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Abstract 
 

Clinically and biologically valuable information may reside untapped in large cancer gene 

expression data sets. Deep unsupervised learning has the potential to extract this information with 

unprecedented efficacy but has thus far been hampered by a lack of biological interpretability and 

robustness. Here, we present DeepProfile, a comprehensive framework that addresses current 

challenges in applying unsupervised deep learning to gene expression profiles. We use DeepProfile 

to learn low-dimensional latent spaces for 18 human cancers from 50,211 transcriptomes. 

DeepProfile outperforms existing dimensionality reduction methods with respect to biological 

interpretability. Using DeepProfile interpretability methods, we show that genes that are 

universally important in defining the latent spaces across all cancer types control immune cell 

activation, while cancer type-specific genes and pathways define molecular disease subtypes. By 

linking DeepProfile latent variables to secondary tumor characteristics, we discover that tumor 

mutation burden is closely associated with the expression of cell cycle-related genes. DNA 

mismatch repair and MHC class II antigen presentation pathway expression, on the other hand, are 

consistently associated with patient survival. We validate these results through Kaplan-Meier 

analyses and nominate tumor-associated macrophages as an important source of survival-

correlated MHC class II transcripts. Our results illustrate the power of unsupervised deep learning 

for discovery of cancer biology from existing gene expression data. 
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Introduction 
 

Gene expression profiles are the reflections of a complex network of underlying cellular and 

molecular processes. Unsupervised learning is a key step toward extracting meaningful biological 

information from expression profiles and reducing the dimensionality of the data for downstream 

tasks, such as prediction of phenotypes. Unsupervised learning projects high-dimensional input 

variables into a latent space consisting of a smaller set of latent variables, or factors, capable of 

explaining the variation in the original input space. Learned latent variables represent sources of 

genome-wide expression variation across samples, for example large-scale transcriptional 

programs that define intrinsic disease subtypes or reflect extrinsic stimuli such as hypoxia or 

treatment pressure. Each individual cancer has different characteristics and response to therapy, 

even cancers of the same type. Therefore, discovering and understanding biologically meaningful 

sources of expression variation is of considerable interest from a research and clinical perspective.  

 

One key limitation of commonly used latent space learning approaches for expression data, such 

as principal component analysis (PCA), is that they can only extract latent variables that have 

linear relationships with gene expression levels, while gene interactions can be more complex. The 

artificial intelligence (AI) field has achieved notable success in unsupervised learning by using 

deep neural networks that can capture highly complex relationships between variables. It has been 

shown that the latent variables extracted by unsupervised deep learning approaches from image 

data represent high-level features that are intuitively important for the entire image in the training 

set, for example: skin color, age, and gender from face images1, lighting and room geometry from 

scene images2, and rotation and size of an object from 3D images3. These informative and complex 

image features cannot be captured by models limited to learning linear feature interactions4.  

 

The success of unsupervised deep learning in computer vision has motivated several recent 

applications of deep unsupervised learning methods to gene expression profiles. Prior approaches 

have used generative modeling to learn the latent factors underlying single cell sequencing data, 

separating technical artifacts from biological factors5. Furthermore, previous studies have 

conducted pan-cancer analyses with various approaches ranging from co-expression networks, to 

differential expression analysis, to deep unsupervised learning approaches6–15. For example, Kim 

et al. (2020) introduced a deep learning architecture to enable transfer learning of unsupervised 

deep models to improve survival prediction and applied it to The Cancer Genome Atlas (TCGA) 

data. Way & Greene (2018) pioneered the application of unsupervised deep learning to capture 

biologically relevant features from TCGA expression data.  

 

However, three challenges still impede the successful application of deep unsupervised learning 

approaches to cancer expression data. First, deep learning has a high risk of overfitting when not 

provided with large sample numbers. Second, the non-deterministic nature of the learning process 

impairs the robustness of the learned latent spaces. Each run of neural network training, even using 

the same architecture, results in different models with different parameters, which makes it 

difficult to capture consistent signals16. Model consistency is of paramount importance in biology, 

where interpretation of the learned model is more important than obtaining high predictive 

accuracy. Third, neural networks with multiple hidden layers are “black boxes” by nature: since it 

is not clear how the model uses gene expression inputs to generate a latent variable, biological 

interpretation of latent variables is problematic.  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2024. ; https://doi.org/10.1101/2024.03.17.585426doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.17.585426
http://creativecommons.org/licenses/by-nc/4.0/


 

In addressing the inherent non-determinism in training deep learning models, particularly for 

biological data analysis, model ensembles emerge as a potent solution. By aggregating outputs 

from multiple model runs, ensembles enhance the consistency and stability of predictions, crucial 

for biological applications17–19. Whereas prior techniques have suggested the use of model 

ensembles in unsupervised learning16,20,  these methods have so far been limited to “shallow” 

models with a single hidden layer. Moreover, the application of Explainable AI (XAI) in life 

sciences21–23, although widespread, often grapples with complex, multidimensional data. In this 

context, model ensembles offer a substantial advantage, improving the quality and reliability of 

feature attribution24, thereby aligning with the growing emphasis on transparency and 

comprehension in AI models used for biological data analysis. 

