
Subject-Agnostic Transformer-Based Neural Speech

Decoding from Surface and Depth Electrode Signals

Junbo Chen1†, Xupeng Chen1†, Ran Wang1, Chenqian Le1,

Amirhossein Khalilian-Gourtani2, Erika Jensen2, Patricia

Dugan2, Werner Doyle4, Orrin Devinsky2, Daniel Friedman2,

Adeen Flinker2,3‡, Yao Wang1,3‡∗

1Electrical and Computer Engineering Department, New York University, 370 Jay

Street, Brooklyn, 11201, NY, USA.
2Neurology Department, New York University, 223 East 34th Street, Manhattan,

10016, NY, USA.
3Biomedical Engineering Department, New York University, 370 Jay Street,

Brooklyn, 11201, NY, USA.
4Neurosurgery Department, New York University, 550 1st Avenue, Manhattan,

10016, NY, USA.

†These authors contributed equally to the work

‡These authors jointly supervised the work

∗ Corresponding author: yaowang@nyu.edu

Abstract. Objective: This study investigates speech decoding from neural signals

captured by intracranial electrodes. Most prior works can only work with electrodes on

a 2D grid (i.e., Electrocorticographic or ECoG array) and data from a single patient.

We aim to design a deep-learning model architecture that can accommodate both

surface (ECoG) and depth (stereotactic EEG or sEEG) electrodes. The architecture

should allow training on data from multiple participants with large variability in

electrode placements and the trained model should perform well on participants unseen

during training.

Approach: We propose a novel transformer-based model architecture named

SwinTW that can work with arbitrarily positioned electrodes by leveraging their 3D

locations on the cortex rather than their positions on a 2D grid. We train subject-

specific models using data from a single participant and multi-patient models exploiting

data from multiple participants.

Main Results: The subject-specific models using only low-density 8x8 ECoG data

achieved high decoding Pearson Correlation Coefficient with ground truth spectrogram

(PCC=0.817), over N=43 participants, outperforming our prior convolutional ResNet

model and the 3D Swin transformer model. Incorporating additional strip, depth,

and grid electrodes available in each participant (N=39) led to further improvement

(PCC=0.838). For participants with only sEEG electrodes (N=9), subject-specific

models still enjoy comparable performance with an average PCC=0.798. The multi-

subject models achieved high performance on unseen participants, with an average

PCC=0.765 in leave-one-out cross-validation.

Significance: The proposed SwinTW decoder enables future speech neuropros-

theses to utilize any electrode placement that is clinically optimal or feasible for a

particular participant, including using only depth electrodes, which are more routinely
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implanted in chronic neurosurgical procedures. Importantly, the generalizability of the

multi-patient models suggests that such a model can be applied to new patients that

do not have paired acoustic and neural data, providing an advance in neuroprostheses

for people with speech disability, where acoustic-neural training data is not feasible.

1. Introduction

Brain-related speech disability, which can be caused by stroke, injury, or tumor

[10, 35, 44], can seriously decrease a patient’s quality of life. In the United States,

an estimated 2.5 million people suffer from speech disability due to stroke alone [20].

There has been growing interest in using intracranial electrodes to record neural activity

during speech production in order to directly decode human speech from these signals,

making it possible to design Brain-Computer Interface to allow patients with speech

disabilities to communicate [38, 30, 7, 33, 8, 36].

Recent advancements in deep neural networks have been leveraged to push the

boundary of speech decoding from ECoG signals. The decoding pipeline proposed

in [47, 9] first applies a Neural Decoder (called ECoG Decoder) to predict time-

varying speech parameters and then uses a novel Speech Synthesizer to generate speech

spectrograms from speech parameters. Using ResNet [15] or 3D Swin Transformer [29]

as the Neural Decoder, high speech decoding performance in terms of PCC between the

decoded and ground-truth spectrograms has been achieved. In [1], densely connected

3D Convolutional Neural Networks (CNN) were applied to decode speech from ECoG

signals. Besides CNN and Transformer, recurrent neural networks (RNN) and long

short-term memory (LSTM) networks have also been explored as Neural Decoders

[31, 4, 34]. Some approaches produced naturalistic reconstruction leveraging wavenet

vocoders [1], generative adversarial networks [46], and unit selection [16], but with

limited accuracy. These studies demonstrate that deep neural networks can decode

speech information from the complex neural activity recorded by the ECoG signals.

A recent study in one patient with implanted high-density ECoG electrodes [32]

was successful in decoding naturalistic speech with high word decoding accuracy by

leveraging the quantized HuBERT features [18] as an intermediate representation space

and a pre-trained speech synthesizer which converts the HuBERT features into speech.

However, HuBERT features do not carry speaker-specific acoustic information and thus

can only be used to generate a generic speaker’s voice, requiring a separate model to

translate the generic voice to a specific patient’s voice.

The deep neural networks in previous speech decoding studies have architecture

designs with several limitations. First, architectures that use spatial convolution among

electrodes, e.g., [1, 9, 47], are only applicable to grid electrodes like an ECoG array

and hence do not work with strip or depth electrodes. Vision transformers’ absolute

position embeddings and relative positional bias are also based on the 2D or 3D grid

index [12, 28, 27, 29] and hence are only applicable to grid electrodes [9, 24, 40]. On the
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other hand, the implantation of depth electrodes (stereotactic EEG or sEEG) has been

a more popular neurosurgical approach which does not require the removal of a large

skull portion with reports of fewer surgical complications [19, 43]. Further, the approach

and electrodes employed in sEEG are similar to those used in Deep Brain Stimulation

(DBS), which has demonstrated long-term electrode safety, suggesting the possibility

of chronic sEEG for speech neuroprostheses [17]. Multiple sEEG depth probes may be

implanted, which can assay a wide range of deeper structures and thus may provide

additional information not available from the surface of the cortex. Therefore, decoding

speech from sEEG signals would have significant clinical advantages.

