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Molecular surveillance of viral pathogens and infer-

ence of transmission networks from genomic data

play an increasingly important role in public health

efforts, especially for HIV-1. For many methods,

the genetic distance threshold used to connect se-

quences in the transmission network is a key param-

eter informing the properties of inferred networks.

Using a distance threshold that is too high can result

in a network with many spurious links, making it dif-

ficult to interpret. Conversely, a distance threshold

that is too low can result in a network with too few

links, which may not capture key insights into clus-

ters of public health concern. Published research

using the HIV-TRACE software package frequently

uses the default threshold of 0.015 substitutions/site

for HIV pol gene sequences, but in many cases, in-

vestigators heuristically select other threshold pa-

rameters to better capture the underlying dynamics

of the epidemic they are studying.

Here, we present a general heuristic scoring ap-

proach for tuning a distance threshold adaptively,

which seeks to prevent the formation of giant clus-

ters. We prioritize the ratio of the sizes of the largest

and the second largest cluster, maximizing the num-

ber of clusters present in the network.

We apply our scoring heuristic to outbreaks with dif-

ferent characteristics, such as regional or temporal

variability, and demonstrate the utility of using the

scoring mechanism’s suggested distance threshold

to identify clusters exhibiting risk factors that would

have otherwise been more difficult to identify. For ex-

ample, while we found that a 0.015 substitutions/site

distance threshold is typical for US-like epidemics,

recent outbreaks like the CRF07_BC subtype among

men who have sex with men (MSM) in China have

been found to have a lower optimal threshold of 0.005
to better capture the transition from injected drug

use (IDU) to MSM as the primary risk factor. Alter-

natively, in communities surrounding Lake Victoria

in Uganda, where there has been sustained hetero-

sexual transmission for many years, we found that

a larger distance threshold is necessary to capture

a more risk factor-diverse population with sparse

sampling over a longer period of time. Such iden-

tification may allow for more informed intervention

action by respective public health officials.
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Introduction
The use of genomic data to infer and characterize trans-

mission networks of various pathogens has grown in

prominence in the past two decades, with applications

to a growing list of pathogens, including viruses such

as HIV (Paraskevis et al., 2016), hepatitis C virus (HCV)

(Murphy et al., 2019b), or influenza A virus (Jombart

et al., 2011), and bacteria such as M.tuberculosis (Mai

et al., 2018) or A.baumanii (Thoma et al., 2022). No-

tably, genomic surveillance had a prominent role during

the COVID-19 pandemic, including the use of sequenc-

ing for the study of transmission clusters (von Rotz et al.,

2023; Campigotto et al., 2023). Choosing an appropriate

genetic distance threshold is an important part of using

a molecular transmission network to track the spread of

rapidly evolving pathogens (Liu et al., 2020; Rose et al.,

2020). This distance threshold defines the degree of

genetic closeness between pathogen sequences, iso-
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lated from two individuals, required to suggest them as

potential transmission partners in the network. Using a

distance threshold that is too large can result in a net-

work with many spurious, making it difficult to interpret

and analyze. On the other hand, using a distance thresh-

old that is too small can result in a network with too few

links, underestimating connections between individuals

and making it difficult to accurately track the spread of

the disease (Gore et al., 2022).

To enhance the utility of inferred transmission networks,

it is important to carefully consider the appropriate dis-

tance threshold, d. This threshold may vary depending

on the specific disease and the context in which it is

spreading. For example, a highly contagious acute respi-

ratory illness (e.g., SARS-CoV-2) may require a smaller

d than a less contagious chronic illness that is primar-

ily spread through direct contact (e.g., HIV-1). Viruses

are more amenable to molecular studies compared to

bacteria due to their high genetic divergence and com-

pact genomes. Given the relatively high evolutionary

rate of RNA viruses detectable genetic fingerprints can

be prioritized for epidemiological studies over short time

periods(Paraskevis et al., 2016).

For chronic infections such as HIV, the most appropri-

ate genetic distance threshold should be determined

according to the characteristics of the epidemic such as

the speed of transmission, and the evolutionary rate of

the genomic region analyzed (Liu et al., 2020). Sam-

pling density and possible delays between infection and

diagnosis should be considered, since samples close

to the time of seroconversion are more likely to cluster

than samples from well after infection. Lower thresholds

will capture the most closely related sequences, while

higher thresholds will capture long-term epidemics and

chronically infected individuals (Junqueira et al., 2019).

Cluster analysis, i.e., identification and analysis of con-

nected network components, in public health has been

used for early identification of increased transmission

(Oster et al., 2021, 2018), monitoring response to an HIV

outbreak (Tumpney et al., 2020; Sizemore et al., 2020;

Tookes et al., 2020), evaluating the effectiveness of inter-

ventions (Peters et al., 2016; Wang et al., 2015; Liu et al.,

2020) or predicting clusters that are most likely to grow in

the near future (Erly et al., 2021; Ragonnet-Cronin et al.,

2022). This balance can be achieved through careful

analysis and consideration of the specific disease and

context.

This study introduces AUTO-TUNE, a method that offers

a systematic approach to select genetic distance thresh-

olds for molecular HIV transmission network analysis,

based purely on the structure of the collected data. By

autonomously optimizing clustering metrics derived from

pairwise genetic distances, AUTO-TUNE has the poten-

tial to improve the accuracy and reliability of network in-

ference, irrespective of data attributes. The AUTO-TUNE

methodology’s independence from supplementary data

makes it less sensitive to variations in data collection pro-

tocols and enhances its adaptability to various contexts,

including potentially other viral diseases.

Methods
Assume that there are S aligned genomic sequences

(full or partial, e.g. the HIV-1 pol gene) for a pathogen of

interest, each representing the "consensus" circulating

viral diversity at the time of sampling in a single infected

individual. We shall infer a putative transmission net-

work comprising S nodes, and E links (edges), where

an edge is drawn between a pair of sequences if the

genetic distance between them is at or below a threshold

d. In such a network, there will be 0 ≤ C < S connected

components with more than one node (clusters), which

are the primary object of inference. This network infer-

ence strategy is used by HIV-TRACE (Kosakovsky Pond

et al., 2018), where the genetic distance is computed

using the Tamura-Nei (TN93) (Tamura and Nei, 1993)

model, with a variety of options controlling how to deal

with ambiguous nucleotide bases; for HIV-1 such bases

are informative since they often represent variants co-

circulating in the infected individual at the time of sam-

pling at substantial frequencies(Kosakovsky Pond et al.,

2009).

We begin by describing an approach to assign a score to

each of the choices of d in a plausible/informative range

of distances. Note that while such a range is continuous,

it is sufficient to only consider distance cutoffs that are in

the array of pairwise distances between the sequences,

as those are the cut-points where one or more additional

edges will be added to the network as d is increased.

