysis (CCA) to derive latent components (LCs) linking the 7 sub-
components of the PSQI to 118 biopsychosocial measures (spanning cognitive performance, physical 
and mental health, personality traits, affects, substance use, and demographics; Table S1) in 770 
healthy adults from the S1200 release of the HCP dataset36 (Figure 1A). Participants were young adults 
between 22 and 36 years old (mean 28.86 ± 3.61 years old, 53.76% female), were generally employed 
full-time (70.7%) and were mostly white (78%; see Table 1 for Demographics). 
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Figure 1 - Canonical correlation analysis reveals five sleep-biopsychosocial profiles (LCs). 
(A) Canonical correlation analysis (CCA) flowchart and RSFC signatures; (B) Scatter plots showing correlations 
between biopsychosocial and sleep canonical scores. Each dot represents a different participant. Inset shows the 
null distribution of canonical correlations obtained by permutation testing; note that the null distribution is not 
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centered at zero. The dashed line indicates the actual canonical correlation computed for each LC. The distribution 
of sleep (top) and biopsychosocial (right) canonical scores is shown on rain cloud plots. 
 

Five latent components (LCs) linking sleep and biopsychosocial factors. 
Out of the seven significant LCs that were derived, 5 were interpretable LCs delineating multivariate 
relationships between sleep and biopsychosocial factors (Figure 1B; a description of LC6 and LC7 can 
be found in the Supplementary Material – Figure S1). While LC1 and LC2 were defined by general 
patterns of sleep (either general poor sleep or sleep resilience), LCs 3-5 reflected more specific sub-
components of the PSQI, all associated with specific patterns of biopsychosocial factors. The 5 LCs 
respectively explained 88%, 4%, 3%, 2%, 1% of covariance between the sleep and biopsychosocial data.  
 

 
Figure 2 – The first latent component (LC1) reflects poor sleep and psychopathology. 
(A) Sleep loadings (left) and top 15 strongest biopsychosocial (BPS) loadings (right) for LC1. Greater loadings on 
LC1 were associated with higher measures of poor sleep and psychopathology. Higher values on sleep (blue) and 
biopsychosocial (green, purple, pink) loadings indicate worse outcomes. Error bars indicate bootstrapped-
estimated confidence intervals (i.e., standard deviation) and measures in bold indicate statistical significance (after 
FDR correction q<0.05); (B) Unthresholded edge-wise beta coefficients obtained from generalized linear models 
(GLM) between participants’ LC1 canonical scores (i.e., averaged sleep and biopsychosocial canonical scores) and 
their RSFC data; (C) FDR-corrected network-wise beta coefficients computed with GLMs within and between 17 
large-scale brain networks44 and subcortical regions45. (D) Distribution of the integration/segregation ratio in each 
of the 7 large-scale brain networks and subcortical regions associated with LC1 (left). The dashed line indicates the 
median of all parcels, and the bold black lines represent the median for each network. The integration/segregation 
ratio values for the 400 Schaeffer parcellation46 and 7 subcortical regions are projected on cortical and subcortical 
surfaces (right). 
 

B. RSFC edge-wise (uncorrected) D. Segregation/Integration RatioC. RSFC network-wise (FDR corrected)
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LC1 was characterized by a general pattern of poor sleep, including decreased sleep satisfaction, longer 
time to fall asleep, greater complaints of sleep disturbances and daytime impairment, as well as greater 
(i.e., worse) psychopathology (e.g., depression, anxiety, somatic complaints, internalizing behavior) and 
negative affect (e.g., fear, anger, stress – Figure 2A).  
Similarly, LC2 was also driven by greater psychopathology, especially attentional problems (e.g., 
inattention, ADHD), low conscientiousness, and negative affect (Figure 3A). In terms of sleep, however, 
in contrast to the first LC, greater psychopathology was only related to higher complaints of daytime 
impairment without complaints of sleep difficulties, suggesting sleep resilience.  
 

 
Figure 3 – The second latent component (LC2) reflects sleep resilience and psychopathology. 
(A) Sleep loadings (left) and top 15 strongest biopsychosocial (BPS) loadings (right) for LC2. Greater loadings on 
LC2 were associated with higher measures of complaints of daytime dysfunction and psychopathology. Positive 
values on sleep (blue) loadings indicate worse outcomes while positive values on biopsychosocial (green, purple, 
pink) loadings reflect higher magnitude on these measures. Error bars indicate bootstrapped-estimated confidence 
intervals (i.e., standard deviation) and measures in bold indicate statistical significance. (B) Unthresholded edge-
wise beta coefficients obtained from generalized linear models (GLM) between participants’ LC2 canonical scores 
(i.e., averaged sleep and biopsychosocial canonical scores) and their RSFC data; (C) FDR-corrected network-wise 
beta coefficients computed with GLMs within and between 17 large-scale brain networks44 and subcortical 
regions45. (D) Distribution of the integration/segregation ratio in each of the 7 large-scale brain networks and 
subcortical regions associated with LC2 (left). The dashed line indicates the median of all parcels, and the bold black 
lines represent the median for each network. The integration/segregation ratio values for the 400 Schaeffer 
parcellation46 and 7 subcortical regions are projected on cortical and subcortical surfaces (right). 
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Figure 4 – The third latent component (LC3) reflects hypnotics and sociability. 
(A) Sleep loadings (left) and top 15 strongest biopsychosocial (BPS) loadings (right) for LC3. Greater loadings on 
LC3 were associated with the use of sleep aids and measures of positive social relationships, lower body mass index 
(BMI) and poor visual episodic memory performance. Positive values on sleep (blue) loadings indicate worse 
outcomes while positive values on the mental health (green), affect (pink) and personality (purple) categories of 
biopsychosocial loadings reflect higher magnitude on these measures. Positive value in the physical health (olive) 
category represents higher value and positive values in the cognition (orange) category indicate either higher 
accuracies or slower reaction times (RT). Error bars indicate bootstrapped-estimated confidence intervals (i.e., 
standard deviation) and measures in bold indicate statistical significance. (B) Unthresholded edge-wise beta 
coefficients obtained from generalized linear models (GLM) between participants’ LC3 canonical scores (i.e., 
averaged sleep and biopsychosocial canonical scores) and their RSFC data; (C) FDR-corrected network-wise beta 
coefficients computed with GLMs within and between 17 large-scale brain networks44 and subcortical regions45. 
(D) Distribution of the integration/segregation ratio in each of the 7 large-scale brain networks and subcortical 
regions associated with LC3 (left). The dashed line indicates the median of all parcels, and the bold black lines 
represent the median for each network. The integration/segregation ratio values for the 400 Schaeffer 
parcellation46 and 7 subcortical regions are projected on cortical and subcortical surfaces (right). 
 