 

To resolve these challenges, we developed DeepProfile, a framework that enables a unique pan-

cancer analysis by learning statistically robust and interpretable latent spaces from gene expression 

data (Fig. 1). To robustly train the neural networks, we incorporated expression datasets 

comprising 18 human cancers from 50,211 transcriptomes in the public gene expression data 

repository Gene Expression Omnibus (GEO)25. To address the non-deterministic nature of the deep 

learning process and capture robust latent spaces, we devised a unique ensemble approach to 

integrate the results of hundreds of deep unsupervised models generated from different random 

starting points and latent space sizes. While previous approaches have proposed using ensembles 

of models16,20, these methods have so far been limited to “shallow” unsupervised models with a 

single hidden layer. By incorporating state-of-the-art feature attribution methods that can provide 

gene importance values for each latent variable, DeepProfile is able to create ensembles of “deep” 

unsupervised models with multiple hidden layers. Finally, DeepProfile extends previous studies 

by incorporating an extended set of gene expression profiles from GEO, The Cancer Genome Atlas 

(TCGA)26, and the Genotype-Tissue Expression (GTEx) database27, and by integrating different 

data modalities such as clinical and mutational features. This rich resource of robust cancer-

specific deep embeddings, the values of the latent variables, and biological characterization of the 

latent variables enables us to examine cancer transcriptomic signals from a new angle and 

investigate their associations to various phenotypes. 

 

Using the DeepProfile framework, we examine genes and pathways that capture major variation 

across all 18 cancer types. We find that universally important genes control aspects of the 

inflammatory response by modulating the transcriptional phenotypes of tumor-infiltrating immune 

cells. Cancer-type specific genes with large contributions to the latent spaces of only one particular 

cancer type, on the other hand, define molecular disease subtypes and reflect tissue-specific 

biology. We develop a methodology for linking DeepProfile embeddings to patient- and tumor-

level characteristics and apply the method to study genes and pathways that – as seen through the 

lens of DeepProfile’s latent spaces – correlate with tumor mutation burden and patient survival. 

We find that tumor mutation burden is significantly associated with the expression of cell cycle-

related pathways across a large majority of cancers, while survival correlates with DNA mismatch 

repair and MHC class II antigen presentation pathway activity. Our methodologies to make deep 

neural network models biologically interpretable allow for complex, non-linear relationships to be 

learned while retaining stable models. Thus, DeepProfile’s robustness and interpretability enables 

the discovery of unique biological patterns in large gene expression datasets. 
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Results 
 
DeepProfile learns robust latent spaces for 18 cancer types 

 

Because highly expressive models such as deep neural networks tend to overfit when the sample 

size is small, we obtained all available expression datasets from the most common microarray 

platforms for 18 human cancers from GEO25 (Fig. 1; Supplemental File 1) (see Methods), 

resulting in 50,211 samples from 1,098 datasets. DeepProfile projects the expression data into 

lower-dimensional latent space represented by a set of latent variables using an ensemble approach 

for the variational autoencoder (VAE)28 (Extended Data Fig. 1). The VAE is a special type of 

deep neural network that compresses high-dimensional data (here, tens of thousands of genes) into 

low-dimensional embeddings with minimal information loss. More specifically, two neural 

networks – (i) the encoder that models the relationship between input variables and latent variables 

in the latent space and (ii) the decoder that models the relationship between the latent variables 

and the reconstructed input variables – are trained such that the reconstructed input data are close 

to the input gene expression data (see Methods).   

 

VAE is a unique model that can discover non-linear relations among genes to reflect the true nature 

of gene interactions. However, applying the model to expression data is not straightforward. 

Neural networks inherently suffer from learned model variability across different random 

initializations due to their intrinsic non-convex nature. This means that a conventional learning 

algorithm for VAE can result in a model that is different in every trial, an outcome that hinders the 

inference of robust biological signals. To improve robustness, we developed an ensemble of VAEs 

to combine the learned models from different random runs and latent dimension sizes (Extended 

Data Fig. 1) (see Methods). This approach integrates signals from hundreds of different latent 

spaces into one information-rich space. After learning these cancer-specific latent spaces, 

DeepProfile’s ‘interpreter’ biologically characterizes each latent variable by mapping it to genes 

and pathways (Fig. 1). This process is based on the principled ‘feature attribution’ method, namely 

integrated gradients29, to quantify how much each latent variable’s value is attributed to input 

variables (Fig. 1 and Extended Data Fig. 2). In particular, for each latent variable, DeepProfile 

produces a list of gene attribution scores, which indicate the relevance of each gene to that latent 

variable and uses the top-listed genes for pathway enrichment tests, which provide pathway-level 

attribution scores (see Methods). 

 

The input gene expression datasets, their lower-dimensional embeddings, gene-level and pathway-

level relevance, and the results of our pan-cancer analysis are publicly available at: 

https://github.com/suinleelab/deepprofile-study (code), and 

https://doi.org/10.6084/m9.figshare.25414765.v2 (data). 