Scoring Heuristic Procedure

The network threshold selection procedure proceeds as

follows (we provide an example in the Results section as

well).
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A Assortativity

1. For each candidate threshold dL, in increasing or-

der, ranging from the smallest genetic distance in

the dataset, up to either the largest distance or a

predetermined maximal threshold, we compute two

network statistics: R12, the ratio of the size of the

largest cluster to the size of the second largest clus-

ter, and C, the number of clusters in the network at

this threshold. A cluster is defined as a connected

component in the network with at least two nodes.

2. A priority score is assigned to each dL. This score

measures two properties of the threshold: Does R12

jump at dL? How far is the number of clusters C at

dL from the maximal number of clusters computed

over all threshold values? Let there be N overall dL

candidate values, and assume we are examining

the ith candidate, di
L with W < i ≤ N −W (W is a

positive integer defined below).

(a) The R12 jump is computed by looking at the

normalized ratio of the mean R12 values com-

puted over the leading window di+1
L . . . di+W

L

and the trailing window di−W
L . . . di−1

L . The

width of the window, W , is defined as

min
(
max

([
N

100
]
,3

)
,30

)
. The distribution of

ratios is converted to Z scores, and normal-

ized relative to the largest positive Z score

across all candidate distances, yielding the

jump component of the score.

(b) The number of clusters, Ci at threshold di
L is

first normalized to [0,1] through Cmax−Ci
Cmax−Cmin

and next gated via a Gompertz function trans-

form 1−e−e−25x+3
. This function provides

an ad hoc means for penalizing having too

few clusters relative to the maximum over all

ranges. For example, a threshold that yields

95% of the maximal number of clusters re-

ceives a score of 0.996, a threshold that yields

85% - a score of 0.376, and a threshold that

yields 60% - a score of 0.0009.

(c) The priority score for di
L is the sum of the two

components defined in (a) and (b), and ranges

from 0 to 2.

3. The threshold with the highest priority score will

be selected as the suggested automatic distance

threshold, if the score is high enough (1.9 or more),

and either of the two conditions hold.

(a) No other thresholds have priority scores of 1.9
or higher

(b) If other thresholds have priority scores of 1.9
or higher, then the range of thresholds repre-

sented by these options is small (no more than

logN times the mean step between succes-

sive di
L).

4. If no single threshold can be selected in step 3,

then the one with the highest priority score is sug-

gested, and an inspection of a plot of scores is

recommended to ensure that the threshold is sensi-

ble.

A. Assortativity

Degree-weighted homophily (DWH) is a measure of

similarity between nodes in a network based on their

attributes (such as demographic characteristics or be-

haviors) and their degree centrality (i.e., the number of

connections they have to other nodes in the network). It

is used to quantify the extent to which nodes with simi-

lar attributes tend to be connected to each other more

frequently than would be expected by chanceGolub and

Jackson (2012). DWH is calculated as the ratio of the

observed number of connections between nodes with

similar attributes to the expected number of connections

between such nodes, based on their network degree.

For any two subsets A and B of nodes in a network

without singletons (each node has a positive degree),

define the weight between A and B as

WA,B = 1
|A||B|

∑
i∈A,j∈B,(i,j)are connected

1
didj

,

where di is the degree of node i, and |X| is the cardinal-

ity (size) of subset X.

Then for any proper (not empty and not the complete

network) subset of the network, G, e.g. a group of nodes

sharing an attribute, e.g., transmission risk factor, define

DWH =
WG,G +WḠ,Ḡ −2WG,Ḡ

|G|−2 ∑
i∈G 1/di + |Ḡ|−2 ∑

i∈Ḡ 1/di
, (1)

with

• Ḡ : the complement of G (all nodes not in G)

• di : the degree of node i
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B Implementation

DWH ranges from −1 to 1. A DWH value of 0 indicates

that there is no more homophily than expected by chance

(conditioned on network structure), while a value of 1
indicates that there is perfect homophily (G consists of

connected components disconnected from the rest of

the network). A value of −1 is achieved for perfectly

disassortative networks (the only links are between G

and Ḡ).

Homophily metrics have been used in social network

analysis and in the study of how different attributes are

related to the formation of connections between individ-

uals(Ragonnet-Cronin et al., 2021). To assess whether

or not DWH is significantly different from 0 (and from

random expectation), we generate the null distribution of

DWH obtained by randomly reshuffling node attributes

used to define group G and recomputing DWH for each

such replicate.

B. Implementation

The software implementation involves a step-by-step

process that utilizes the HIV-TRACE suite of packages.

It starts with calculating pairwise distances with the

tn93 tool and a supplied multiple sequence alignment.

Thus generated pairwise distances are supplied to the

hivnetworkcsv script while providing the -A keyword ar-

gument. A brief outline of the software’s implementation

is as follows

1. Calculate pairwise distances: The user first calcu-

lates the pairwise distances using the tn93 fast

pairwise distance calculator, providing the maxi-

mum threshold value to consider (0.03 in this case,

which may be revised upwards for sufficiently diver-

gent sequences, as this provides an upper bound

of thresholds to consider) and the input FASTA file.

The command for this step is

1 tn93 -t 0.030 -a resolve -g 0.05 pol.fasta >

↪→pairwise_distances.15.tn93.csv

Please note that the threshold should include the

maximal range one is intending to test.

2. Compute priority scores for each candidate thresh-

old: The hivnetworkcsv script is then executed

with the required input file, format, and autotune

option to generate a tab-separated output file, as

shown below

1 hivnetworkcsv -i pairwise_distances.15.tn93.csv -f

↪→plain -A 0 > autotune_report.tsv

3. Visualize the report: Users can upload the gener-

ated autotune_report.tsv file to

http://autotune.datamonkey.org/analyze

for visualization and further analysis of the data.

This web-based site extends the Datamonkey

platform (Weaver et al., 2018) to provide an

interactive environment to explore scores and other

metrics across the range of tested outputs.

4. Run HIV-TRACE: Once AUTO-TUNEd threshold(s)

are settled upon after review, the user runs the

HIV-TRACE command with the appropriate input

FASTA file, distance threshold, and other required

arguments. The output is saved as a JSON file. An

example command is

1 hivtrace -i ./INPUT.FASTA -a resolve -r HXB2_prrt -t

↪→ <autotune_threshold> -m 500 -g .05 >

↪→hivtrace.results.json

B.1. Optional : Compute Assortativity Metrics.

5. Annotate results: the hivnetworkannotate script

is used to annotate the results obtained from the

hiv-trace step with attributes. The script takes the

JSON results file, node attributes file, schema file,

and a resolve flag as input.

1 hivnetworkannotate -n hivtrace.results.json -a

↪→node_attributes.json -g schema.json -r

For more information, users can refer to the

hivnetworkannotate documentation.

6. Analyze the results with DWH: After the results file

has been annotated, the user can proceed to the as-

sortativity page, http://autotune.datamonkey.

org/assortativity, for further analysis of the out-

put.