LC3 was mostly characterized by sleep-aids intake (i.e., sleep meds PSQI sub-component) and to a lesser 
extent a lack of daytime functioning complaint. Surprisingly, LC3 was not driven by any attentional 
problem but was related to worse performance in visual episodic memory and emotional recognition. 
Moreover, sleep aids/hypnotics intake was mainly related to satisfaction in social relationships (Figure 
4A). 
While LC4 was solely driven by sleep duration (i.e., not sleeping enough - reporting <6-7h per night), 
LC5 was mostly characterized by the presence of sleep disturbances that can encompass multiple 
awakenings, nocturia and breathing issues as well as pain or temperature imbalance. In LC4, short sleep 
duration was associated with worse accuracy and longer reaction time at multiple cognitive tasks 
tapping into emotional processing, delayed reward discounting, language, fluid intelligence, and social 

LC3 - Hypnotics & Sociability

B. RSFC edge-wise (uncorrected) C. RSFC network-wise (FDR corrected)

A. Sleep & Biopsychosocial loadings

Sleep loadings BPS loadings

Sleep
Demographics
Physical Health
Cognition
Mental Health
Affect
Personality
Substance Use

Sleep Meds

Sleep Latency

Sleep Disturbance

Sleep Ef�ciency

Sleep Duration

Sleep Satisfaction

Daytime Functioning

-1.0 -0.5 0.0 0.5 1.0

Type

-0
.0

08
0.

00
8

Be
ta

s c
oe

f�
ci

en
ts

TPN

DMN

CON
LIM
SAL

DAN

SMN

VIS
SubC

TP
N

D
M

N

CO
N

LI
M

SA
L

D
AN

SM
N VI
S

Su
bC

Social Relationship: Friendship (NIH)
Conscientiousness (NEOFAC)

Social Relationship: Emotional Support (NIH)
Emotion Recognition: Sad - Accuracy (PERT)

Spatial Orientation - RT (VSPLOT)
Thought Problems (ASR)

Fluid Intelligence - RT (PMAT)
Childhood Conduct Problems (SSAGA)

Agoraphobia (SSAGA)
Social Relationship: Perceived Rejection (NIH)

DSM Inattention Problems (ASR)
Visual Episodic Memory (NIH)

Openness to Experience (NEOFAC)
BMI

Attention Problems (ASR)

-0.50 -0.25 0.00 0.25 0.50

more complaintsless complaints

Average betas
-0.01 0.01

C
B

A

C
B

A

A

BB
A

B

A

B
A

B

A

D. Segregation/Integration Ratio

more integrated

TPN

SubC

DMN

CON
LIM
SAL

DAN
SMN

VIS

more segregated

L R

Thalamus

Amygdala
1.5-1

Pallidum
Caudate

Cortical

Subcortical
Hippocampus

Nucleus 
Accumbens

Putamen

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 21, 2024. ; https://doi.org/10.1101/2024.02.15.580583doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.15.580583
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

cognition. LC4 was also characterized by higher aggressive behavior and lower agreeableness (Figure 
5A).  
Interestingly, sleep disturbances in LC5 were also associated with aggressive behavior and worse 
cognitive performance (e.g., in language processing and working memory), but were mostly 
characterized by critical items on mental health assessments (i.e., anxiety, thought problems, 
internalization) and substance abuse (i.e., alcohol and cigarette use – Figure 6A). 
 