Secondly, models that use fully connected computations among the electrodes, e.g.,

[4, 31, 39], can only be trained for a specific participant, as the weights learned depend

on the actual locations of the electrodes in the brain. Further, electrode placement

varies quite widely across patients, and fully connected architectures can not be trained

effectively with data from multiple participants. Even convolutional [9, 47, 1] models

or transformers [9, 47, 24, 40] that leverage grid indices for position embedding cannot

generalize well to different participants because they do not specifically consider the

locations of the electrodes on the brain. Therefore, studies to date have developed

subject-specific models, which suffer from small data challenges as they cannot leverage

signals from multiple subjects. More critically, such an approach requires collecting

training data for each participant, limiting its practical applicability.

Our study proposes a novel transformer-based Neural Decoder that does not rely

on a regular grid structure. We call it the Swin transformer with temporal windowing

(SwinTW). Instead of relying on the grid index, the model leverages the anatomical

location of electrodes in the standardized brain template to learn the attention between

electrodes. The proposed Neural Decoder achieved superior performances than ResNet

and 3D Swin Transformer across 43 participants, given the same grid electrodes, reported

in [9]. The model demonstrated further performance increase by leveraging the off-

grid electrodes that cannot be utilized in the previous studies. Importantly, the model

demonstrated promising performance given sEEG electrodes only across 9 participants.

Most significantly, the SwinTW model can be effectively trained with data from multiple

participants, and the resulting model can generalize well to participants outside the

training cohort.

2. Method

2.1. Speech Decoding Framework

Our neural decoding framework is trained by following a 2-step approach proposed

in our previous study [9], shown in Figure 1. In the first step of Speech-to-Speech

training, a Speech Encoder is used to extract speech parameters at every time frame

(e.g., pitch, formant frequencies, loudness) from the input speech spectrogram, and a

differentiable Speech Synthesizer is designed to reconstruct the spectrogram from the
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speech parameters. The Speech Encoder and the Speech Synthesizer are trained to

match the reconstructed spectrogram with the ground truth. In the second step of

Neural-to-Speech training, the Neural Decoder is trained to predict the time-varying

speech parameters from neural signals using the speech parameters generated by the

Speech Encoder as the guidance. The predicted speech parameters from the Neural

Decoder are fed to the trained Speech Synthesizer from step 1 to generate the predicted

speech spectrogram, which is then converted to the predicted speech waveform.

Speech Encoder
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Figure 1. SwinTW Decoder Architecture and Speech Decoding Training Pipeline.

SwinTW uses three stages of transformer blocks with spatial-temporal attention with

temporal windowing to extract features. An MLP layer is applied to decrease the latent

dimension after patch merging. After the last transformer block, spatial max pooling

is applied across the electrodes to generate a single feature per time step. Finally,

transposed temporal convolution is used to upsample the temporal dimension to be

the same as the input. A prediction head module is used to generate speech parameters

from the latent representation. The SwinTW is trained so that the decoded speech

parameters from the neural signal match the reference speech parameters generated

from the corresponding speech spectrogram using a pre-trained speech encoder. During

inference, the speech encoder is not used. The SwinTW decodes the speech parameters

from the neural signal, which are then fed into the speech synthesizer to generate the

speech spectrogram.

Following the design from our previous study [47, 9], the Speech Encoder extracts

18 speech parameters at each time step from the original speech spectrogram, which is

then fed to the Speech Synthesizer to reconstruct the original speech spectrogram. The

Speech Encoder adopts a simple network architecture with MLP (Multilayer Perceptron)

and temporal convolution. The differentiable speech synthesizer enables the end-to-

end training of the speech-to-speech auto-encoding task (see bottom branch of Fig. 1).

Details about the Speech Encoder and Speech Synthesizer and their pretraining using

speech signal only can be found in [9].

For Neural-to-Speech training, the Neural Decoder first maps neural activity from

all input electrodes to a latent feature, which is then used to predict the 18 speech

parameters for each time frame, supervised by the speech parameters generated by the

Speech Encoder. Then, the speech parameters predicted by the Neural Decoder will be

fed into the Speech Synthesizer to generate the predicted spectrogram, which is then

converted to the ECoG-decoded speech signal.

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2024. ; https://doi.org/10.1101/2024.03.11.584533doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.11.584533
http://creativecommons.org/licenses/by-nc-nd/4.0/


Subject-Agnostic Transformer-Based Neural Speech Decoding

2.2. Neural Decoder based on Temporal Swin Transformer

In our study, we propose a novel architecture for decoding speech parameters from

electrode signals that do not require electrodes to be on a 2D grid. We name the

proposed Neural Decoder a Swin transformer with temporal windowing (SwinTW),

inspired by the Swin Transformer [28, 27]. In the vanilla Vision Transformer (ViT) for

an image [12], the self-attention layer computes global attention among all tokens (with

each token corresponding to an image patch). This global attention causes the absence

of the inductive bias of locality and heavy quadratic computational complexity to the

input image size. The Swin Transformer solves the problems by grouping tokens into

local windows and computing local attention within each window at each self-attention

layer. To allow inter-window information exchange, the Swin Transformer shifts the

window partition between every two windowed self-attention layers, which prevents

different windows from being segregated (details can be found in [28, 27]). However,

since the Swin Transformer was designed for 2D images (later extended to 3D videos

[29]), its architecture assumes that the input is in the formats of 2D or 3D grids. Our

previous transformer-based Neural Decoder used 3D Swin [9] which is inspired by [29],

where each 3D window includes nearby 2× 2 electrodes in two adjacent time steps. In

our proposed SwinTW, we made several modifications to allow speech decoding based

on electrodes in any topological layout. We still have spatial and temporal attention,

but windowing is only applied in the temporal direction to constrain temporal attention.