 

The trained DeepProfile model explains the relevant factors of gene expression variation in each 

sample by encoding high-dimensional measurements of thousands of gene expression levels into 

150 latent variables. The number of latent variables was determined using an algorithm that 

iteratively decides whether to add an additional latent variable using a statistical test of Gaussianity 

(see Methods). DeepProfile can be applied to any new cancer gene expression dataset to reduce 

its dimensionality (Extended Data Fig. 2; Methods). To demonstrate the consistency with 

independent RNA-Seq data, we used RNA-seq data from TCGA26 containing 9,079 samples across 
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18 cancers which were not used for training DeepProfile (Extended Data Fig. 2) (see Methods; 

Supplementary File 1). Our result also highlights that DeepProfile can be successfully applied to 

RNA-Seq expression profiles despite being trained on microarray data. This is further supported 

by the high correlation between DeepProfile embeddings generated from microarray and RNA-

seq data (Extended Data Fig. 3).  

 

DeepProfile can learn biologically interpretable latent variables enriched for a wide set of 

pathways  

 
It is desirable for latent variables to be biologically interpretable. DeepProfile provides gene 

attribution scores for each latent variable, thereby enabling a standard enrichment test to assess the 

overlap’s statistical significance using the Fisher’s exact test between the top-scoring genes and 

predefined gene sets, available through curated pathway databases such as KEGG, BioCarta, and 

Reactome. Pathway annotation dramatically facilitates the interpretation of a latent variable’s 

biological meaning; ideally, latent variables will capture many known pathways. We compared 

the average number of pathways captured by DeepProfile’s latent variables to results from other 

dimensionality reduction methods (see Methods). DeepProfile latent variables captured more 

pathways than alternative methods (106 test cases out of 108, proportions z-test P = 

1.62 × 10−301) (Fig. 2a top). Further, when we focused on oncogenic pathways (as defined by 

MSigDb) specifically, DeepProfile outperformed the other methods in terms of total gene sets 

captured (102 tests cases out of 108, proportions z-test P = 2.03 × 10−90) (Fig. 2a bottom). This 

means DeepProfile not only captures more pathways but also identifies the pathways relevant to 

cancer. Supplementary Fig. 1 illustrates that 156 pathways are significant in more than nine 

cancer types, highlighting a significant overlap of common pathways across cancers. Additionally, 

we identified 163 pathways unique to individual cancer types, emphasizing the specificity of the 

DeepProfile approach in detecting cancer-specific biological signals. We also evaluated the 

uniqueness and redundancy of pathways identified by DeepProfile's latent variables in 

Supplementary Note 1, revealing the model's proficiency in distinguishing unique biological 

variations. 

 

A latent variable not associated with any known pathway is difficult to characterize biologically, 

thus decreasing overall interpretability. We found that DeepProfile produces fewer such pathways 

than other methods (Fig. 2b and Extended Data Fig. 4) (see Methods). Further, we show that, 

for varying p-value thresholds, a higher percentage of DeepProfile latent variables are biologically 

annotated compared to other methods (Fig. 2c and Extended Data Fig. 5) (see Methods). To 

validate DeepProfile’s discriminatory power against random patterns, we explored its performance 

on Gaussian noise datasets, simulating conditions devoid of actual biological signals. The results 

highlight the model's precision in differentiating genuine biological signals from noise 

(Supplementary Note 2). These results demonstrate that DeepProfile’s unique deep learning 

ensemble approach improves latent variables’ biological interpretability. Using the robustly 

identified latent space and embeddings and the gene-level and pathway-level interpretation of each 

latent variable, we next proceeded to perform in-depth analyses of the biology revealed by 

DeepProfile.  

  

Universally important genes modulate inflammatory pathways 
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We began by investigating genes with universally large gene attribution scores to DeepProfile 

latent variables across all cancer types (see Methods, Supplementary Files 2 and 3). These genes 

represent dominant gene expression programs that consistently explain considerable portions of 

the transcriptional variance across many different cancers. We found that universal genes with 

high average gene attribution scores were primarily involved in immune response regulation and 

antigen presentation (35 out of the top universal 100 genes, p-value: 9.4 × 10−6) (Figs. 3a-c). 

Given that solid tumors (which constitute most of our data) can be infiltrated by immune cells to 

varying degrees, we hypothesized that universal genes may reflect the gene expression signatures 

of various admixing immune cell types. To test this hypothesis, we assessed the overlap between 

four signatures of major immune cell types (T cells, B cells, neutrophils, and macrophages; see 

Methods, Supplementary File 4)30 and genes with top DeepProfile attribution scores (see 

Methods). We found that there was a small overlap between top DeepProfile genes and the 

macrophage signature (2 out of the top universal 100 genes, p-value: 2.5 × 10−2), but not any of 

the other immune cell type signatures. To enhance our analysis, we utilized pre-computed immune 

cell fractions from the TCGA data31. We calculated Pearson's correlations between gene 

expression levels and the proportions of various immune cell types, identifying the top 100 genes 

most correlated with each cell type. Subsequent Fisher's exact tests showed minimal or no 

significant overlap between these correlation-based top genes and the top 100 DeepProfile genes 

(Supplementary Table 1, Methods), suggesting that the gene sets driving immune infiltration are 

distinct from those identified by DeepProfile's signatures. 

