Skip to main content
[Preprint]. 2024 Mar 14:2024.03.11.584522. [Version 1] doi: 10.1101/2024.03.11.584522

Table 2.

Network properties at the published and AUTO-TUNE thresholds. In cases when the original paper used more than one threshold, we selected the largest for comparison. The datasets are ordered by the AUTO-TUNE priority score from highest to lowest. ρ is the fitted characteristic scale-free exponent of the corresponding degree distributions.

Reference AUTO-TUNE score Nodes in network Clusters in network R 12 Scale parameter ρ
Published AUTO-TUNE Published AUTO-TUNE Published AUTO-TUNE Published AUTO-TUNE
Li et al. (2022) 2.00 1364 1224 277 277 1.7 2.4 2.8 2.6
Chato et al. (2020) TN 2.00 394 445 108 109 1.0 1.7 2.7 2.9
Rhee et al. (2019) 1.95 2044 1636 524 488 13.2 1.5 2.6 2.7
Bbosa et al. (2020) 1.93 222 296 102 119 2.2 1.6 3.2 2.6
Dalai et al. (2018) 1.89 60 54 9 11 22 2.6 2.0 2.2
Temereanca et al. (2017) 1.79 30 16 5 3 3 1.5 N/A 2.8
Yu et al. (2022) 1.76 55 51 19 19 2.75 1.75 10.4 34.0
Sivay et al. (2018) 1.42 51 51 19 19 1.5 1.5 3.2 3.0
Zai et al. (2020) 1.40 96 98 26 27 1.5 1.5 24.1 17.7
Little et al. (2014) 1.31 301 394 98 87 2.5 6.1 3.6 3.1
Brenner et al. (2021) 1.22 363 379 71 70 5.6 5.5 2.7 2.8
Stecher et al. (2018) 1.20 97 558 36 155 2.2 4.9 3.2 3.3
Chato et al. (2020) Seattle 1.16 505 484 148 149 2.5 1.7 2.7 2.6
Billings et al. (2019) 1.16 38 78 13 23 2 2.3 2.6 11.5
Yan et al. (2021) 1.14 1084 753 124 116 2.0 1.8 1.2 2.0
Chen et al. (2023) 1.11 20 47 8 16 1.3 2.0
Leal et al. (2020) 1.11 50 270 25 57 1 1.6 53.6 3.1
Pérez-Losada et al. (2017) 1.06 172 431 76 134 5.1 1.4 5.2 2.9
Liu et al. (2020) 1.05 885 797 156 161 6.0 4.5 3.1 3.0
Chato et al. (2020) Alberta 1.03 394 445 108 109 1.0 1.7 2.7 2.9
Fabeni et al. (2020) 1.00 626 221 197 83 2.1 3.2 2.1 3.2