Instead of using electrode location on the 2D grid for spatial positioning information in

[9], we use the anatomic location of each grid on the cortex (MNI coordinate and brain

region index). The architecture of the SwinTW is shown in Figure 1.

Temporal patch partition: In the Swin Transformer [28, 27, 29] or ViT [12],

the input images or videos are partitioned into 2D or 3D patches, and each patch is

then mapped to a token with a patch embedding layer. This patch partition requires

ordering all the electrodes into a 2D grid and makes the trained model not invariant

to the electrode order. To solve this problem, our proposed SwinTW generates tokens

from each electrode individually and only partitions the temporal dimension. As shown

in Figure 1, given an ECoG signal with the shape of T ×N (T : number of frames, N :

number of electrodes), for each electrode, the SwinTW partitions the temporal sequence

of neural activity into T
W

patches with patch size W . The temporal patch partition

generates T
W

×N patches in total, and a linear patch embedding layer is applied to each

patch to generate T
W

×N tokens with the latent dimension of C.

Temporal window attention: In Swin transformer [28, 27, 29], tokens are

partitioned into windows, where each window contains a local subset of adjacent

tokens, and attention is calculated only among tokens within the same window. In

conventional 3D Swin, the windowing is applied spatially and temporally, making the

model only suitable for electrodes arranged in a 2D grid. In SwinTW, to remove this grid

input constraint, the model only partitions tokens into local windows in the temporal

dimension and allows spatial attention across all electrodes (this can be thought of as
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using a spatial window size that includes all electrodes). Given N = Nt×Ns tokens (N:

total number of tokens, Nt: number of tokens in the temporal dimension, Ns: number of

tokens in the spatial dimension, equal to number of electrodes) and window size Wt, the

N tokens are partitioned into Nt

Wt
windows and attention is calculated among Wt × Ns

tokens within each window.

Temporal patch merging: The Swin Transformer leverages patch merging to

achieve inductive bias of locality and hierarchical feature maps. However, merging

nearby patches in the spatial dimension is not feasible when the electrodes are not

arranged in a grid. Therefore, instead of using the spatiotemporal patch merging in

the 3D Swin Transformer [29], the SwinTW conducts temporal patch merging for each

electrode individually. For each electrode, every two consecutive tokens in the temporal

dimension with feature dimension C will be concatenated as a 2C dimensional latent

and get mapped to a 2C dimensional merged token.

Grid-free positional embedding: The SwinTW follows Swin Transformers [27]

to exploit positional information through relative positional bias. However, instead

of using the 2D or 3D grid index difference as the relative position like the Swin

Transformer, our SwinTW defines the relative positional bias based on each token’s

anatomical location and time-frame index. The positional bias is defined as below:

Attention(Q,K, V ) = Softmax(SIM(Q,K))V (1)

SIM(qi, kj) =
qikj

|qi||kj|
/τ +Bi,j (2)

Bi,j = MLP (xi, yi, zi, ti, xj, yj, zj, tj, xi − xj, yi − yj, zi − zj, ti − tj) + ri · rj (3)

Given Q,K, V ∈ RN×C (Q,K, V are query, key and value generated from each token, N

is number of tokens and C is the latent dimension), shown in equation 1, the softmax

of SIM(Q,K) for all pairs of token in the window is used to aggregated V (values

of tokens within the window) to get the output token values. We define query-key

similarity following the scaled cosine attention of SwinV2 [27], defined in equation 2.

τ is a learnable parameter not shared among attention heads and layers. Bi,j is the

relative positional bias between token i and token j. In SwinTW, Bi,j consists of two

terms: MNI-based positional bias and region-based bias. We project each subject’s

electrodes to a standardized Montreal Neurological Institute (MNI) brain anatomical

map and collect each electrode’s x, y, z location in the MNI coordinate. For each token

pair, the MNI coordinates of the corresponding electrodes and time-frame index, along

with their differences, will be mapped to the MNI-based positional bias with a 2-layer

MLP, which is shown in the first term of Eq. (3). We also parcellate the standardized

brain into regions of interest (ROIs) and learn a dictionary of embeddings for all ROIs,

with ri denoting the embedding features for region i. Given Nr ROIs and Nh attention

head, the learnable dictionary has Nh sets of Nr×Cr region embeddings (Cr is the region

embedding dimension). The region embeddings ri,∀i are learned during the training.

For a pair of tokens, the dot product of the embeddings of their corresponding electrodes’
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ROIs will be added to the positional bias, shown in the second term of Eq. (3). The dot

product is used instead of cosine similarity to allow the model to assign high attention

to certain regions by letting them have large embedding values.