 
Figure 5 – The fourth latent component (LC4) reflects sleep duration and cognition. 
(A) Sleep loadings (left) and top 15 strongest biopsychosocial (BPS) loadings (right) for LC4. Greater loadings on 
LC4 were associated with shorter sleep duration and measures of poor cognitive performance. Positive values on 
sleep loadings indicate worse outcomes while positive values on the mental health (green), substance use (yellow), 
demographics (light blue) and personality (purple) categories of biopsychosocial loadings reflect higher magnitude 
on the measures. Positive values in the cognition (orange) category indicate either higher accuracies or slower 
reaction times (RT). Error bars indicate bootstrapped-estimated confidence intervals (i.e., standard deviation) and 
measures in bold indicate statistical significance. (B) Unthresholded edge-wise beta coefficients obtained from 
generalized linear models (GLM) between participants’ LC4 canonical scores (i.e., averaged sleep and 
biopsychosocial canonical scores) and their RSFC data; (C) FDR-corrected network-wise beta coefficients computed 
with GLMs within and between 17 large-scale brain networks44 and subcortical regions45. (D) Distribution of the 
integration/segregation ratio in each of the 7 large-scale brain networks and subcortical regions associated with 
LC4 (left). The dashed line indicates the median of all parcels, and the bold black lines represent the median for 
each network. The integration/segregation ratio values for the 400 Schaeffer parcellation46 and 7 subcortical 
regions are projected on cortical and subcortical surfaces (right). 
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Figure 6 – The fifth latent component (LC5) reflects sleep disturbance, cognition and psychopathology. 
(A) Sleep loadings (left) and top 15 strongest biopsychosocial (BPS) loadings (right) for LC5. Greater loadings on 
LC5 were associated with the presence of sleep disturbances, higher measures of psychopathology and lower 
cognitive performance. Positive values on sleep loadings indicate worse outcomes while positive values on the 
mental health (green), substance use (yellow) and personality (purple) categories of biopsychosocial loadings 
reflect higher magnitude on these measures. Positive values in the cognition (orange) category indicate either 
higher accuracies or slower reaction times (RT), while positive values in the demographics (light blue) and physical 
health (olive) categories represent higher values. Error bars indicate bootstrapped-estimated confidence intervals 
(i.e., standard deviation) and measures in bold indicate statistical significance. (B) Unthresholded edge-wise beta 
coefficients obtained from generalized linear models (GLM) between participants’ LC5 canonical scores (i.e., 
averaged sleep and biopsychosocial canonical scores) and their RSFC data; (C) FDR-corrected network-wise beta 
coefficients computed with GLMs within and between 17 large-scale brain networks44 and subcortical regions45. 
(D) Distribution of the integration/segregation ratio in each of the 7 large-scale brain networks and subcortical 
regions associated with LC5 (left). The dashed line indicates the median of all parcels, and the bold black lines 
represent the median for each network. The integration/segregation ratio values for the 400 Schaeffer 
parcellation46 and 7 subcortical regions are projected on cortical and subcortical surfaces (right). 

 

Sleep and biopsychosocial profiles exhibit distinct signatures of resting-state brain 
connectivity. 
In terms of brain organization, the 5 LCs revealed distinct patterns of network connectivity. Specifically, 
we examined patterns of both within-network and between-network connectivity (see Figure S2 for 
subcortical-cortical patterns).  
Greater (averaged) biopsychosocial and sleep composite scores on LC1 were associated with increased 
RSFC between subcortical areas and the somatomotor and dorsal attention networks (Figures 2B and 
2C), and a decreased RSFC between the temporoparietal network and these two networks. The visual 
network showed a flattened distribution of segregation/integration ratio (i.e., more variability in 
segregation and integration among the parcels of the network). The amygdala and nucleus accumbens 
exhibited asymmetrical patterns in the segregation/integration ratio with the left side being more 
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segregated (Figure 2D). Meanwhile, LC2 was associated with increased RSFC between the dorsal 
attention and control network but decreased RSFC between dorsal attention and the temporoparietal 
and limbic networks (Figures 3B and 3C), a higher segregation of nodes within the temporoparietal 
network and increased integration within the right thalamus (Figure 3D). Higher composite scores in 
LC3 were associated with increased RSFC within the visual and default mode networks (Figures 4B and 
4C). The segregation/integration ratio within the default mode exhibited a flattened distribution (i.e., 
high variability in segregation and integration among parcels) but there was an increased segregation 
in the limbic and visual networks (Figure 4D). While greater composite scores in LC4 were associated 
with widespread patterns of hypo- or hyper-connectivity within and between every network the 
somatomotor network specifically exhibited an altered pattern of segregation and integration (Figures 
5B to 5D). Finally, we found that greater averaged composite scores in LC5 were mainly associated with 
reduced within-network connectivity in the somatomotor, dorsal and ventral attention networks 
(Figures 6B and 6C) but no strong pattern of segregation/integration ratio change (Figure 6D).   
 

Post-hoc associations with socio-demographics, health, and family history of mental 
health 
We found a number of significant associations between LC composite scores and socio-economic (e.g., 
education level, household income) and socio-demographic factors (e.g., race, ethnicity; see Table S4 
and Supplemental Results). In brief, most profiles (LCs 1,4,5) showed significant associations between 
sleep-biopsychosocial composite scores and education level, where lower education level was 
associated with a higher composite score in LCs 1,4,5 (all q<0.05). Similarly, lower household income 
correlated with a higher composite score in LCs 1-2 (all q<0.05). Race and ethnicity groups revealed 
differences in composite sleep and biopsychosocial scores for LCs 1,3-5 (all q<0.05). Finally, while the 
presence of a family history of psychopathology was associated with higher biopsychosocial scores in 
LCs 1-2, we only found biological sex differences in LC5, with higher sleep and biopsychosocial 
composite scores in female participants (q<0.05). 
 