The described workflow offers a systematic approach

to analyze potential distance thresholds for one’s data

with AUTO-TUNE, from calculating pairwise distances to

visualizing and annotating results.
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E Comparisons with published HIV-1 molecular epidemiology studies

C. Visualization

Visualizations of AUTO-TUNE results are accessible at

http://autotune.datamonkey.org/analyze. These

include the priority score plot, and the two contributing

statistics: cluster count relative to the maximum and

the ratio of two largest cluster sizes. 3 An assortativ-

ity tool is available at http://autotune.datamonkey.

org/assortativity, and is an analytical tool engi-

neered to facilitate the calculation of Degree Weighted

Homophily (DWH) values. It utilizes the DWH NPM pack-

age to generate a tabular representation of DWH values

corresponding to each value for a selected attribute an-

notation, providing an exhaustive examination of the

interrelationships for the field. The tool also computes

the panmictic (null) range, which involves a label permu-

tation test to generate the null distribution of DWH values.

This feature establishes a comparative baseline that aids

in determining the significance of homophily versus what

would be expected by chance.

The visualization code is available on Github (https:

//github.com/stevenweaver/autotune-app/).

D. Comparisons with previously published analyses

First, we set out to compare the thresholds used in nu-

merous published studies with those obtained by AUTO-

TUNE. To select the data sets for this analysis, we con-

ducted a scientific literature search to identify studies

focused on HIV networks for public health purposes. We

then filtered the studies that utilized HIV-TRACE to infer

genetic networks and had publicly available sequences.

Due to privacy concerns, HIV-1 sequences are frequently

not released in the public domain Inzaule et al. (2023).

We also attempted to include studies from different coun-

tries and regions, enabling us to assess the performance

of our method across various epidemic contexts, risk

groups, and network sizes in real-data sets that used

variable clustering thresholds.

Second, we compared AUTO-TUNE with the most direct

published alternative: the clustuneR method (Chato

et al., 2020). We procured datasets from (Wolf et al.,

2017) and (Vrancken et al., 2017) utilizing the identi-

cal approach delineated in Chato et al. (2020). These

datasets, namely Middle Tennessee, Seattle, and Alberta

were processed using the workflow described in Section

2.3. This enabled us to determine an optimal threshold

for each dataset using AUTO-TUNE. We further exe-

cuted the command as detailed in step 4 of Section 2.3,

deploying thresholds previously established as optimal

by (Chato et al., 2020). Note that clustuneR requires

and uses temporal information (dates sequences were

collected), whereas AUTO-TUNE does not.

Lastly, we evaluated the effect of sampling density on

the genetic distance threshold as determined by AUTO-

TUNE, we implemented a strategy of random subsam-

pling from the original dataset sourced from (Rhee et al.,

2019). This study was selected due to its satisfactory

AUTO-TUNE score when utilized in its entirety, as well

as its inherent design as a Geographically-Stratified set

of 716 pol Subtype/CRF (GSPS) reference sequence

dataset. The dataset, which comprises 6034 samples

gathered between 1989 and 2016, was subjected to ran-

dom subsampling ten times at proportions of 25%, 50%,

and 75% of the original sample size. For each subsam-

ple, the optimal threshold and associated scores were

determined via AUTO-TUNE.

Results

E. Comparisons with published HIV-1 molecular epi-

demiology studies

We selected several publications citing HIV-TRACE for

our analysis, primarily because these studies not only

referenced the tool but also made some or all of their

sequence data publicly available (Table 1, 2). These

studies adopted several different approaches for select-

ing genetic distance thresholds, including using US CDC

guidelines (Yan et al., 2020), picking thresholds based

on prior studies (Sivay et al., 2018), and visually inspect-

ing the numbers of clusters and nodes in the networks

across candidate distance thresholds (Liu et al., 2020).

These thresholds, often qualitatively determined, tended

to be round numbers, and were usually determined using

ad hoc or subjective procedures. Some studies strati-

fied their analyses by viral subtype (major clade), while

others did not (or this was not applicable).

A direct comparison with published networks is not feasi-

ble because only the underlying sequence data (and of-

ten only some of the sequences) are made available, not

the networks themselves. To facilitate comparison here,

we used distance thresholds and all available sequences

from primary publications to infer transmission networks

anew (the scripts for doing so and the corresponding

settings are available in github.com/veg/auto-tune)

and compare them with the networks obtained using the

Steven Weaver et al. | AUTO-TUNE: SELECTING THE DISTANCE THRESHOLD FOR INFERRING HIV TRANSMISSION CLUSTERS | 5

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 14, 2024. ; https://doi.org/10.1101/2024.03.11.584522doi: bioRxiv preprint 

http://autotune.datamonkey.org/analyze
http://autotune.datamonkey.org/assortativity
http://autotune.datamonkey.org/assortativity
https://github.com/stevenweaver/autotune-app/
https://github.com/stevenweaver/autotune-app/
github.com/veg/auto-tune
https://doi.org/10.1101/2024.03.11.584522
http://creativecommons.org/licenses/by-nd/4.0/


F Comparisons with published non-HIV molecular epidemiology studies

highest scoring AUTO-TUNE threshold.

With a few exceptions (e.g Dalai et al. (2018); Sivay et al.

(2018)), both the distance thresholds and the inferred

networks were quite different, in terms of the numbers

of connected nodes, clusters, degree distributions, and

even hyper-parameters, such as the characteristic ex-

ponent of the scale free degree distribution, ρ. This is

true even for the studies where the published threshold

was tuned (typically to maximize the number of clusters).

AUTO-TUNE thresholds were larger than the published

values in 13/21 datasets, and smaller in 8/21 datasets.

E.1. Examples of how changing thresholds affects inferred

networks.

Cluster size reduction The 0.02 subs/site (substitution-

s/site) threshold used by Dalai et al. (2018) yielded one

large cluster composed of two loosely connected compo-

nents (one PWID/HSX, one MSM, see Figure 2 in that

paper). A minute change to the threshold by AUTO-

TUNE to 0.0194% splits one large cluster into three

(some nodes also became disconnected), separating

the two major risk groups; this is because the "bridging"

connections were between these two thresholds (see

Fig 4 panel A). This minor change also reduced R12

from 21 to 2.6.

Cluster size increase Increasing the 0.015% subs/site

threshold on data from Little et al. (2014) combined sev-

eral small clusters (and singletons) into a single larger

cluster, while preserving the overall size and properties

of the network (see Fig 4 panel B). This change also

reduced R12 from 2.5 to 1.5.

Thinning out the network Reducing the 0.015% sub-

s/site threshold on data from Rhee et al. (2019) dramati-

cally reduced the size of the largest cluster, and thinned

out most clusters with five or more nodes (see Fig 4

panel C).