The architecture of SwinTW is shown in Figure 1. The input ECoG signal with a

size of T ×N is partitioned into ( T
W

×N) patches, each with a patch size of W × 1. A

linear patch embedding layer maps each patch to a C dimensional token. The SwinTW

has three stages with 2, 2, and 6 layers. Swin Transformer Block (consists of a windowed

multi-head self-attention layer and an MLP) is applied in each layer, detailed in [28], and

we replace the spatial-temporal windowing with temporal-only windowing. Following

the Swin Transformer, the temporal window partition is shifted for every two consecutive

layers to allow inter-window information exchange, detailed in [28]. SwinTW performs

temporal patch merging after the first and second stages, each stage decreasing the token

number by half and doubling the latent dimension. After stage 3, an MLP is applied

to decrease the 4C latent dimension to C ′. Spatial max pooling across the electrodes is

then applied to convert ( T
4W

×N)×C ′ feature maps to T
4W

×C ′. Transposed temporal

convolutions are then employed to upsample T
4W

× C ′ to T × C ′, where T is the frame

number of the input neural signal. As shown in 1, the T ×C ′ latent from SwinTW next

goes through the prediction head consisting of temporal convolutions (kernel-size=3)

and MLP to predict the 18 speech parameters at every frame.

In our study, we set C = 96 and C ′ = 32. Patch-size W = 4 and window size

Wt = 4 is applied to partition temporal dimension. In our 3 stages SwinTW with 2, 2,

and 6 layers, the self-attention layers in the 3 stages have 3, 6, and 12 attention heads,

respectively. The MLP in SwinTW has 3 layers (384→196→96→32) with layer norm

[5] and LeakyRELU activation in between. The transposed convolution for temporal

upsampling contains 4 1D transposed convolutional layers with stride=2 and kernel-

size=3, padding=1. These parameter choices are determined through empirical trials

and errors.

2.3. Training of Subject-Specific Neural Decoders

The training procedures for both the Speech Encoder and Speech Synthesizer follow

the methods described in our previous work [9]. Therefore, we omit the details in this

section. Following [9], we use two types of supervision to guide the training of the

Neural Decoder that predicts speech parameters from neural signals. Firstly, we train

the decoder to generate speech parameters that match the parameters generated by

the speech encoder. Besides, the ground truth speech spectrograms act as additional

supervision for the decoder, as the predicted speech parameters are converted to

spectrograms by the speech synthesizer. The fact that our Speech Synthesizer is

differentiable enables us to use the spectrogram reconstruction loss for end-to-end

training. The reference loss Lreference for the speech parameters is defined as:

Lreference =
∑
i,t

λi||Ĉt
i − Ct

i ||
2

2, i ∈ [f t
0, f

t
1, ..., f

t
6, a

t
1, ..., a

t
6, f

t
u, b

t
u, a

t
u, α

t, Lt] (4)
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where Ĉt
i and Ct

i are speech parameters generated by the Neural Decoder and the

Speech Encoder (as ground truth), respectively. We assign each speech parameter

with individual weight λi through testing the performances on three hybrid-density

participants with different parameter choices, and the values are detailed in [9]. For

spectrogram-based supervision, we use modified multi-scale spectral loss LMSS, Short-

Time Objective Intelligibility (STOI) loss LSTOI , and supervision loss Lsupervision. LMSS

is inspired by [13]. It supervises speech reconstruction by measuring the distance

between the ground truth spectrogram and the reconstructed spectrogram in both linear

and mel-frequency scales. LSTOI measures the intelligibility of reconstructed speech

based on the STOI+ metric [14]. Higher STOI+ indicates better intelligibility, the

LSTOI is defined as the negative of STOI+: LSTOI = −STOI+. Besides, additional

supervision Lsupervision is applied to improve the prediction accuracy for the pitch f t
0 and

formant frequencies f t
i=1,2,3,4. The Lsupervision calculates the L2 distance between each

predicted frequency and the corresponding frequency extracted by the Praat method

[6]. The overall loss for training the Neural Decoder is

L = LMSS + λ1LSTOI + λ2Lsupervision + λ3Lreference (5)

where λ1 λ2 and λ3 are set to 1.2, 0.1, and 1.0, following [9] through testing the

performances on three hybrid-density participants with different parameter choices.

Adam optimizer [22] with learning-rate=5× 10−4, β1=0.9 and β2=0.999 is used to

train the Neural Decoder. As mentioned in Section 3.1, following [9], randomly selected

50 out of 400 trials are used as the test set for each subject, and the remaining data are

used for training.

2.4. Multi-Subject Neural Decoder Training

The proposed SwinTW allows the Neural Decoder to take input with any electrode

layout as long as we know each electrode’s MNI coordinate and region index. Therefore,

this architecture allows the Neural Decoder to be trained using data from multiple

participants and then used for inference on any participant. Figure 2 demonstrates the

multi-subject Neural Decoder training pipeline. Given data from multiple participants,

a shared SwinTW-based Neural Decoder generates speech parameters based on each

participant’s electrode signals and electrode locations (electrodes’ MNI coordinates and

region index). Reference loss is calculated between the predicted speech parameters

and the speech parameters generated by the subject-specific Speech Encoder. Each

subject’s predicted speech parameters are fed into the corresponding subject-specific

speech synthesizer to generate a speech spectrogram. The neural signals and electrodes’

locations are fed into the Neural Decoder to generate speech parameters during inference.

The participant’s speech synthesizer then generates a speech spectrogram from the

predicted speech parameters. Note that the embeddings for different ROIs are also

learned as part of the Neural Decoder training. When we train a decoder using

participants with left and right hemisphere electrodes, separate region embeddings are

learned for the left and right brain hemispheres.
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Figure 2. Multiple-subject Neural Decoder training pipeline. Each participant’s

neural signal and electrodes’ location information (MNI coordinates and ROI index) are

fed to a shared SwinTW Neural Decoder to predict speech parameters. The predicted

speech parameters are supervised by the speech parameters generated by the subject-

specific Speech Encoder from the ground-truth speech spectrogram. Each participant’s

predicted speech parameters are fed into the corresponding subject-specific Speech

Synthesizer to generate a speech spectrogram.