Control analyses 
We summarize several analyses that demonstrate the robustness of our findings. First, LC1 and LC2 
successfully generalized in our cross-correlation scheme (mean across 5 folds: r=0.49, p=0.001; r=0.19, 
p=0.039 respectively), but not LCs 3-5 (see Table S3), suggesting that LCs 3-5 might not be as robust 
and generalizable, possibly due to these LCs being driven by a single sleep dimension. Second, we re-
computed the CCA analysis after: (i) applying quantile normalization on sleep and biopsychosocial 
measures; (ii) excluding participants that had tested positive for any substance on the day of the MRI; 
(iii) excluding physical health measures (i.e., body mass index, hematocrit, blood pressure) or (iv) 
sociodemographic variables (i.e., employment status, household income, school status, relationship 
status) from the biopsychosocial matrix. The CCA loadings remained mostly unchanged (Table S5). We 
also assessed the robustness of our imaging results in several ways. First, we re-computed the GLM 
analysis using RSFC data that underwent CompCor47 instead of GSR. The RSFC patterns were not much 
altered, as shown by generally high correlations with the main analysis (r=0.75, r=0.76, r=0.78, r=0.51, 
r=0.77 for LCs 1-5 respectively; Figure S3). Next, excluding subjects that likely fell asleep in the scanner 
did not impact our findings (r=0.90, r=0.87, r=0.95, r=0.95, r=0.95 for LCs 1-5 respectively; Figure S3); 
however, we found that these participants had higher sleep and biopsychosocial composite scores on 
LC4 compared to participants that likely stayed awake during the scan (Figure S4). Finally, we re-
computed the GLM analyses by using sleep and biopsychosocial canonical scores instead of averaged 
scores. We found moderate to high correlations with the main GLM analysis (r=0.69, r=0.62, r=0.63, 
r=0.46, r=0.67 for LCs 1-5 respectively; Figure S3).  
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DISCUSSION 
Leveraging a multidimensional data-driven approach in a large cohort of healthy young adults, we 
uncovered five distinct sleep profiles linked to biopsychosocial factors encompassing health, cognition, 
and lifestyle. We found that the first two profiles reflected general psychopathology (or p factor) 
associated with either reports of general poor sleep (LC1) or an absence of sleep complaints, which we 
defined as sleep resilience (LC2). Meanwhile, the three other profiles were driven by a specific 
dimension of sleep such as the use of sleep aids (LC3), sleep duration (LC4), or sleep disturbances (LC5), 
which were associated with distinct patterns of health, cognition, and lifestyle factors. Furthermore, 
identified sleep-biopsychosocial profiles displayed unique patterns of brain network organization. Our 
findings emphasize the crucial interplay between biopsychosocial outcomes and sleep, and the 
necessity to integrate sleep history to contextualize research findings and to inform clinical intake 
assessments 48.  
 
The dominance of psychopathology markers in most of the profiles is not surprising as the RDoC 
framework proposed arousal and regulatory systems (i.e., circadian rhythms and sleep/wakefulness) as 
one of the five key domains of human functioning likely to affect mental health49, which is consistent 
with a large literature reporting significant disruption of sleep across multiple psychiatric disorders8,50. 
Although individuals with a neuropsychiatric diagnosis (e.g., schizophrenia or major depression 
disorder) were not included in the HCP dataset36, the presence of the p factor, defined as an individual’s 
susceptibility to develop any common form of psychopathology, exists on a continuum of severity and 
chronicity within the general population51. Symptoms of psychopathology mirrored each other across 
LC1 and LC2 but the paradoxical contrast in sleep loadings suggests that some individuals might have 
more resilient sleep (LC2), whereby they might be able to maintain healthy sleep patterns in the face of 
psychopathology. However, the cause of such resilience is unclear. Up to 80% of individuals 
experiencing an acute phase of mental disorder (e.g., depressive and/or anxiety episode) report sleep 
issues8,52,53, leaving a minority of individuals who do not report abnormal sleep during such episodes. 
The identification of LC2 supports this and suggests there might be biological or environmental 
protective factors in some individuals who would otherwise be considered at risk for sleep issues. 
However, our understanding of such protective factors is limited54–56. These findings also highlight the 
need to appreciate the complexity of psychopathology, in line with the current view that psychiatric 
disorders are typically comorbid and heterogeneously expressed. Nonetheless, whether this profile of 
sleep resilience is a stable latent component or a cross-sectional observation of fluctuating symptoms 
that may develop into psychopathology-related sleep complaints, needs to be further tested. 
Interestingly, distinctions between LC1 and LC2 were also present in the neural signatures of RSFC, 
which may assist in the neurobiological interpretation of the profiles. Visually inspecting LC1 and LC2 
suggested an underlying increase in subcortical-cortical connectivity when sleep disturbances are 
associated with psychopathology. This is in alignment with the known neurophysiology of the ascending 
arousal system and possibly implies the existence of some level of hyperarousal in these pathways that 
may contribute to disturbances in sleep57. However, this speculation requires further targeted research 
to be confirmed. 
 
Within the profiles driven by a specific sleep sub-component, LC5 also reflected some dimensions of 
psychopathology (i.e., anxiety, critical items and thought problems) that were only associated with the 
presence of global sleep disturbances. The sleep disturbance sub-component of the PSQI is broad and 
encompasses complaints of sleep-related breathing problems as well as multiple awakenings that could 
be due to nycturia, pain, nightmares, or difficulties maintaining optimal body temperature37. Altogether, 
the sleep disturbances dimension is thought to represent sleep fragmentation58, and thus, sleep quality. 
This is in line with a recent study in a large community-based cohort (i.e., UK Biobank) that found that 
lifetime diagnoses of psychopathology and psychiatric polygenic risk scores were more strongly 
associated with accelerometer-derived measures of sleep quality (i.e., fragmentation) than sleep 
duration per se59. Similarly, we found that sleep duration (driving LC4) was not associated with measures 
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of psychopathology but rather with cognitive performance. Whether studied in the form of 
experimental acute sleep deprivation and chronic sleep restriction or clinical populations (e.g., insomnia 
with objective short sleep duration), the consequences of lack of sleep on daytime functioning and 
health are well-known and substantial11,12,16,60–62. Sleep duration affects, in varying effect sizes, both 
accuracy and reaction time in most cognitive tasks11,12,61. In our study, reports of regular short sleep 
duration, defined as <6-7h of total sleep time, was associated with reduced accuracy in working 
memory, emotional processing, language processing, delay discounting, fluid intelligence as well as 
longer reaction times during social cognition and emotional processing, mimicking results found in the 
sleep deprivation and sleep restriction literature11,14,61–66. Interestingly, the strong RSFC patterns 
associated with LC4 showed a global increase in connectivity, with localized segregation of part of the 
somatomotor network, which had been previously reported in neuroimaging studies of experimental 
acute total sleep deprivation64,67. Hence, this suggests that LC4 may be displaying an underlying level of 
sleep debt in the uncontrolled general population. 
 