Materially changing the degree distribution of the network

For the sequences from Li et al. (2022), AUTO-TUNE

suggests D = 1.483% with robust (1.76) confidence,

whereas the original D = 0.013 subs/site was selected

based on maximizing the number of clusters (and likely

rounding to the nearest decimal). While the total number

of the clusters only increases by 1, the number of nodes

connected in the network grows from 95 to 119, and the

scale free exponent of the distribution is dramatically

affected. The latter is informed by the degree distribution

of the network, and Fig 4 panel D shows, the degree dis-

tribution is dramatically affected. Many commonly used

network-derived correlates (e.g. degree centrality) can

be strongly affected by such changes.

Expanding the network Increasing the .015 subs/site

threshold in Billings et al. (2019) to 2.33% more than

doubles the number of nodes included (Fig 4 panel E)

Networks with high AUTO-TUNE scores are exemplified

by the alignment (in the distance space) of the points

where the number of clusters is maximized and where

the network transitions to having an "unusually" large

cluster (see Fig. 5, panel A). In cases of low scores,

AUTO-TUNE effectively falls back to maximizing the num-

ber of clusters as a function of the distance thresholds,

which is a common strategy found in empirical studies

(see Fig. 5, panel B).

As expected, AUTO-TUNE inferred smaller thresholds

for younger (e.g., studies based in China) epidemics.

While AUTO-TUNE will always return a score, in the

majority of cases there is no clear "winner" threshold,

with priority scores exceeding 1.5 in only 6/18 cases

(Table 2). One interpretation for such lack of clar-

ity is that the underlying network has several different

(e.g. spatial, temporal, or subtype-specific) thresholds

which cannot be well-represented by any single value.

For instance, when analyzing the data from Yan et al.

(2021), AUTO-TUNE returned a low score of 1.14 for

D = 0.839%. However, when we split the data into ma-

jor constituent subtypes and ran AUTO-TUNE on each

one separately, starkly discrepant thresholds were found

for different subtypes: D = 0.0102 subs/site (score =

1.59) for CRF01, D = 0.00193 subs/site (score = 2) for

CRF05, D = 0.02615 subs/site (score = 1.65) for B, and

D = 0.0111 subs/site (score = 1.04) for CRF07. Although

many networks from the literature tend to be dominated

by sequences from the same subtype, in more heteroge-

neous settings it seems prudent to partition the data by

subtype (corresponding to major phylogenetic clades),

and perform network analyses within subtypes.

F. Comparisons with published non-HIV molecular

epidemiology studies

While HIV-1 epidemiology is the predominant niche for

distance-based molecular transmission analyses, other

rapidly evolving viruses, especially HCV, have also been
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analyzed with these approaches(Bartlett et al., 2017).

Unlike HIV-1, there is considerably less work on how to

choose an appropriate distance threshold, further com-

plicated by the use of different genes to build networks

(see Chan et al. (2020) for a comprehensive summary).

Two commonly seen methods exist: use some measure

of intra-host variation (obtained by deep sequencing) as

a lower bound for the threshold, or tune D to obtain some

desired network property, e.g., the maximal number of

clusters. Like with HIV-1, we searched the literature

for relevant studies, and selected several with publicly

available sequence data.

Most of the datasets are much smaller and less system-

atically sampled than those for HIV-1, and often combine

highly divergent subtypes in the same collection, making

a joint analysis challenging. As with HIV-1, AUTO-TUNE

returns a wide range of scores and D thresholds. For

example, effectively maximizing the number of clusters

on rhinovirus sequences from Ng et al. (2022) yields a

D estimate very similar to that obtained by the authors

from intra-host variability – information not available to

AUTO-TUNE. Table 3

G. Large-scale HIV-1 database analyses

G.1. Markedly different thresholds for different subtypes.

Following the spirit of the analysis performed by

Wertheim et al. (2014), we downloaded partial pol se-

quences (between HXB-2 coordinates 2253 and 3200,

one sequence per patient) from the Los Alamos HIV-1

Database, split them by annotated subtype and applied

AUTO-TUNE to individual subtypes with 1000 or more

sequences.

Some (but not all) HIV-1 subtypes often act as strong

correlates of regional and temporal distributions of se-

quences, and are expected to represent epidemics with

different sampling rates and transmission dynamics.

These differences are reflected in a wide range of mean

pairwise distances and inferred AUTO-TUNE thresholds

shown in Table 4. For example, the relatively young

subtype A6, which is the most common subtype in the

countries of the former Soviet Union Abidi et al. (2021),

has a low mean pairwise distance (0.046) and a low

AUTO-TUNE threshold (0.0056). In contrast A1D re-

combinant sequences have high distance and threshold

values (0.089 and 0.0323, respectively), because se-

quences of this "subtype" represent broadly circulating

strains with complex backgrounds, and extensive histo-

ries of recombination Foster et al. (2014); Yebra et al.

(2015).

There was extensive variability among subtypes in all

high-level network statistics, including the mean degree,

fractions of nodes that were in the network, and the

characteristic exponent ρ, where ρ is inferred from by fit-

ting the degree distribution to various network formation

models, and with Prob(degree = k) ∼ 1/kρ for large k.

For A1, B, C, and CRF08 networks there’s very strong

support for a single AUTO-TUNE threshold (score >

1.9), while for many other subtypes there is extreme

ambiguity in which threshold to choose (score < 1.1).

We suggest that networks where AUTO-TUNE fails to

find a single threshold may comprise heterogeneous

data which require multiple thresholds to resolve.

G.2. Congruence of networks inferred from different

genes. Very few published studies of HIV-1 transmission

networks use genes other than pol, and nearly all of the

extrinsically motivated thresholds have been derived for

this gene, the utility of other genes and the appropriate

D values for them are unclear. Because of different rates

of evolution in HIV-1 genes and, possibly, subtypes Penn

et al. (2008), one would expect D to be different for dif-

ferent subtypes and genes. As a simple exercise, we

downloaded full-length HIV-1 genomes from the LANL

database, stratified them by subtype, and conducted

AUTO-TUNE inference using four genomic segments:

protease+reverse transcriptase, integrase, matrix (gag),

and the less variable gp41 segment of the envelope

gene.

Only three subtypes had ≥ 500 full-length sequences

in the LANL HIV database (Table 5): B, C, and CRF01.