2.5. Evaluation Metrics

Following [48, 1, 4, 9], we used three metrics to evaluate the speech decoding

performance:

1) Pearson Correlation Coefficient (PCC) measures the normalized correlation

between the decoded spectrogram and the actual spectrogram and is a widely used

metric to evaluate the accuracy of the decoded spectrogram.

2) STOI+ [14] is another metric that measures the similarity between decoded and

original speech. STOI+ has been reported to have a monotonic relationship with speech

intelligibility. The STOI+ value ranges from -1 to 1, and higher STOI+ indicates better

intelligibility.

3) Mel-cepstral distortion (MCD)[25] measures the differences between 25 acoustic

features generated from the decoded speech and the original speech. A lower MCD is
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better. MCD is calculated as follows:

MCD =
10

ln(10)

√ ∑
0<d<25

(mcd − m̂cd)
2

where mcd and m̂cd denote the d-th feature generated from the original and decoded

speech.

3. Results

3.1. Neural Data Collection and Preprocessing

The study includes 52 native English-speaking subjects (43 subjects with ECoG

electrodes, 20 males, 23 females; 9 subjects with only sEEG electrodes, 3 males, 6

females) with refractory epilepsy (a disease involving seizures caused by abnormal

electrical brain activity). Details about speech and ECoG signals collection can be found

in [9]. In brief, at each trial, a subject was requested to speak a specific target word in

response to an audio or visual stimulus while their neural activity signals were recorded.

Each subject was asked to complete 5 different tasks: (1) Auditory Repetition (repeating

the word that the care provider has spoken), (2) Auditory Naming (naming the word

based on the definition that the care provider has spoken), (3) Sentence Completion

(naming the last word to complete a sentence that the care provider has spoken) (4)

Visual Reading (reading the written word shown by the care provider) (5) Picture

Naming (naming the word based on a colored drawing shown by the care provider).

Each task included the same 50 target words [41], each appearing once in the Auditory

Naming and Sentence Completion and twice in each of the other tasks, leading to 400

trials of ECoG signal recording, and the average duration of word production among all

trials was 500ms.

All electrodes were implanted to capture clinically relevant brain regions, detailed

in [9]. There were 43 subjects who had 8x8 ECoG electrodes with 10 mm spacing

capturing signals over the perisylvian cortex (male left hemisphere: 14 subjects; female

left hemisphere: 13 subjects; male right hemisphere: 6 subjects; female right hemisphere:

10 subjects). Besides the 8x8 grid electrodes, some subjects had additional electrode

strips outside the 8x8 grid and/or depth electrodes implanted under the brain’s surface.

We also included 9 subjects with only sEEG electrodes (male = 3, female = 6). The

experiments were approved by the Institutional Review Board of NYU Grossman School

of Medicine, and written and oral consent was collected from each participant. All

implanted electrodes were the clinical standard of care and FDA-approved. The high

gamma component (70-150 Hz) was extracted from the raw electrode signal, with

electrodes exhibiting artifacts or interictal/epileptiform activity excluded by setting their

signal to 0. The preprocessing details can be found in [9]. This study also applies a

Savitzky-Golay filter [37] with a 3rd-order polynomial and window size of 11 to further

denoise the high-gamma signal in the temporal dimension. Among the 400 trials of
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ECoG signals recorded from the five-word production tasks, 350 trials were used for

model training, and 50 trials were held out for testing (10 randomly selected trials were

reserved for testing for each task).

3.2. Subject-Specific Models: Speech Decoding with Electrodes on One ECoG Grid

To compare our proposed grid-free SwinTW with the Neural Decoders based on ResNet

and 3D Swin transformer in our previous study [9], firstly, we evaluated the SwinTW

trained with 64 ECoG electrodes for each subject individually. Figure 3 compares

the decoding performance of the SwinTW decoder with the 3D ResNet and 3D Swin

decoders. For each subject, we compute the average PCC, STOI+, and MCD among

all the test trials. Each dot in a box plot is the mean metric for one subject. As

illustrated in Figure 3, the SwinTW (PCC = 0.825, STOI+ = 0.309, MCD = 2.341)

outperforms ResNet (PCC = 0.804, STOI+ = 0.264, MCD = 2.374) and 3D Swin

transformers (PCC = 0.785, STOI+ = 0.216, MCD = 2.425) in terms of PCC, STOI+,

and MCD. Additionally, the performance of the three models tested on shuffled data

(by randomly shuffling the input neural signals temporally during the entire recording

session) is also reported as a control in the supplementary Figure. S1. It is evident

that the decoding performance with non-shuffled data is significantly better. Note that

SwinTW differs from 3D Swin primarily in how the spatial positions of two electrodes

affect the spatial attention bias between the two electrodes. With 3D Swin, the relative

position between the two electrodes on the 2D grid determines the attention bias,

whereas, with SwinTW, the attention bias depends on the MNI coordinates and ROI

embeddings of these electrodes. Our results suggest that using the MNI coordinates

and ROI information can lead to better decoding performance while making the model

applicable to non-grid electrodes.