Finally, beyond sleep measures and sleep-related daytime functioning, the PSQI also evaluates the use 
of medication to help sleeping37, whether prescribed or over-the-counter (e.g., gamma-aminobutyric 
acid GABAA receptor modulators, selective melatonin receptor agonists, selective histamine receptor 
antagonists, cannabinoid products, valerian)68. We found that LC3 was driven by the use of sleep aids 
and was mostly associated with reports of satisfaction in social relationships. Interestingly, while we 
would have expected more links between the use of sleep aids and cognitive impairment, especially in 
older adults69,70, we only found an association with visual working memory deficits but not with 
attentional problems. This profile specifically highlights a sub-group of young adults (22-36 years old) 
who experience sleep complaints and seek pharmacological solutions to manage them. As such, the 
associated biopsychosocial factors, in particular high sociability, could result from the effect of the drug 
itself on social behavior and positive mood (e.g., via potentiation of GABA transmission)71,72 or as a 
consequence of the drugs on sleep complaints73, which may support better emotional regulation and 
well-being, and consequently translate to greater satisfaction in social relationships and support 
systems73,74. We did not have information on the type nor duration of sleep aid usage as the PSQI only 
assesses sleep habits in the past month, which may not be a substantial period of time to observe robust 
changes in cognitive functioning as previously documented70,75 or the development of substance abuse. 
Indeed, while the chronic misuse of hypnotics can lead to dependence and addiction76, in our sample, 
the use of sleep aids was not associated with substance abuse. 
 
Interestingly, alterations to the segregation/integration ratio of the somatomotor and visual cortex 
were common in most profiles. Highly interconnected to the whole brain, the somatomotor network is 
crucial for processing external stimuli and producing motor responses but is also functionally involved 
in bodily self-consciousness and interoception. Altered dysconnectivity patterns of the somatomotor 
network have been linked to variation in several domains, including general psychopathology77,78, 
cognitive dysfunction related to sleep deprivation64, as well as the total PSQI score13,79. Overall, these 
findings suggest that alterations to RSFC in the somatomotor network are also involved in the 
relationships between sleep and biopsychosocial factors and highlight the importance of understanding 
the role of this brain network in overall mental health and functioning.  
 
These profiles contribute to a deeper understanding of the current debate that opposes sleep quality 
and sleep duration7,80. In line with previous studies11,12,81, we found that cognitive functioning was more 
related to sleep duration than subjective sleep quality; in addition, we found that sleep disturbances, 
alone (LC5) or in combination with other sleep dimensions (LC1), can be associated with the presence 
of psychopathology. Moreover, it is also important to note that complaints of poor sleep quality and/or 
short sleep duration have been both associated with increased risks of physical health outcomes and 
all-cause mortality6,7. While LC1 and LC2 presented sleep dimensions as being inextricably linked, LC3, 
LC4 and LC5 respectively revealed distinct facets of sleep, suggesting that while sleep dimensions are 
related, they can also be separable domains with specific connections to biopsychosocial factors. This is 
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likely reflected in the finding that only LC1 and LC2 were replicable in cross-validation analyses, which 
may be due to LC3, LC4 and LC5 being driven by a single sleep dimension and thus, contributing only 
marginally to the variance. Moreover, LC1 captured a large portion of the covariance, which could be 
due to the presence of collinearity among the sleep and/or biopsychosocial measures. We did not apply 
dimensionality reduction (or any other regression techniques) to the biopsychosocial measures prior to 
the CCA, as the number of subjects was higher than the number of measures, and because CCA removes 
within-block correlations, thus allowing the amplification of specific variables that mostly characterize 
the correlation between sleep and biopsychosocial measures82. In addition, we focused on structure 
coefficients (not canonical coefficients) to better identify the contribution of the variables to each 
profile, and then computed bootstrap analyses to further assess the stability of these variables across 
resampling.  
 