 

Next, we hypothesized that DeepProfile prioritized genes whose expression was associated with 

recurrent transcriptional phenotypes in tumor-infiltrating immune cells, such as signatures linked 

with immune cell activation or suppression. To illustrate this concept, consider the gene with the 

highest average attribution, the alpha subunit of the interleukin 10 receptor (IL10RA). IL10RA 

scored among the top 1% of genes in 14 out of 18 cancers (78% of cancer types) and top 10% in 

all 18 cancer types, indicating that DeepProfile consistently ascribed high explanatory power to 

this gene, regardless of tissue context (Fig. 3a). Upon encountering an inflammatory stimulus, a 

variety of immune cells upregulate IL10RA, which mediates the activation of a compensatory anti-

inflammatory gene expression program; IL10RA has consequently been described as a “master 

switch” regulating the balance between pro- and anti-tumor inflammation32. Therefore, transcript 

levels of IL10RA do not only reflect the presence or absence of IL10RA-expressing immune cells, 

they also predict several thousand genes regulated by IL10RA33, potentially explaining the large 

role this gene plays in DeepProfile’s latent spaces.  

 

To test the hypothesis that universally high-scoring DeepProfile genes were enriched for 

transcripts that, like IL10RA, modulate immune cells’ transcriptional phenotypes, we quantified 

cell surface receptors among genes with top attribution scores. We reasoned that cell surface 

receptors are enriched for proteins that relay extra-cellular signals and thus have the potential to 

regulate immune cells’ transcriptional phenotypes. We collected gene sets containing cell surface 

proteins and receptors from the Cell Surface Protein Atlas (CSPA)34, the UniProt database35, and 

the Gene Ontology database (GO)36 (Supplementary File 5). We found highly significant overlap 

between these gene sets and genes with top average DeepProfile attribution scores across all 

cancers (15, 32, and 12 out of the top universal 100 genes, respectively; p-values: 1.5 × 10−5, 

7.0 × 10−10, 1.0 × 10−5) (Fig. 3d) (see Methods). Importantly, PCA did not recover these cell 
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surface proteins and receptors (Fig. 3d; Supplementary File 2) (see Methods), indicating that 

DeepProfile’s ability to identify non-linear relationships is essential in capturing this source of 

variance, and that the functional relationship between receptor expression and gene expression 

modulation may itself have non-linear form. 

In addition to IL10RA, DeepProfile’s top attributions contained many lesser known but potentially 

important genes that are consistently involved in the latent spaces of most cancer types. These 

included CD53, an immune-cell specific tetraspanin37; EVI2A and EVI2B, genes that control 

granulocytic differentiation38; and TYROBP, an adaptor protein that in association with various 

receptors mediates immune cell activation39 (Fig. 3a). As indicated above, none of these genes 

appear to signal the presence of a particular immune cell type in the tumor microenvironment, as 

they are broadly expressed by many different cells, but instead may be involved in modulating 

tumor-resident immune cells’ transcriptional phenotypes. 

 

Universally important pathways include cell cycle, immune system, and oxidative 

phosphorylation 

 

Next, to investigate pathway-level information captured by DeepProfile, we studied the 

relationship between the embeddings and curated pathway gene sets available through the KEGG, 

BioCarta, and Reactome databases (see Supplementary File 3). We considered a pathway to be 

significantly enriched in a given cancer type if it overlapped with an FDR-corrected p-value below 

0.05 with at least one DeepProfile latent variable (see Methods). We then extracted the pathways 

captured in the largest number of cancer types, grouped these pathways by functional category, 

and sorted the categories by the average number of cancer types in which they were significantly 

detected.  

 

As expected, cell cycle-related gene sets were almost universally important, confirming that 

differences in proliferative index are a major source of variation across cancer transcriptomes (Fig. 

4). This observation is consistent with long-standing clinical experience - some cancers evidently 

have higher mitotic rates than others - and the cell cycle consequently is found to play a role in 

nearly every morphological or molecular characterization of cancer40–44. Two cancer types had 

notably less pronounced contributions from cell cycle-related gene sets: AML, whose latent space 

mainly captured pathways related to adaptive immune response, and thyroid cancer, for which the 

most important pathways were related to mitochondrial function (Supplementary File 3). The 

two most common types of thyroid cancer (papillary and follicular) are exceptionally slow-

growing neoplasms, which may explain this relative lack of contribution by cell cycle-related 

pathways. In AML, growth rates are more difficult to assess45, but it may be that most patients 

experience uniformly high growth rates due to the disease’s aggressiveness and its lack of spatial 

restraint. In both cases, a lack of variation in proliferative fractions across patients would explain 

why DeepProfile did not detect the cell cycle as an important contributor of variance in these 

cancers’ transcriptomes.  