As expected, the inferred thresholds differed by gene

and subtype, with lower thresholds inferred for more

slowly evolving segments (PR+RT and INT), and similar

numbers of clusters found in the resulting subtype-level

networks. For all three subtypes, the level of agreement

between the four networks on whether or not nodes

were clustered or not (present / absent from the net-

work), measured by Krippendorff’s α Hayes and Krippen-

dorff (2007), were substantially higher than expected by

chance (α = 0). All four networks also had between a

quarter and a half of all the clusters in perfect agreement.
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H. Evaluating Inferred Networks using Homophily

Non-random mixing and attribute-based homophily are

intrinsic characteristics of human contact networks and

can be expected to be present in transmission networks,

particularly in the context of HIV transmission. Peo-

ple frequently engage in relationships with those who

share similar attributes or behaviors, such as risk fac-

tors (e.g., PWID, MSM). Recent evidence suggests that

race/ethnicity is also a strong predictor of homophily in

HIV networks(Ragonnet-Cronin et al., 2021). The effect

of these nonrandom mixing patterns on the genetic di-

versity of HIV-1 has not only been extensively explored

via modeling and simulations (Goodreau, 2006), but the

structure of sexual contact networks has been found to

directly influence pathogen phylogenies (Robinson et al.,

2013). Phylogenetic analysis of HIV type 1 sequences

has revealed distinct grouping patterns based on risk

behaviors (Holmes et al., 1995). The expectation of ho-

mophily is so strong, that its disruption, e.g. the presence

of a self-reported heterosexual risk group individual in a

cluster exclusively composed of MSMs has been used

as a marker of undisclosed/incomplete risk factor report-

ing Ragonnet-Cronin et al. (2018a). Therefore, when

subject-level attributes are available, homophily is an

expected and desired feature of the network.

To assess the performance of an AUTO-TUNEd opti-

mized threshold using degree-weighted homophily, we

first evaluated a CRF07_BC network with national survey

data from China Ge et al. (2021) . Each of the 8178 pol

sequences was annotated with a transmission risk factor:

heterosexual contact (Hetero), people who use injection

drugs (PWID), or men who have sex with men (MSM),

among other attributes.

When we analyze the dataset with AUTO-TUNE, lo-

cal maxima of AUTO-TUNE scores were achieved with

0.0076 sub/site and 0.0019 sub/site thresholds, at scores

1.137 and 1.030, respectively. Notably, the DWH scores

for PWID exhibited a significant surge at these thresh-

olds, indicating a robust pattern of increased PWID ho-

mophily even when relatively low scoring. The close

proximity of AUTO-TUNE scores and the consistent rise

in PWID homophily at 0.0076 and 0.0019 thresholds

suggest comparable performance at these thresholds

compared to the default 0.015 threshold, suggesting

that these thresholds might be more effective in rep-

resenting homophilic relationships in this network. At

each threshold—0.015, 0.0076, and 0.0019—all DWH

scores for the risk groups (MSM, Hetero, and PWID) lie

outside their respective panmictic ranges. This consis-

tently indicates non-random mixing and attribute-based

homophily across the network. Detailed results are in

Table 7 and Table 8. The observation of significant ho-

mophily among PWID at lower thresholds identified by

AUTO-TUNE (0.0076 and 0.0019 subs/site) is consis-

tent with epidemiological characteristics of PWID out-

breaks, such as the Drug-Resistant Subtype C Outbreak

in Scotland, where rapid transmission led to low genetic

diversity within clusters. (Ragonnet-Cronin et al., 2018b)

I. Comparison with clustuneR

We benchmarked AUTO-TUNE versus clustuneR

Chato et al. (2020), which employs the recency of sam-

ple collection or diagnosis as individual-level weights in

a predictive model to estimate the growth of HIV clus-

ters. The thresholds deemed optimal by clustuneR

were found by a grid-search for the minimum GAIC (gen-

eralized Akaike Information Criterion) across candidate

distances between 0 and 0.04 in steps of 8×10−4. GAIC

is the difference between a null model that is only influ-

enced by cluster size, and a weighted model that in-

cludes individual-level attributes among known cases

in the cluster. Using the minimum GAIC metric, it was

found that 0.016(±0.5 × 10−4) was the optimal thresh-

old for Tennessee and Seattle, and 0.0104 for Northern

Alberta.

In contrast, AUTO-TUNE does not incorporate any at-

tribute data in its scoring heuristic. Instead, it relies on

clustering metrics constructed purely from pairwise dis-

tances between sequences. Using nearly same datasets

analyzed by clustuneR (Chato et al., 2020), AUTO-

TUNE found the thresholds with the highest scores to

be 0.01872 for Middle Tennessee, 0.01538 for Seattle,

and 0.01201 for Northern Alberta. Table 6. We use the

adjective "nearly" because we were not able to exactly

match the number of sequences analyzed in Chato et al.

(2020) by obtaining the referenced GenBank accession

number and our best-effort intepretation of the filtering

steps.

Both methods agree that there is a qualitative relation-

ship of Northern Alberta < Seattle ∼ Tennessee for dis-

tance thresholds. AUTO-TUNE thresholds, while not

optimal in the GAIC sense all yield improvements over

the null model, hence they are qualitatively similar to

clustuneR (Figure 4 in Chato et al. (2020)). AUTO-
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TUNE is notably faster in computation than clustuneR

due to the fact that AUTO-TUNE only clusters based

on pairwise distances rather than inferring a maximum-

likelihood phylogeny. For example, the entire pipeline

for the Seattle dataset took less than 16 seconds on

an Apple M1 Max. Alternatively, the tree inference step

alone with clustuneR takes several hours to complete.

Because the methods optimize very different objectives

and clustuneR makes use of additional data, broad

agreement between the inferred thresholds is encourag-

ing.

J. The Effect of Subsampling on Optimal Thresholds

and AUTO-TUNE Scores

To address the challenges of applying network inference

algorithms to incompletely sampled datasets, this study

includes a focused evaluation of AUTO-TUNE’s perfor-

mance across varying data densities. Given logistical

limitations, obtaining a fully sampled HIV transmission

network is often infeasible. Therefore, we label a dataset

as ’full’ to serve as a closest approximation of a fully sam-

pled network. Using the selected dataset as a bench-

mark, we assess AUTO-TUNE’s adaptability and robust-

ness when applied to sparser datasets, a prevalent issue

in real-world settings.

Since the (Rhee et al., 2019) dataset exhibited a clear

optimal peak, we used the dataset for analysis, and ran-

domly sampled 10 times from the entire dataset at 25%,

50%, and 75% each. The original full dataset confidently

determined 0.01699 (AUTO-TUNE score 1.9998).

Sampling at 25% yielded a mean top threshold of

0.021509, median at 0.019765, and standard deviation

of 0.004388 1. 50% yielded 0.018581 and 0.01871 mean

and median, respectively with a standard deviation of

0.001629. Finally, 75% calculated mean is approximately

0.017403, with a median of approximately 0.01699. The

standard deviation was 0.000924.

As the dataset becomes sparser due to subsampling,

the algorithm tends to select higher distance thresholds.

This phenomenon can be understood by considering

the effect of reduced sampling density on the network

topology. Sparse datasets naturally result in less inter-

connected clusters. To capture a comparable level of

network connectivity as in denser datasets, higher dis-

tance thresholds are necessary. This is evidenced by the

observed mean thresholds: 0.021509 at 25%, 0.018581
at 50%, and 0.017403 at 75%. The standard deviations

also narrow as the sampling density increases, corrobo-

rating the increased precision of the threshold selection

in denser datasets.