While unidimensional association studies have been informative, these findings reinforce the notion 
that sleep health is multidimensional and distinct measures of sleep quantity or quality should be 
considered together when investigating their influence on biopsychosocial aspects of health, cognition, 
and lifestyle. Future work should extend these findings and further explore the multidimensional nature 
of sleep health, for instance, taking into consideration the U-shaped relationship of sleep duration with 
biopsychosocial measures. Given the design of the PSQI, only short sleep duration (<5-6h) was 
considered as a sleep difficulty, neglecting the potential consequences of long sleep duration (>9h). 
Long sleep duration is commonly observed in hypersomnia disorders and psychopathology (e.g., 
schizophrenia, depression)6,83, as well as being associated with increased risk of cardiovascular heart 
disease and mortality7,84,85 and cognitive decline6,20. This U-shape observation, whereby both short and 
long sleep durations are associated with negative health and cognitive consequences as well as 
increasing markers of cerebrovascular burden (e.g., white matter hyper-intensities)55, may provide a 
window to identify mechanisms that underlie the interplay between sleep and biopsychosocial factors.  
Other considerations moving forward include sleep regularity and sleep timing, which are not part of 
the computation of the sub-components of PSQI37, hence their association with biopsychosocial 
outcomes were not investigated in this study. Furthermore, the PSQI is often interpreted with regard to 
its total score (combining all sub-components), which provides a binary vision of sleep quality (either 
good or bad sleep)37. In this study, we did not want to be limited by the PSQI global score but rather 
aimed to untangle the different dimensions (subcomponents) of sleep and their relations to 
biopsychosocial and neurobiological measures. 
A final important distinction to be addressed is that sleep and biopsychosocial outcomes were mostly 
self-reported through questionnaires. Both objectively recorded and subjectively perceived estimations 
provide different yet meaningful information that tends to positively correlate86. However, it has been 
shown that when compared to objective estimates (i.e., polysomnography and/or actigraphy 
recordings), individuals with sleep complaints (i.e., chronic insomnia, obstructive sleep apnea) tend to 
subjectively misperceive their sleep (i.e., duration, sleep latency)25,26,87,88. The degree of discrepancy 
between objective and subjective measures (i.e., sleep state misperception) has been correlated with 
worse sleep quality89,90 as well as compromised reports of daytime functioning24. While objective 
measurements might have exposed divergent associations between sleep and biopsychosocial factors, 
the profiles reported here arguably support greater clinical validity, where the subjective complaints are 
often what drives an individual to seek out healthcare. Our study emphasizes that considering 
individuals’ sleep experience can support clinicians to make more accurate initial assessments and 
navigate the course of treatment and interventions. 
 
The awareness and interest surrounding sleep as a crucial pillar of health is growing rapidly91. However, 
the role of sleep in general health is complex, multifaceted, and largely unknown. The multidimensional 
approach applied in this large sample of healthy young adults is a first step that we argue should be 
implemented in future research incorporating sleep. We highlight the observation of five distinct sleep 
patterns associated with specific combinations of biological, psychological and socio-environmental 
factors. These findings support that sleep is emerging as a distinguishable factor that can assist in 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 21, 2024. ; https://doi.org/10.1101/2024.02.15.580583doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.15.580583
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

disentangling the complex heterogeneity of human health. As the capacity for large-scale human 
research continues to grow, integrating sleep dimensions at such a scale is not only feasible in terms of 
evaluation, but presents a unique opportunity for translational application. Sleep is a modifiable lifestyle 
factor and can be investigated in model organisms as well as in humans, and as such is well positioned 
to identify potential converging mechanisms and intervention pathways or tools. The current study 
emphasizes that by using a multidimensional approach to identify distinct sleep-biopsychosocial profiles 
we can begin to untangle the interplay between individuals’ variability in sleep, health, cognition, 
lifestyle, and behavior—equipping research and clinical settings to better support individuals’ well-
being. 
 
 

METHODS 

Participants 
Data for this study were obtained from the S1200 release of the publicly available Human Connectome 
Project (HCP) dataset36. The HCP dataset comprises multimodal MRI data, including structural MRI, 
diffusion MRI, resting-state and task functional MRI (fMRI) data, as well as a broad range of behavioral 
measures collected in young healthy subjects (aged 22-36). Details about imaging acquisition 
parameters and data collection36 as well as the list of available behavioral and demographics measures 
(HCP S1200 Data Dictionary)92 can be found elsewhere. Of note, the HCP dataset comprises a large 
number of related individuals (i.e., siblings and twins). Of the 1,206 total subjects available from the 
HCP S1200 release, we excluded 403 participants with missing/incomplete data, and 33 participants 
with visual impairment that might have impacted their task performance in the scanner. Our final 
sample comprised 770 participants (53.76% female, 28.86 ± 3.61 years old). We decided to keep 
participants (N=94) who tested positive for any substance (including alcohol, marijuana, and other 
drugs) on the day of the MRI, as substance use has intricate links to sleep, and we did not want to 
exclude the possibility of finding potential substance use-related sleep profiles. However, we also re-
computed our analyses after excluding these individuals (N=676) and found very similar results (see 
Table S5). Out of these 770 participants, 723 passed MRI quality control and were included in the 
posthoc RSFC analyses. 
 

Sleep assessment 
Participants were administered the Pittsburgh Sleep Quality Index37 (PSQI) to assess different aspects 
of their sleep over the past month. To define sleep in our study, we used the 7 sub-components of the 
PSQI which characterize different sleep dimensions, namely (i) sleep satisfaction, (ii) sleep latency, (iii) 
sleep duration, (iv) sleep efficiency, (v) sleep disturbance, (vi) sleep medication, and (vii) daytime 
functioning. Sub-components are calculated through 4 questions on the timing of sleep habits and 6 
Likert-scale questions from 0 to 3, 0 being best and 3 being worst.   
 