 

Immune-related pathways, as discussed in detail above, were the third-most frequently captured 

category (Fig. 4) followed by gene sets related to oxidative phosphorylation (OXPHOS), 

indicating that individual tumors’ position on the metabolic continuum between glycolysis and 
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aerobic respiration explains global differences in their gene expression profiles46. Genes related to 

RNA metabolism and ribosome function also emerged as relevant across a large number of 

cancers; enrichment p-values were particularly significant in this category (Fig. 4). Consistent with 

prior pan-cancer analyses11,43,44,47, our study reinforces the significance of both immune-related 

and metabolism-related pathways across various cancer types, underlining their critical role in 

cancer biology. The identification of these well-established pathways initially validates the 

effectiveness of our approach, confirming that DeepProfile is capturing key biological processes 

known to be pivotal in cancer, and paving the way for uncovering more profound insights in 

subsequent sections of our analysis. 

 

DeepProfile latent variables capture both cancer and normal tissue-specific expression 

signatures 

  

We hypothesized that RNA metabolism/ribosomal gene sets were not necessarily identified by 

DeepProfile because they captured variance related to the presence of different disease subtypes 

within a tissue of origin, but rather because they contained genes that are constitutively expressed 

in a highly correlated manner. To test this hypothesis, we generated DeepProfile embeddings for 

normal tissue gene expression profiles from the GTEx database27 (Supplementary File 1). By 

fitting predictor models to differentiate between normal and cancer embeddings, we generated a 

score for each DeepProfile latent variable denoting how successfully it can separate cancer from 

normal tissue (see Methods). Using DeepProfile pathway-level latent variable attributions, we 

mapped these latent variable-level scores to pathways to define a cancer-relevance score for each 

pathway (see Methods). A high cancer-relevance score indicates that the pathway is specifically 

important for cancer because it shows stronger expression variance in cancer than in normal tissues 

(Fig. 4 iv and Supplementary File 3). We found that in comparison with cell cycle pathways, the 

ribosomal gene sets’ cancer-specificity score was indeed lower (average cancer-specificity score 

of 82.39 for cell cycle compared to 63.19 for ribosomal pathways; p-value: 1.6 × 10−17, Welch’s 

t-test), indicating that these genes also capture significant variance across normal tissue gene 

expression profiles. Nonetheless, we note that the degree of biosynthetic activity (as reflected by 

ribosomal protein expression) has recently been shown to be associated with differentiation state 

in colorectal cancer48, raising the intriguing possibility that DeepProfile’s capture of ribosomal 

genes reflects variance in differentiation states across tumor samples within a given tumor type. 

This may explain why some relatively narrowly defined (and therefore more homogeneous) cancer 

types such as AML did not show significantly enriched ribosome-related pathways. We further 

note that the two near-universally important pathways with the highest cancer-relevance scores 

were related to protein folding (prefoldin) and focal adhesions (Fig. 4). The latter result is 

consistent with DeepProfile capturing variation in epithelial-to-mesenchymal transition states that 

may exist among tumors but would not be expected to occur in healthy tissues. 

 

Cancer type-specific genes and pathways define molecular disease subtypes 

 

After studying genes and pathways that DeepProfile considered universally relevant, we aimed to 

identify genes that only capture variance in specific cancer types. We calculated a per-gene cancer 

type specificity score, defined as the difference between the gene percentile score for one cancer 

type and the highest gene percentile score across all other cancer types (Supplementary File 6). 
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High specificity scores indicate that a gene captures a large amount of variance in one cancer type 

but plays a more subordinate role in others (see Methods). We found that genes with high 

specificity scores generally defined dominant subtypes or grades of differentiation within a tissue 

category (Fig. 5a). For example, the top breast-specific transcripts were prolactin-induced protein 

(PIP), a gene predominantly expressed in well-differentiated estrogen receptor-positive tumors49; 

FOXC1, a gene expressed in basal-like breast cancer50; and GFRA1, which is specific to the 

luminal A subtype51 (Fig. 5a).  

 

To formally test the hypothesis that DeepProfile captured genes that are differentially expressed 

among breast cancer subtypes, we calculated the overlap between breast cancer-specific genes and 

PAM50, a gene set that effectively distinguishes between basal-like, normal-like, luminal A, 

luminal B, and HER2-enriched subtypes52 and obtained significant results (P = 3.8 × 10−3) (see 

Methods). Importantly, a linear model (PCA) could not effectively select subtype-specific genes 

(p-value: 1.0, for PAM50 gene set enrichment), indicating that DeepProfile’s ability to capture 

non-linear relationships is crucial for learning of biologically meaningful patterns. We further 

explored the abilities of DeepProfile and traditional linear models (PCA, ICA, RP) to distinguish 

cancer subtypes, leveraging the Metabric dataset renowned for its detailed subtype labels in breast 

cancer. The results demonstrated that DeepProfile excels in distinguishing cancer subtypes 

(Supplementary Note 3). However, it is noteworthy that our subsequent analysis also revealed 

that PCA, despite not efficiently selecting subtype-specific genes, could in fact distinguish 

between different cancer subtypes. This suggests that while DeepProfile is capable of identifying 

specific genes tied to cancer subtypes, PCA, with a broader analytical approach, also holds the 

capability to differentiate between cancer subtypes. 