As the proportion increased from 25% to 50% and 75%,

observable shifts were also noted in the mean, median,

and standard deviation of the AUTO-TUNE scores. At

25%, the mean and median scores were 1.5585 and

1.5014 respectively, with a standard deviation of 0.3568.

At 50%, both mean and median scores significantly in-

creased to 1.8171 and 1.9191 respectively, and the stan-

dard deviation dropped to 0.2482. Upon reaching an

AUTO-TUNE of 75%, the mean and median scores rose

further to 1.9870 and 1.9997 respectively, while the stan-

dard deviation shrank substantially to 0.0364, indicating

higher consistency in scores.

Next to determine how well subsampled datasets aligned

with the full dataset, we used two primary outcomes to

gauge this concordance: the proportion of nodes that

remained clustered after subsampling and the proportion

of singletons from the original network that clustered in

the subsampled networks.

We observed a consistent increase in the proportion of

nodes that remained clustered from the 0.015 sub/site

threshold to the AUTO-TUNE threshold for each respec-

tive subsampling proportion, with 25% subsampling be-

ing the most profound difference rising from a roughly

80%-86% interquartile range (IQR) for 0.015 threshold

to a 90% 96% IQR for AUTO-TUNE, which indicates

that the AUTO-TUNE thresholds retain a higher degree

of stability in the network’s structure across sampling

density (Please see Figure 2, Panel A).

Since the thresholds inferred by AUTO-TUNE for the sub-

sampled networks were larger than the "fully" sampled

network, we also measured the impact of thresholding

on the network’s nodes that were originally singletons.

Across all variations in subsampling rates, the proportion

of sampled singletons that clustered all maintained low

IQRs (See Figure 2, Panel B). This implies that while

AUTO-TUNE is effective in maintaining the core structure

of the network, it does not significantly alter the clustering

of nodes that were singletons in the full dataset.

As the sample proportion increased, an upward trend

was noted in average AUTO-TUNE scores. Addition-

ally, the standard deviation reduced significantly when

increasing sample proportion. This implies that as sam-

pling becomes denser, AUTO-TUNE will become more

confident in determining the optimal threshold for a par-
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ticular dataset.

Discussion
AUTO-TUNE addresses the challenge of selecting an

appropriate genetic distance threshold to construct HIV

transmission networks by implementing a heuristic scor-

ing system. This system is predicated on two key fea-

tures of networks generated by candidate genetic dis-

tance thresholds: a high number of clusters and the

absence of a giant component. Few small clusters indi-

cate an excessively low threshold, while a giant cluster

comprising numerous sequences signals an overly high

threshold. The efficacy of AUTO-TUNE is evidenced by

its ability to select thresholds that yield higher quality clus-

tering, as demonstrated by improved Degree-Weighted

Homophily (DWH) scores across various datasets, epi-

demic contexts, and risk groups. Furthermore, AUTO-

TUNE thresholds not only matched but often outper-

formed those manually selected in prior studies, thus un-

derlining the benefits of a more systematic, automated,

and data-responsive approach.

For example, the results of our study suggest that AUTO-

TUNE, which relies solely on clustering metrics from pair-

wise distances, could be an effective alternative to other

distance-based methods, such as clustuneR while less

time-consuming and possessing a gentle learning curve,

which makes it easy to use by personnel not special-

ized in bioinformatics and computer science. Further-

more, the simplicity of the method without compromis-

ing results represents an advantage over phylogenetic

methods where, in addition to the calculation of genetic

distances, it must also determine a support/distance

threshold where a rationale for the selection of these

thresholds is rarely provided (Junqueira et al., 2019).

AUTO-TUNE generated thresholds for all three exam-

ined datasets (Middle Tennessee, Seattle, and Northern

Alberta) that outperformed clustuneR using DWH on

3-year collection date windows across all three datasets.

This indicates that even without incorporating attribute

data, AUTO-TUNE’s scoring heuristic could provide re-

liable thresholds for HIV clusters. However, for the de-

termination of the optimal genetic distance threshold,

time-related and context-specific factors might need to

be considered if there is no significant score for any

one candidate threshold, especially if there are multiple

peaks. For example, during HIV outbreaks in injection

drug users (that usually occur over several months), it

may be more appropriate to use the shorter genetic dis-

tance threshold (Peters et al., 2016; Campbell et al.,

2017) between multiple high-scoring thresholds. On

the contrary, larger and more extended epidemics over

time exhibit a tendency toward larger genetic distance

thresholds in order to capture transmission than younger

epidemics and less densely sampled epidemic investiga-

tions (Patil et al., 2022; Leung et al., 2019; Di Giallonardo

et al., 2021).

Our evaluation of publications citing HIV-TRACE re-

vealed the largely qualitative determination of distance

thresholds. This approach may result in less accurate or

suboptimal thresholds due to a lack of systematic analy-

sis. In contrast, AUTO-TUNE offers a more systematic

and granular approach to threshold selection, with our

findings demonstrating that even minor adjustments to

the distance can drastically change the score. Therefore,

using AUTO-TUNE could potentially improve the quality

of HIV clustering and transmission network studies.

The Degree-Weighted Homophily (DWH) evaluation

showed that AUTO-TUNE could improve network quality

based on specific attributes, such as risk factor, which

is an important part of HIV studies and informing pre-

vention measures (Potterat et al., 2002; Fujimoto et al.,

2021). For example, the use of AUTO-TUNE resulted in

an increased DWH among the MSM, Hetero, and PWID

groups when analyzing a CRF07_BC network. Addi-

tionally, the results from the Rhee et al. dataset also

demonstrated AUTO-TUNE’s ability to improve DWH ge-

ographically, enhancing the network’s ability to accurately

reflect transmission dynamics. However, in contexts with

overlapping risk factors, the interpretation of these im-

provements requires caution. The complexities of risk

group interactions mean that applying AUTO-TUNE’s

thresholds should be tailored to the specific epidemio-

logical setting to ensure accurate modeling of HIV trans-

mission networks.

Our analysis of AUTO-TUNE’s performance on subsam-

ples of a dataset revealed its sensitivity to sample size.

The results indicated a correlation between increased

sample size and higher average AUTO-TUNE scores, as

well as lower score variability. This suggests that denser

sampling could enhance AUTO-TUNE’s ability to deter-

mine the optimal threshold for a dataset. Further studies

might be needed to establish the minimum sample size

required for reliable threshold determination.
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K. When a Score is Below 1.9

In some cases, multiple scores at different thresholds

could suggest the presence of inherently different scales

in the network. For instance, if a network combines both

global and local transmission patterns, AUTO-TUNE may

produce more than one high score, reflecting these dif-

ferent scales. This was observed in a study on HIV-1

CRF07_BC transmission networks in China, where two

distinct clusters, 07BC_N and 07BC_O, showed differ-

ent transmission routes and geographic concentrations

(Ding et al., 2022). Such network complexities could

mean that different thresholds might offer more accurate

insights into subpopulations or transmission dynamics.