Biopsychosocial assessment 
118 biopsychosocial measures were selected from the HCP dataset (see complete list in Table S1). These 
measures included self-reported assessments of current and past mental health and substance use, 
questionnaires on personality, affect, lifestyle and demographics, cognitive tasks tapping on different 
processes such as working memory or social cognition performed either inside or outside the MRI, and 
physical assessments (e.g., blood pressure). These measures did not undergo any dimensionality 
reduction or clustering by biopsychosocial domain in order to preserve granularity in the way they would 
be associated with sleep dimensions. Biopsychosocial measures with large amounts of missing data 
were excluded, as well as similar measures that were likely to be redundant. Biopsychosocial measures 
were categorized by behavioral domain (e.g., cognition, physical health) based on the way they had 
been described in the HCP dataset36,92. 
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Canonical correlation analysis 
Canonical Correlation Analysis (CCA)93,94, a multivariate data-driven approach, was applied to the sleep 
and biopsychosocial measures. CCA derives latent components (LCs, i.e., canonical variates), which are 
optimal linear combinations of the original data, by maximizing correlation between two data matrices 
(i.e., sleep and biopsychosocial measures). The rank of the correlation matrix determines the number 
of derived LCs (i.e., in this case the number of sleep measures, hence 7 LCs). Each sleep-biopsychosocial 
LC is characterized by a pattern of sleep weights and a corresponding pattern of biopsychosocial weights 
(i.e., canonical coefficients). Linear projection of sleep (or biopsychosocial) data onto sleep (or 
biopsychosocial) weights yielded participant-specific composite scores for sleep (or biopsychosocial) 
measures (i.e., canonical scores). The contribution of original sleep and biopsychosocial loadings to each 
LC was determined by computing Pearson’s correlations between sleep (or biopsychosocial) data and 
participant-specific scores for sleep (or biopsychosocial factors) to obtain sleep and biopsychosocial 
loadings (i.e., canonical structure coefficients)95,96. Canonical structure coefficients reflect the direct 
contribution of a predictor (e.g., one sleep dimension) to the predictor criterion (e.g., LC1) 
independently of other predictors (e.g., LCs 2-7), which can be critical when predictors are highly 
correlated between each other (i.e., in presence of multicollinearity)97. We did not employ 
dimensionality reduction (e.g., via principal components analysis), as the sample size (N=770) exceeded 
the number of sleep (7 measures) and biopsychosocial measures (118 measures) being modelled. 
Statistical significance of each of the 7 LCs was determined by permutation testing (10,000 
permutations) followed by FDR correction. Given the high prevalence of related participants in the HCP 
dataset, family structure was maintained during permutations (using the PALM package98,99), whereby 
monozygotic twins, dizygotic twins, and non-twin siblings were only permuted within their respective 
groups. Finally, the loadings’ stability was determined using bootstrap resampling to estimate 
confidence intervals for the loadings, by deriving 1,000 samples with replacement from participants’ 
sleep and biopsychosocial data. 
 

MRI acquisition and processing 
All imaging data were acquired on a customized Siemens 3T Skyra scanner at Washington University (St 
Louis, MI). Four runs of resting-state fMRI were collected over two sessions across two separate days. 
Each run included 1,200 frames using a multi-band sequence at 2-mm isotropic spatial resolution with 
a TR of 0.72 s for 14.4 minutes. The structural images were acquired at 0.7-mm isotropic resolution. 
Further details of the data collection and HCP preprocessing are available elsewhere36,100,101. Notably, 
cortical and subcortical data underwent ICA-FIX102,103 and were saved in the CIFTI gray ordinate format. 
The surface (fs_LR) data were aligned with MSM-All104. As ICA-FIX does not fully eliminate global motion-
related and respiratory-related artifacts105,106, additional censoring and nuisance regression were 
performed107,108. In particular, volumes with framewise displacement (FD) > 0.2mm, and root-mean-
square of voxel-wise differentiated signal (DVARS) > 75 were marked as outliers and censored, along 
with one frame before and two frames after the outlier volume109,110. Any uncensored segment of data 
that lasted fewer than five contiguous volumes was also excluded from analysis, as well as runs with 
>50% censored frames. Additionally, the global signal obtained by averaging signal across all cortical 
vertices and its temporal derivatives (ignoring censored frames) were also regressed out from the data 
because previous studies have suggested that global signal regression strengthens the association 
between RSFC and behavioral traits107. As there is ongoing debate on the use of global signal regression 
(GSR) as a means of fMRI preprocessing107,111–113, additional reliability analysis was performed on data 
preprocessed using a component-based noise correction method (CompCor)47 instead of GSR.  
 
RSFC was computed among 400 cortical parcels46 and 19 subcortical regions45 using Pearson’s 
correlation (excluding the censored volumes). The subcortical regions were in subject-specific 
volumetric space as defined by FreeSurfer45, and comprised the left and right cerebellum, thalamus, 
caudate, putamen, pallidum, hippocampus, accumbens, amygdala, ventral diencephalon, and 
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brainstem. For each participant, RSFC was computed for each run, Fisher z-transformed, and then 
averaged across runs and sessions, yielding a final 419 x 419 RSFC matrix for each participant.  
 

RSFC analyses 
To investigate the neurobiological substrates of the sleep-biopsychosocial profiles derived in the CCA, 
we computed generalized linear models (GLM) between participant’s canonical scores (i.e., averaged 
sleep and biopsychosocial scores) and their RSFC data. Age, sex, and level of education were first 
regressed out from the RSFC data.  
 