 

Similarly, AML-specific genes comprised transcripts that had previously been associated with 

AML subtypes (such as HOXA7, TRH, MYL4, ANK1)53,54 (Fig. 5a) and showed significant overlap 

with genes identifying AML subtypes (P = 4.2 × 10−5)55, while PCA again failed (P = 1.0). In the 

brain, DeepProfile identified genes that distinguish oligodendrogliomas from astrocytomas (such 

as CNP56) or vary across glioblastoma subtypes (such as BCAN57). Top thyroid cancer-specific 

genes included thyroid peroxidase (TPO) and thyroid stimulating hormone receptor (TSHR), two 

transcripts that have critical functions in normal thyroid physiology. These genes may indicate the 

presence of well-differentiated thyroid cancers, which to some degree retain the expression profiles 

from their normal tissue of origin, versus highly undifferentiated cancers, which lose tissue-

specific transcript expression to a larger degree. To support this hypothesis, we compared 

DeepProfile thyroid cancer-specific genes with genes associated with thyroid cancer subtypes58. 

We observed that the two gene groups significantly overlapped (p-value: 4.4 × 10−10) while the 

same analysis for the thyroid cancer-specific genes discovered by PCA showed no significance (p-

value: 1.0). These case studies demonstrate how DeepProfile successfully detects genes that 

differentiate cancer subtypes, while a linear model fails to capture these patterns. Cancer-specific 

genes for each of the 18 human cancers are provided in Supplementary File 6. 

 

Next, we extracted curated pathway gene sets that DeepProfile recognized as cancer-specific (see 

Methods, Supplementary File 7). Potentially more informative than a gene-level view, this 

approach can go beyond categorizing subtype ‘marker genes’ to reveal coherent pathways that 

vary dominantly among cancers from one tissue of origin. Thus, the analysis provides concrete 
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information about the molecular mechanisms driving expression heterogeneity within cancer 

types. Indeed, DeepProfile assigned highly characteristic molecular processes to each cancer type.  

 

Top AML-specific pathways were related to porphyrin metabolism and heme biosynthesis (Fig. 

5b). That leukemic cells show increased heme biosynthesis has been known for more than half a 

century59; but little is known about the mechanistic relevance of the porphyrin production pathway 

in leukemogenesis. Importantly, recent evidence showing that MYC-overexpressing leukemic 

progenitors require porphyrin biosynthesis for self-renewal60 demonstrates a role for this pathway 

in driving or facilitating leukemogenesis in a subset of these cancers. It is notable that DeepProfile 

identified this pathway as relevant to AML, as we are not aware of prior unsupervised analyses 

that have highlighted porphyrin production. As in our analysis of genes and pathways that were 

universally important across cancers, we also calculated ‘cancer-relevance’ scores (by comparing 

matched normal tissue embeddings from GTEx) that determine to what degree a pathway’s 

importance was specific to malignancy. The AML-specific pathway with the highest cancer-

relevance score was MHC class II antigen presentation, represented by HLA-DMA, HLA-DRB1, 

HLA-DMB, HLA-DPA1, and HLA-DPB1 genes. Downregulated HLA-DPA1, HLA-DPB, and 

HLA-DRB1 in AML has recently been reported during relapse after allogeneic bone marrow 

transplant and has been interpreted as evidence of graft pressure on leukemic cells61. However, 

DeepProfile's identification of the MHC class II antigen presentation pathway’s prominence 

indicates that MHC class II protein expression heterogeneity may be a more general disease feature 

distinguishing AML subtypes, a concept that has not been described in the literature thus far to our 

knowledge.  

 

In brain cancer (Fig. 5b), lipid transport scored as the most important pathway, with a high cancer-

relevance score. Cholesterol is an essential component of myelin, and the brain contains 

approximately 20% of the body’s total cholesterol62. Astrocytes normally produce most of the the 

brain’s cholesterol, since it cannot be transported across the blood-brain-barrier. In glioblastoma, 

the brain’s normal lipid metabolism is altered: glioblastoma cells limit cholesterol biosynthesis 

and depend on exogenous cholesterol uptake for survival63, making DeepProfile’s selection of this 

pathway a notable result. The Sprouty (SPRY) pathway obtained the highest cancer-relevance 

score, driven mainly by SPRY1 and SPRY4. These two genes negatively regulate FGFR signaling, 

a pathway that is key to glioblastoma progression and is currently being targeted in clinical trials64. 

These and other examples – such as the identification of an important role for the peroxisome in 

liver cancer65 (Fig. 5b, Supplementary File 7) – illustrate DeepProfile’s ability to extract cancer-

specific and biologically meaningful expression patterns from large unstructured data depositories. 