3.3. Subject-Specific Models: Speech Decoding with Additional Electrodes

As the SwinTW does not rely on the 2D grid positions of the electrodes, the proposed

SwinTW can easily leverage off-grid electrodes to provide additional information for

speech decoding. In our study, for each participant with additional electrodes beyond

one ECoG grid, we selected additional electrodes with a standard deviation of the signal

greater than a subject-specific threshold, determined following the approach described

in [21] for identifying active electrodes. We then trained the SwinTW Neural Decoder

with 64 electrodes from the 8x8 grid and the selected additional electrodes for each

subject. As 4 participants did not have any additional electrodes that fulfill the threshold

requirement, we compared the models based on the remaining 39 participants. Each

participant had 1 to 19 strip electrodes, 1 to 21 depth electrodes, 1 to 21 extra grid

electrodes, and 1 to 11 electrodes with unknown locations (we set the MNI coordinates

of these electrodes as 0 and the region index corresponding to Unknown instead of

discarding them). Figure 4 compares the SwinTW Neural Decoder performance using

all selected electrodes and with the performance using only electrodes on one ECoG grid.
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Figure 3. Performance comparison between different models. Subject-specific models

when trained and tested on grid electrodes using different Neural Decoder architectures.

Comparison of the distributions of decoding PCC (a), STOI+ (b), and MCD (c) over

43 participants. Each dot in a box plot indicates the mean metric for one participant

across all testing trials. The yellow error bars denote the mean ± standard error

of the mean (SEM) across participants. The SwinTW outperforms the ResNet and

3D Swin Transformer regarding PCC and STOI+. All box plots depict the median

(horizontal line inside box), 25th and 75th percentiles (box), 25th or 75th percentiles

±1.5× interquartile range (whiskers) across all participants (N=43), and the yellow

error bars denote the mean ± standard error of the mean (SEM) across participants.

Distributions were compared with each other as indicated. Black brackets indicate two

experiments are compared using the Wilcoxon two-sided signed-rank test. ***: P <

0.001, *: P < 0.05, ns: p > 0.05.

The results demonstrate that additional electrodes can further improve the decoding

performance (all electrodes PCC = 0.838, STOI+ = 0.359, MCD = 2.228; grid electrodes

PCC = 0.825, STOI+ = 0.318, MCD = 2.341).

3.4. Subject-Specific Models: Speech Decoding with sEEG electrodes only

We also attempted to train the proposed SwinTW model to decode speech production

from only SEEG electrodes. Our study included 9 subjects (male = 3, female = 6) with

only sEEG electrodes implanted. For each subject, electrodes with a standard deviation

of the signal greater than a subject-specific threshold derived following the approach

of [21] were included. The number of selected electrodes for each participant ranges

from 19 to 178. Figure 4 demonstrates that the SwinTW can achieve promising speech

production prediction based on sEEG electrodes only, with the mean of PCC slightly

lower (0.798 vs 0.825) but STOI+ (0.341) slightly higher than the decoding results from

43 participants with 64 ECoG grid electrodes (0.318).

3.5. Multi-Subject Model: Evaluation on Test Trials of Participants within the

Training Set

As the proposed SwinTW architecture does not require the electrodes to be arranged

in a grid but relies on the electrode position in the brain, it can handle the differences

in the electrode placements among different participants and allow a single model to be
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Figure 4. Performance comparison between different modalities with Subject-specific

SwinTW model. Decoding PCC (a), STOI+ (b), and MCD (c) shows the comparison

between subject-specific SwinTW Neural Decoder performance obtained with all

selected electrodes, with only electrodes on one 8x8 grid for 39 participants, and

with sEEG-only electrodes over 9 participants. Using all electrodes outperforms using

grid electrodes or sEEG-only electrodes. Black brackets indicate two experiments are

compared using the Wilcoxon two-sided signed-rank test. Green brackets indicate two

experiments that are compared using the Wilcoxon rank-sum test, indicated in green.

∗ ∗ ∗ : P ¡0.001, ∗ : P ¡0.05, ns : p¿0.05.
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Figure 5. Comparison between the SwinTW Neural Decoder trained with 8x8 ECoG

data from multiple (15) subjects and the subject-specific SwinTW. PCC, STOI+, and

MCD were evaluated on test trials from the 15 participants. Wilcoxon’s two-sided

signed-rank test is used to compare the two models. P-values of PCC, STOI, and

MCD are 0.12, 0.06, 0.27.

trained with multiple patient data. To validate this idea, we trained a single SwinTW

decoder with 15 randomly selected male participants with ECoG electrodes implanted in

either the left or right brain hemisphere (4 on the left and 11 on the right). As detailed

in Section 2.4, subject-specific speech encoder and speech synthesizer are applied while

the Neural Decoder is shared among subjects. We compare the decoding performance

of the multi-subject and subject-specific models on the test trials of each of the 15

participants included in the multi-subject model training. As shown in Figure 5, the

multi-subject SwinTW model (PCC = 0.837, STOI+ = 0.352, MCD = 2.307) showed
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similar performance with the subject-specific model (PCC = 0.831, STOI+ = 0.334,

MCD = 2.313), with no statistically significant differences.
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Figure 6. The decoding performance of the trained multi-subject model on

participants outside the training set. Cross-validation was conducted on male and

female subjects separately. Single refers to subject-specific model performance on

each single subject, while unseen refers to the multi-subject model tested on unseen

subjects. Although the performance is lower than subject-specific models, these results

demonstrate that the SwinTW decoder trained with multi-subject data can generalize

quite well to unseen subjects. Box plots as described in Fig. 3 across all participants

(N=43), and the yellow error bars denote the mean ± standard error of the mean

(SEM) across participants. Distributions were compared with each other as indicated

using the Wilcoxon two-sided signed-rank test for a, b, and c. ***: P < 0.001.
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Figure 7. The comparison of speech decoding performance on unseen subjects

between SwinTW trained on data from one hemisphere and SwinTW trained on data

from both hemispheres. Models were trained separately for males and females. The

results demonstrate that, compared with hemisphere-specific models, the SwinTW

Neural Decoder trained on both hemispheres can achieve comparable or slightly better

performance when inference on unseen subjects. Box plots as described in Fig. 3.