To obtain an analysis at the large-scale network level and limit the number of multiple comparisons, we 
computed a network-wise GLM, whereby the whole-brain RSFC data was averaged within and between 
the 17 large-scale brain networks46 and subcortical regions45, resulting in 18 x 18 RSFC matrices. Next, 
we applied a GLM for each network edge (i.e., average connectivity between two brain networks), with 
participants’ component-specific canonical scores as the predictor and RSFC edge as the response. Each 
GLM yielded a beta coefficient and associated T statistic, as well as an F statistic and associated p value 
obtained from a hypothesis test that all coefficient estimates were equal to zero. Statistical significance 
for each RSFC network edge was determined by applying FDR correction (q < 0.05) on all p values (along 
with other posthoc analyses). For a more granular view, we also computed a GLM for each RSFC edge 
(i.e., connectivity between two brain regions) using whole-brain RSFC between all 419 brain regions. For 
a complete view of the component-specific RSFC signatures, we plotted both the uncorrected region-
wise GLM beta coefficients (e.g., Figure 2C) and FDR-corrected network-wise GLM beta coefficients 
(e.g., Figure 2D). 
 
Measures of integration and segregation were computed on the GLM beta coefficient connectivity 
matrix associated with each LC using functions from the Brain Connectivity Toolbox114. Firstly, the input-
weighted connection matrix was normalized. Next, each 419 cortical parcel was assigned to one of the 
7 large-scale brain networks and subcortical regions 44. Within-network connectivity was estimated by 
calculating the module-degree Z score (within-module strength) for each region. The extent to which a 
parcel connects across all networks was quantified using the participation coefficient, (between-module 
strength). For each cortical parcel, the ratio of normalized within:between module strength values was 
calculated and interpreted as a measure for the balance of integration and segregation of functional 
brain connectivity115. Nodes with high within- but low between-module strength are likely to facilitate 
network segregation, while nodes with higher between-module strength (i.e., connector hubs) are likely 
to facilitate global integration114. 
 

Control analyses 
We ran several control analyses to evaluate the robustness of our findings. First, we applied 5-fold cross-
validation (accounting for family structure) to assess the generalizability of our sleep-biopsychosocial 
profiles by training a CCA model on 80% of the data and testing it on the remaining 20% of the data. For 
each fold, we projected the sleep and biopsychosocial canonical coefficients of the training data on the 
sleep and biopsychosocial data of the test data, to obtain sleep and biopsychosocial scores, and 
computed Pearson’s correlations between these scores. Second, we evaluated the impact of the 
covariates on our profiles as well as the impact of other potential confounds, including race, ethnicity, 
and familial psychiatric history. Third, we re-computed the CCA analysis after excluding participants who 
had tested positive for any substance use on the day of the MRI. Fourth, we re-computed the CCA 
analysis after excluding physical health (i.e., body mass index, hematocrit, blood pressure) and 
sociodemographic (i.e., employment status, household income, in-school, relationship status) variables 
from the biopsychosocial matrix. Fifth, to mitigate scale magnitude discrepancies between different 
measures, we re-computed the CCA analysis after applying quantile normalization on sleep and 
biopsychosocial measures. We also assessed the robustness of our imaging results in several ways. As 
GSR is a controversial preprocessing step107,112,113, we re-computed the GLM analysis using RSFC data 
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that underwent CompCor47 instead of GSR. Some subjects were noticed to have likely fallen asleep 
during scanning (list not publicly available116). As a first step, we re-computed the GLM after excluding 
these subjects (N=100); next, we sought to determine whether these participants scored high on any of 
the profiles, by comparing their sleep/biopsychosocial composite scores with awake participants using 
t-tests. We re-computed the GLM analyses by using sleep and biopsychosocial canonical scores instead 
of averaged scores. Finally, integration and segregation measures were also computed on the average 
RSFC matrix of the whole sample. FDR correction (q < 0.05) was applied to all posthoc tests.  
 

Data and code availability 
Data from the HCP dataset is publicly available (https://www.humanconnectome.org/). The brain 
parcellation can be obtained here 
(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer20
18_LocalGlobal), while the code for the CCA analysis and figures can be found here 
(https://github.com/valkebets/sleep_biopsychosocial_profiles). Chord diagrams were generated using 
previously published code 
(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/predict_phenotypes/ChenTam
2022_TRBPC/figure_utilities/chord).  
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Table 1

Characteristics N = 770
Biological sex (n | %)

Female 414 | 53.76%
Male 356 | 46.23%

Age (years)
mean ± S D 28.86 ± 3.61

range [22 - 36]
Education (years)

mean ± S D 15.02 ± 1.73
range [11 - 17]

Race (n | %)
Am. Indian/Alaskan Nat. 2 | 0.25%

Asian/Nat. Hawaiian/Other Pacific Is. 42 | 5.45%
Black or African Am. 90 | 11.68%

More than one 19 | 2.46%
Unknown or Not Reported 16 | 2.07%

White 601 | 78.05%
Ethnicity (n | %)

Hispanic/Latino 78 | 10.12%
Not Hispanic/Latino 684 | 88.83%

Unknown or Not Reported 8 | 1.03%
Employment status (n | %)

Full-time 545 | 70.77%
Part-time 132 | 17.14%

Not working 93 | 12.07%
S chool status (n | %)

In school 158 | 20.51%
Not in school 612 | 79.48%

Yearly income (n | %)
<10'000 US $ 50 | 6.49%

10'000 - 20'000 US $ 50 | 6.49%
20'000 - 30'000 US $ 94 | 12.20%
30'000 - 40'000 US $ 101 | 13.11%
40'000 - 50'000 US $ 76 | 9.87%
50'000 - 75'000 US $ 165 | 21.42%

75'000 - 100'000 US $ 112 | 14.54%
> 100'00 US $ 122 | 15.84%

Relationship status (n | %)
In a relationship 363 | 47.14%

Not in a relationship 407 | 52.85%

PS QI total score 
mean ± S D 5.14 ± 2.17

range [0 - 19]

PSQI, Pittsburgh sleep quality index
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