While understanding expression subtypes and the pathways defining them is valuable from a basic 

science perspective, determining pathways connected to clinical variables is arguably even more 

important from a translational point of view. We therefore set out to develop a rigorous 

methodology for connecting DeepProfile embeddings to relevant patient and tumor-level 

characteristics. 

 

Detecting survival- and mutation burden-associated pathways via DeepProfile 

 
A pathway’s contribution to DeepProfile latent variables reflects to what degree it captures 

variance in the primary gene expression data but does not reveal whether the pathway relates to 

variables of clinical interest. We developed a general methodology for connecting pathways to 
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clinical characteristics via DeepProfile latent variables (Extended Data Fig. 6 and Methods). We 

tested the approach by extracting pathways that are relevant to two important patient-level and 

tumor-level features: survival and tumor mutation burden (TMB). Specifically, we associated each 

DeepProfile latent variable with survival or TMB and generated p-values denoting the association 

significance between each latent variable and the phenotypes. Then, using the pathway-level 

attributions for DeepProfile latent variables, we mapped the latent variable-level phenotype 

associations to pathway-level associations, thereby obtaining survival and TMB association p-

values for each pathway (see Extended Data Fig. 6, Methods, and Supplementary Files 8-10). 

The same approach can readily be adapted to other variables of interest, for example tumor stage, 

tumor grade, or treatment response. There are two advantages of using DeepProfile latent variables 

(instead of genes or pathways themselves). First, as we demonstrated, DeepProfile embeddings 

encode robust sources of variation among cancer samples; thus, the association search space is 

reduced to potentially more biologically meaningful variables. These latent variables distill the 

comprehensive and intricate biological information from the data without relying on predefined 

features, enabling exploration of relationships with any biological and clinical features. With these 

latent variables, DeepProfile allows researchers to uncover patterns and associations that might be 

obscured in the high-dimensional space of gene expression data. Second, since each DeepProfile 

latent variable is a non-linear combination of genes, it has the unique ability to capture complex 

interactions between genes and phenotypes of interest. This non-linear mapping allows for the 

integration of multifaceted biological information, going beyond simple additive effects to model 

the complex, often non-linear relationships inherent in gene regulation and cellular function. 

Although these latent variables derived from deep neural networks can offer a more nuanced view, 

the inherent complexity of these models often complicates interpretation. However, by utilizing 

XAI methods, we are able to clarify these models, providing interpretable insights that pave the 

way for the discovery of novel insights into cancer biology. 

 

To test the effectiveness of this approach, we first investigated the curated pathway gene sets that 

DeepProfile recognized to be significantly related to arguably the most important patient-level trait 

– survival. As in our previous analyses, we initially focused on pathways associated with survival 

across all cancer types (Fig. 6a and Supplementary File 11) (see Methods). Notably, in this pan-

cancer analysis, the unifying theme of most survival-related pathways was adaptive immunity 

(Fig. 6a). High-scoring gene sets included adaptive immune system, MHC class I antigen 

presentation, antigen processing cross-presentation, B cell receptor signaling, the proteasome 

pathway, and activation of NF-B (all significantly detected in five cancer types). Three pathways 

stood out for scoring in more than five cancer types. These included DNA mismatch repair (six 

cancers), a process that can give rise to large numbers of neoantigens when impaired, and MHC 

class II antigen presentation, which was the highest-scoring pathway overall (significantly detected 

in seven cancer types). These two pathways will be explored in more detail further below.  

 

To provide a contrast and comparison for these results, we next studied pathways with significant 

connection to a tumor-level characteristic, TMB (Fig. 6b and Supplementary File 11) (see 

Methods). Unlike survival, TMB-relevant pathways were most consistently linked to the cell cycle 

(Fig. 6b) and included DNA replication, mitotic M-M/G1 phases, mitotic prometaphase, 

chromosome maintenance, and others. The top-scoring TMB-linked pathway was mitotic G2-

G2/M phases, which was significantly detected in 11 out 18 cancers. These results establish a link 

between a tumor’s proliferative activity and its mutation burden, consistent with DNA replication 
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acting as a powerful mutagen. This connection carries interesting implications given the strong 

interest in TMB as a predictor of immunotherapy response66. 

 

Analogously to previous analyses, we also studied the pathways with the highest survival and 

TMB scores for each cancer type. Again, we found that DeepProfile identified distinct sets of 

pathways as being relevant to both traits. For example, survival-related pathways in brain cancer 

were dominated by interferon type I and II signaling and MHC class I-mediated immunity, while 

TMB-related pathways prominently featured cell-cell and cell-matrix interactions (Fig. 6c). In 

sarcoma, survival-related pathways almost exclusively concerned DNA repair processes 

(mismatch repair, nucleotide excision repair) and replisome function, whereas TMB gene sets were 

strongly related to glucose metabolism (Fig. 6c). Cancer-specific pathway associations with 

survival and TMB across all 18 cancers can be found in Supplementary File 8.  