Distributions were compared with each other as indicated. Green brackets indicate

two experiments that are compared using the Wilcoxon rank-sum test. ns: P > 0.05.
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3.6. Multi-Subject Model: Evaluation on Participants Outside the Training Set

We also evaluated the multi-subject SwinTW decoder on test trials of the subjects

outside the training set. We conducted 5-fold cross-validation separately for male

(n=20) and female (n=23) participants. Specifically, we partitioned all male (resp.

female) participants (with ECoG electrodes implanted in either the left or right brain

hemisphere) into five folds. Each time, we used data from four-fold participants to train

a SwinTW decoder and evaluate its decoding performance on the remaining one-fold

participants. The process is repeated to use every fold as the validation fold once.

As shown in Figure 6, although the performance achieved by participants outside the

training set is significantly lower than the subject-specific models, the decoded speech

still has a high mean PCC of 0.765. The results demonstrate the proposed SwinTW

decoder can achieve generalizability to participants unseen during model training.

To investigate if separate models should be trained for decoding from neural

data in the left and right hemispheres, we performed additional experiments, where

we trained and evaluated multi-subject models for the two hemispheres separately,

each through cross-validation. Among male participants, there were 14 with left

hemisphere data and 6 with right hemisphere data. For female participants, we had

13 with left hemisphere data and 10 with right hemisphere data. We used 5-fold cross-

validation for training and evaluating each model. As shown in Figure 7, compared

with hemisphere-specific models, the SwinTW decoder trained using data from both

hemispheres achieved comparable performance when tested on unseen subjects. This

suggests that a single SwinTW model can effectively extract and synthesize information

from both hemispheres for speech decoding.

4. Discussion

This study proposes a new Neural Decoder architecture, SwinTW, that does not have

the grid-input assumption and can predict speech parameters from electrodes in any

topological layout in the brain. The SwinTW removes the grid-based operations in the

3D Swin Transformer model used in our prior study [9] to make the model applicable

for electrodes in any layout. Instead of relying on 2D grid indices to provide positional

information about each electrode, the SwinTW relies on each electrode’s position in the

standardized brain coordinate (i.e., MNI) and the brain region that the electrode resides

in to generate relative positional bias for self-attention. The SwinTW was used as the

Neural Decoder in the speech decoding pipeline proposed in our previous work [47, 9]

and was trained using the 2-step training pipeline in [47, 9].

Our proposed SwinTW Neural Decoder achieved superior performance over the

Neural Decoders based on ResNet and 3D Swin Transformer in [47, 9], which can only

work with ECoG data. As illustrated in Figure 3, over 43 participants with low-density

8x8 ECoG electrodes, the SwinTW achieved higher mean PCC, STOI+, and lower MCD

(PCC: 0.825, STOI+: 0.309, NCD: 2.341) than the ResNet (PCC:0.804, STOI+: 0.264,
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MCD: 2.374) and 3D Swin Transformer (PCC: mean: 0.785, STOI+: 0.216, MCD:

2.425) using the same 64 electrodes from the 8x8 ECoG grid. We attribute SwinTW’s

better performance to its utilization of electrodes’ locations on the brain cortex (the

MNI coordinate and brain region information) rather than the 2D grid index.

Unlike ResNet and 3D Swin Transformer, the SwinTW does not rely on 2D grid

indices of electrodes and can accommodate both ECoG electrodes, strip and depth

electrodes, and additional grid electrodes. Our results demonstrate that leveraging the

additional electrodes can improve speech decoding performance, as illustrated in Figure

4. Specifically, for 39 subjects with additional active electrodes, the SwinTW utilizing

the additional electrodes achieved better PCC (mean 0.838), STOI+ (mean 0.359),

and MCD (mean 2.228) compared with the SwinTW using grid electrodes only (PCC:

mean 0.825, STOI+: mean 0.318, MCD: mean 2.341). The superior results indicate

that the neural activity recorded by the additional electrodes contains complementary

information for decoding speech.

Our results further demonstrate that the SwinTW can achieve high decoding quality

based only on sEEG electrodes. Specifically, as shown in Figure 4, for nine subjects

with only sEEG electrodes implanted, we achieved PCC: mean 0.798, and STOI+:

mean 0.341, and MCD: mean 2.396. The mean and range of PCC, STOI+, and MCD

are slightly lower than the decoding performance obtained using ECoG electrodes but

significantly higher than previously reported decoding performance from sEEG only,

ranging between 0.54 to 0.77 in mean PCC [2, 3, 23, 45]. It is notable that there

is no statistical difference between the decoding performance from sEEG vs. from

ECoG or all electrodes in terms of STOI+ and MCD, the metrics that are better

indicators of the intelligibility of the decoded speech. We present the distribution

of electrode coverage in Figure S6, alongside the electrode contribution analysis in

Figure S8, which quantifies the importance of each electrode across all participants. The

methodology employed for the contribution analysis is detailed in [9]. The contribution

analysis is conducted using subject-specific models. Despite the variation in electrode

coverage across the grid, all-electrode, and sEEG cases, the contribution analysis reveals

consistent patterns. Specifically, electrodes in the motor and temporal lobe regions

exhibit greater contributions compared to those in other regions. Conversely, electrodes

in other and unidentified regions show the lowest contributions, despite the relatively

large number of electrodes present in these areas. This may explain why similar decoding

performance can be achieved despite variations in electrode coverage. That is, the sEEG

is sampling sufficient cortical regions in order to achieve similar decoding.