The use of AUTO-TUNE, while offering a method for au-

tomated threshold selection, may not always provide a

single, decisive score that unambiguously determines

the optimal threshold. In certain situations, such as

datasets with lower sampling densities or those reflecting

heterogenous dynamics within an epidemic, several can-

didate thresholds may yield similar AUTO-TUNE scores,

making it difficult to single out one as the clear-cut ’opti-

mal’ threshold. In these scenarios, the process of thresh-

old selection becomes more nuanced and requires a

deeper analysis. The plot of AUTO-TUNE scores across

candidate thresholds can serve as a valuable tool in

these cases. For instance, researchers could identify a

range of thresholds that all produce similar scores, sug-

gesting that the specific choice of threshold within this

range may not significantly impact the resulting network.

Moreover, combining AUTO-TUNE with the DWH mea-

sure can enhance the interpretation of such plots. By

considering how assortativity changes across the range

of candidates, researchers can make more informed

decisions about the appropriate choice. If there is a

certain threshold at which the DWH measure noticeably

changes for an attribute of interest, this could suggest a

meaningful shift in the network structure that would be

worth considering when selecting a threshold. The sym-

biotic approach of combining AUTO-TUNE scores, DWH

measure, and visual analysis of score plots provides a

more nuanced method for threshold selection when no

clear optimal threshold emerges from the AUTO-TUNE

scores alone.

The AUTO-TUNE methodology has several limitations.

First, even though it provides the advantage of oper-

ating without the need for metadata, the size and the

subgenomic region analyzed may affect the accuracy of

transmission inference (Junqueira et al., 2019). Second,

our analysis of AUTO-TUNE’s performance on subsam-

ples of a dataset revealed its sensitivity to sample size,

as the performance of the method can be affected by

sampling density, improving the reliability of the test as

the sampling density increases (figure X). However, our

results were consistent with previous studies, which have

suggested an optimal sampling density of 50−70% for

HIV-1 cluster analysis (Novitsky et al., 2014). Third, even

when it provides an insight of the optimal threshold to an-

alyze a network, the supplied information might still need

validation by experts, especially when no clear threshold

is identified. In this case, it has been recommended to

combine genetic data with clinical and sociodemographic

information for a better characterization of the network

structure. Finally, the performance of the method needs

to be assessed in pathogens different from HIV, leading

to opportunities for future research.

Conclusion

AUTO-TUNE operates solely utilizing genetic sequence

data to ascertain a decisive threshold. It employs a scor-

ing heuristic, which is based on the number of clusters

produced by a pairwise distance threshold and the ra-

tio of the largest cluster to the second largest across a

range of possible thresholds using sliding windows.

A key advantage of this approach is its autonomy from

supplementary data. When a patient receives an HIV

diagnosis, data collection protocols can greatly vary, and

additional data are not always available or consistent.

However, by leveraging only genetic sequence data,

AUTO-TUNE eliminates the need for such information

in some cases, and at minimum serves as a preliminary

assessment of candidate thresholds.

Consequently, AUTO-TUNE’s performance is consis-

tently controlled, irrespective of the fluctuations seen

in data collection protocols after an HIV diagnosis. This

level of adaptability demonstrates its suitability for inte-

gration into various contexts related to HIV, and possibly

other viral cluster detection and response protocols. This

versatility underscores the strong methodological foun-

dation of AUTO-TUNE and its potential utility.
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Table 2. Network properties at the published and AUTO-TUNE thresholds. In cases when the original paper used more than one threshold, we selected the largest for
comparison. The datasets are ordered by the AUTO-TUNE priority score from highest to lowest. ρ is the fitted characteristic scale-free exponent of the corresponding
degree distributions.

Reference AUTO-TUNE Nodes in network Clusters in network R12 Scale parameter ρ
score Published AUTO-TUNE Published AUTO-TUNE Published AUTO-TUNE Published AUTO-TUNE

Li et al. (2022) 2.00 1364 1224 277 277 1.7 2.4 2.8 2.6
Chato et al. (2020) TN 2.00 394 445 108 109 1.0 1.7 2.7 2.9
Rhee et al. (2019) 1.95 2044 1636 524 488 13.2 1.5 2.6 2.7
Bbosa et al. (2020) 1.93 222 296 102 119 2.2 1.6 3.2 2.6
Dalai et al. (2018) 1.89 60 54 9 11 22 2.6 2.0 2.2
Temereanca et al. (2017) 1.79 30 16 5 3 3 1.5 N/A 2.8
Yu et al. (2022) 1.76 55 51 19 19 2.75 1.75 10.4 34.0
Sivay et al. (2018) 1.42 51 51 19 19 1.5 1.5 3.2 3.0
Zai et al. (2020) 1.40 96 98 26 27 1.5 1.5 24.1 17.7
Little et al. (2014) 1.31 301 394 98 87 2.5 6.1 3.6 3.1
Brenner et al. (2021) 1.22 363 379 71 70 5.6 5.5 2.7 2.8
Stecher et al. (2018) 1.20 97 558 36 155 2.2 4.9 3.2 3.3
Chato et al. (2020) Seattle 1.16 505 484 148 149 2.5 1.7 2.7 2.6
Billings et al. (2019) 1.16 38 78 13 23 2 2.3 2.6 11.5
Yan et al. (2021) 1.14 1084 753 124 116 2.0 1.8 1.2 2.0
Chen et al. (2023) 1.11 20 47 8 16 1.3 2.0 ∞ ∞
Leal et al. (2020) 1.11 50 270 25 57 1 1.6 53.6 3.1
Pérez-Losada et al. (2017) 1.06 172 431 76 134 5.1 1.4 5.2 2.9
Liu et al. (2020) 1.05 885 797 156 161 6.0 4.5 3.1 3.0
Chato et al. (2020) Alberta 1.03 394 445 108 109 1.0 1.7 2.7 2.9
Fabeni et al. (2020) 1.00 626 221 197 83 2.1 3.2 2.1 3.2
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Table 4. An application of AUTO-TUNE to subtype stratified HIV-1 pol sequences from the LANL database. Fraction clustered is the proportion of all sequences that are
connected to at least one other sequence. Subtypes are sorted by the inferred threshold, lowest first. Other notation is the same as in Table 1