Since the SwinTW directly uses the anatomical positions of electrodes rather than

their grid indices, it can be trained with data from multiple subjects. As shown in

Figure 5, when evaluated on the testing trials of the participants in the training cohort

and using only data on 8x8 grids, the resulting multi-subject model trained with data

from 15 participants achieved statistically on par decoding performance (PCC: mean

0.837, STOI+: mean 0.352, MCD: mean 2.307), compared with the SwinTW trained for

each subject individually (PCC: mean: 0.831, STOI+: mean: 0.335, and MCD: mean
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2.313). This implies that the SwinTW model structure is able to effectively deal with

the significant variability in the electrode placements among patients and make use of

electrodes’ positions on the cortex. Previously, we have attempted to train ResNet and

3D Swin-based Neural Decoders using ECoG data from multiple participants. We were

not able to improve the decoding performance compared to subject-specific models.

That is likely because ResNet and 3D Swin models rely on the electrodes’ relative

positions in the 2D grid. Because the ECoG grid is placed differently among the

participants, the same relative difference in the 2D grid can be associated with very

different anatomical positions in different participants, making using the grid index as

positional information unsuitable when the data come from multiple participants.

Most significantly, the SwinTW model trained with multiple participants data

demonstrated generalizability to participants outside the training cohorts, with high

average decoding PCC (mean PCC = 0.765 over 43 unseen participants through a cross-

validation study conducted separately for males and females). Figure 6 shows that the

speech decoding performance achieved on unseen subjects overlaps significantly with

that of the subject-specific model. Furthermore, a model trained with data from both

the left and right hemispheres performs on par with those trained using only the left

or right hemisphere on unseen participants (Figure 7). These results suggest that the

SwinTW training using multiple participants’ data can successfully learn how to handle

differences among subjects based on electrode signals and the anatomical position of the

electrodes. The success of the left and right hemispheres co-training demonstrates the

strong learning capacity of the SwinTW. The two-hemisphere co-training also allows

the Neural Decoder to fully leverage the whole dataset as we no longer need to train

the model separately for each hemisphere.

To summarize, the SwinTW Neural Decoder can predict speech parameters from

electrode signals and electrodes’ positions on the brain cortex without requiring the

electrodes to be arranged in a grid. The SwinTW Neural Decoder, in conjunction with

our previously reported Speech Synthesizer, demonstrated superior speech decoding

performance compared with our prior works based on ResNet and 3D Swin Transformers

when only electrodes on a single ECoG array were used. Besides, the grid-free

architecture of the SwinTW allows the model to leverage off-grid electrodes to improve

speech decoding further. When using only sEEG data, the decoding performance was

comparable with that using ECoG data. As explained in the Introduction, decoding

speech from sEEG signals would have significant clinical advantages over using ECoG

data. Furthermore, the SwinTW can be trained with data from multiple subjects

regardless if the electrodes were implanted in the left or right brain hemispheres. The

multi-subject SwinTW performed statistically on par with the subject-specific models

for participants within the training cohort. Most importantly, our SwinTW trained with

multiple participants’ data demonstrated good generalizability to subjects outside the

training cohorts, achieving high average decoding PCC.

We are one of the few studies ([42, 11, 31]) demonstrating speech-decoding models

trained across multiple participants. However, these other prior works embed subject-
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specific layers in their model structures, and hence, the models need subject-specific

data for training. To our knowledge, we are the first to design a framework that

goes beyond subject-specific training without using subject-specific layers. Our result

demonstrates the exciting possibility of developing speech prostheses without collecting

subject-specific training data: We can train a reliable decoder with data from selected

participants and then directly deploy the model to a new participant. Note that although

our experiments on the multi-subject model only considered the ECoG grid data, we

expect similar trends when using ECoG plus non-grid data or non-grid data only.

Notably, the proposed SwinTW Neural Decoder is not limited to being used with

our speech synthesizer. It could potentially be used to decode other latent features,

e.g. the HuBERT latent features [18], which can then drive a corresponding synthesizer

[26]. The work in [32] successfully decoded speech with high word decoding accuracy by

decoding to quantized HuBERT units using an RNN decoder from high-density ECoG

signals of a single participant. However, the RNN structure cannot be trained with

multi-subject data without introducing subject-specific layers. It will be interesting

to explore the potential of training a SwinTW decoder using data from multiple

participants with surface and/or depth electrodes, to map the neural signals to the

HuBERT units and compare the decoding performance with the subject-specific RNN

model or multi-subject RNN models with subject-specific layers.

One limitation of our current study is that the decoding performance for

participants outside of the training cohorts is not consistently high. This could be

potentially solved by including more participants in the training set when larger datasets

become available. Furthermore, the SwinTW model structure can also be extended to

include subject-specific layers for improved performance. We would explore training the

non-subject-specific layers with a large pre-collected multi-subject dataset and refine

only the subject-specific layer with a small amount of data for any new participants.

Data availability

The data of this study are available from the corresponding author upon request.

Although all participants consented to share their data for research purposes, not all

participants agreed to share their audio publicly. Given the sensitive nature of audio

speech data, we will share data with researchers that directly contact the corresponding

author and provide documentation that the data will be strictly used for research

purposes and will comply with the terms of our study NYU Langone IRB.
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