Subtype N E[D] AUTO-TUNE Fraction Mean ρ
Threshold, % Score Clustered, % Degree

CRF55 2237 2.6 0.187 1.20 29.6 1.41 2.41
CRF07 11682 3.3 0.26 1.00 26.9 3.42 1.87
CRF63 1649 3.6 0.505 1.01 22.1 4.85 1.8
01B 2237 7.8 0.518 1.08 22.2 0.97 5.05
A6 11991 4.6 0.558 1.09 18.6 5.55 1.6
CRF08 2538 3.9 0.82 1.95 25.6 1.95 2.12
CRF01 25689 5.1 0.875 1.73 47.0 1.94 5.54
B 106261 6.4 1.084 2.00 46.4 4.77 1.95
D 3561 6.6 1.133 1.12 20.8 3.65 0.79
C 30714 6.7 1.438 2.00 19.3 1.26 2.22
A1 7154 7.0 1.89 2.00 17.0 5 1.7
CRF02 7821 6.3 1.97 1.01 34.3 10.44 1.53
BF1 4825 8.1 2.046 1.03 25.1 2.27 1.95
G 2162 7.3 2.407 1.03 49.0 9.1 1.66
F1 3986 7.6 2.941 1.34 50.4 15.03 1.40
A1D 1284 8.9 3.23 1.70 27.5 1 4.3
BC 2724 8.0 3.54 1.00 81.4 71.2 1.32
Wertheim et al. (2014) 84527 . 1.0 N/A 15.6 3.84 1.74

Table 5. Distance thresholds and key network properties using four different HIV-1 genomic regions, stratified by subtype (minumum 500 sequences)

Subtype N AUTO-TUNE D,subs/site Number of clusters Full agreement Krippendorff α
pr+rt integrase gag gp41 pr+rt integrase gag gp41 clusters

B 1843 0.02081 2.0005 3.137 5.095 115 128 119 144 64 0.723
C 877 0.03266 0.02 4.754 5.325 44 35 47 46 21 0.588
CRF01/AE 624 0.01635 0.818 2.285 2.037 40 30 40 41 12 0.610

Table 6. clustuneR Comparison

Dataset AUTO-TUNE clustuneR
Threshold subs/site Avg. Homophily Max Score Threshold Avg. Homophily

Seattle 0.01354 0.0348 1.53325 0.0160 0.0259
Tennessee 0.01431 0.0147 1.25807 0.0160 0.0079

Canada 0.01099 -0.0448 1.01678 0.0104 -0.0536

Table 7. CRF07_BC Nodes Count at Different Thresholds

Threshold sub-
s/site

AUTO-TUNE
Score

Nodes PWID MSM Hetero

0.015 0.029 5923 559 3371 1993
0.0076 1.1369 3537 236 2271 1030
0.0019 1.0303 1654 151 1075 428

Table 8. Panmictic Ranges for CRF07_BC DWH at Different Thresholds

Threshold subs/site Risk Group DWH (Panmictic Range)
0.015 MSM 0.211(−0.213,−0.085)

Hetero 0.133(−0.190,−0.087)
PWID 0.168(−0.091,0.002)

0.0076 MSM 0.237(−0.240,−0.120)
Hetero 0.185(−0.211,−0.100)
PWID 0.401(−0.081,−0.005)

0.0019 MSM 0.292(−0.280,−0.146)
Hetero 0.250(−0.256,−0.093)
PWID 0.445(−0.129,−0.012)
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Supplementary Note 1: Figure cap-

tions
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Figure 1. (A) Box plot representing the AUTO-TUNE scores across ten random samples at 25%, 50%, and 75% of the (Rhee et al., 2019) dataset, showing a trend of
increasing confidence in score estimates with denser sampling. (B) Box plot of the selected distance thresholds across the same random samples at 25%, 50%, and
75% proportions, demonstrating improved consistency in threshold selection with increased sample size. (C) Scatterplot of the chosen thresholds (Y-axis) against their
corresponding AUTO-TUNE scores (X-axis) for the three subsample proportions.

Figure 2. Figure A and B present the effects of subsampling on network structure using different thresholds. Figure A illustrates the proportion of nodes subsampled
that remained clustered in both the original and the subsampled networks, with an observable increase in nodes captured as the threshold transitions from 1.5

Figure 3. The user interface of the AUTO-TUNE web application (http://autotune.datamonkey.org/analyze). The platform provides a multi-faceted view of
AUTO-TUNE’s analysis, including a score plot that visualizes trends across different genetic distance thresholds. It also displays graphs of the number of clusters and
the R1/R2 ratio—both key metrics in AUTO-TUNE’s heuristic scoring system. These interactive visualizations aid researchers in making nuanced decisions for threshold
selection, especially when multiple thresholds yield similar scores.
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A. One large cluster is split into 
3, and some nodes become 
singletons by reducing D from 
2% to 1.944%.

Grey edges are removed at lower D

B. Several small 
clusters and singletons 
are combined into a 
larger cluster by 
increasing D from 1.5% 
to 1.93%. 

Grey edges are added at larger D.

C. Reducing D from 1.5% to 1.139% has 
the effect of removing a fraction on nodes 
(they become disconnected) from many 
clusters with ≥5 nodes.

D. Increasing D from 1.3% to 1.483% 
significantly changes the degree distribution  
of the inferred network.

E. Increasing D from 1.5% to 2.33% 
doubles the number of nodes in the 
network 

Edges ≤1.5% are shown with thicker lines

Figure 4. Examples of AUTO-TUNE scores profiles. (A). Lowering the genetic distance threshold removes some of the edges from the network (shown in grey) and
disconnects a large cluster into color-coded smaller clusters; here "None" means that the node is not connected to anything at the lower threshold. (B). Raising the
genetic distance threshold adds edges to the network (shown in grey) and connectes previously separte clusters into a larger component. (C). Each circle is a cluster in
the larger threshold network, and with a proportion of nodes removed when the threshold is lowered. (D). Changes to the node degree distribution (colors represent the
counts of nodes with the same degree). (E). A significant enlargement of a small network at a higher threshold, with grey edges only present at the larger threshold.
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Maximal # of clusters (128)

Large jump in R12 ratio (from 29:13 to 42:6) 

Maximal AUTO-
TUNE score (1.926 
at D = 2.035%)

D = 2.035% (119 clusters)

D = 2.06% (118 clusters)

A

Maximal # of clusters (164)

Maximal AUTO-
TUNE score (1.046 
at D = 0.621%)

D = 0.621% (161 clusters)

B

D = 0.7% (156 clusters)

At D=0.7% the largest cluster absorbs the largest 
cluster from D=0.621% and 45 others (color coded)

The formation of a “large” cluster 
occurs as D crosses 2.035% via a 
single link

Large jumps in R12 ratio

# of clusters
R12 ratio

Figure 5. Examples of how changing thresholds affects inferred networks. (A). A high-scoring network Bbosa et al. (2020) has a distance threshold which achieves
the number of clusters near the maximum, while also avoiding the formation of a large (weakly connected) cluster. (B). A low-scoring network Liu et al. (2020) has a
misalignment between the distance for which the maximum number of clusters is found, and where the big jumps in the cluster size ratio occur. Here, AUTO-TUNE
effectively optimizes the number of clusters while preventing excessive growth of the largest cluster.
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