 

DNA mismatch repair and antigen presentation via MHC class II are common survival-

related pathways 

 
We then explored the unexpected pan-cancer association between survival and DNA mismatch 

repair and MHC class II antigen presentation in more detail. DeepProfile detects robust 

correlations between pathways and survival; however, it does not reveal these associations’ 

directions. Therefore, to define this direction, we fitted univariate Cox regression models on the 

genes in the pathways being investigated. This returned a survival z-score for each gene and cancer 

type pair (see Methods and Supplementary File 10; a negative z-score means that lower 

expression leads to better chance of survival whereas a positive z-score means that higher 

expression leads to a better chance of survival).   

 

Examining the z-scores of DNA mismatch repair genes across all cancers, we confirmed a strong 

correlation with survival (Fig. 7a), validating DeepProfile’s findings at the primary gene 

expression level. The association direction tended to be negative (indicating that lower expression 

of DNA mismatch repair proteins associates with improved survival), particularly for the six 

cancers with statistically significant scores in the DeepProfile-based analysis (Fig. 6a). We 

confirmed this finding further using Kaplan-Meier analyses that yielded consistent results (Fig. 7b 

and Extended Data Fig. 7) (see Methods). The prognostic relevance of DNA mismatch repair 

gene expression across many cancers is particularly notable given DeepProfile’s identification of 

the adaptive immune response as a central survival-related pathway hub. Anti-tumor immune 

responses are thought to depend substantially on the presence of neoantigens, whose abundance 

increases in cancers with deficient DNA mismatch repair67. Similarly, reduced expression of 

mismatch repair proteins can increase mutability and microsatellite instability68. Therefore, higher 

neoantigen levels in tumors with fewer mismatch repair proteins may make these tumors more 

visible to the immune system and thus contribute to the improved survival of patients with low 

DNA mismatch repair protein expression (Fig. 7c).  

 

Next, we investigated the MHC class II antigen presentation pathway more thoroughly. We 

focused on HLA-D genes because they had top-level attribution scores and survival z-scores across 

all 18 cancer types among all genes in the MHC class II antigen presentation pathway. (The z-

scores of all of 91 genes within the MHC class II antigen presentation pathway are provided in 

Supplementary File 12.) Unlike the DNA mismatch repair z-scores, which showed a negative 
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correlation between expression and survival across most cancer types, the association for HLA-D 

expression was bifurcated (Fig. 8a). Pancreas, kidney, AML, and brain had a strong negative 

association between HLA-D gene expression and survival change, while the correlation was 

positive for most other cancers, especially melanoma and uterine cancer. Again, we confirmed 

these findings via Kaplan-Meier analyses (Fig. 8b and Extended Data Fig. 8). These results 

suggested that HLA-D gene expression in the tumor and/or its environment is beneficial in some 

cancer types (melanoma, uterine cancer, breast cancer) and detrimental in others (brain cancer, 

kidney cancer).  

 

Since most cancers do not express MHC class II genes (with the exception of AML, in which HLA-

D expression is associated with an inflamed phenotype and therapy relapse61), we wondered which 

cell type in the tumor microenvironment might be the primary source of the HLA-D transcripts 

and, by extension, linked to differential survival. Tumor-resident immune cell types that express 

MHC class II genes include macrophages, dendritic cells, and B cells. To gauge these cells’ relative 

abundance in the tumor microenvironment, we measured the signature genes’ average percentile 

score for each cell type, where the most highly expressed gene had a score of 100 (see Methods). 

We found that of the three cell types, macrophage-specific genes were by far the most abundant 

across all studied cancers, in line with the fact that macrophages can be highly abundant in many 

cancer types69–71 (Fig. 8c). Also, we found that in all cancers, the macrophage signature correlated 

best with HLA-D expression (Fig. 8d; see Methods), further supporting the notion that 

macrophages are the largest contributors to HLA-D transcript abundance in bulk tumor samples. 

Considering that macrophages’ divergent functions range from pro-tumor to anti-tumor activity69–

71, we wondered whether the phenotypes of tumor-associated, HLA-D-expressing macrophages 

might explain the observed bifurcation in the correlation between HLA-D expression and survival. 

To this end, we examined gene transcripts that may reflect macrophage function. Specifically, we 

assessed expression of CD40, CXCL9, CXCL10, CXCL11, SLAMF1, and TNIP3, which associate 

with anti-tumor activity, and of CFP, HRH1, NPL, PDCD1LG2, and CFP, which typically indicate 

immunosuppression and tumor promotion72. While these genes are not necessarily uniquely 

expressed by macrophages, the macrophages’ abundance (Fig. 8c) makes them plausible main 

sources of these transcripts. Examining the relative prevalence of the gene transcripts mentioned 

above revealed that most tumor types expressed both signatures at similar levels (Fig. 8e) (see 

Methods). The only large gap, with a large preponderance of immunosuppressive transcripts, was 

observed in brain cancer and AML – the two cancer types with the most significant negative 

association between HLA-D expression and survival (P = 3.4 × 10−2 and p-value: 1.6 × 10−1, 

Welch’s T test for brain cancer and AML, respectively). We repeated the same test with an 

extended list of pro- and anti-inflammatory macrophage signatures73 and again observed a 

significantly stronger immunosuppressive macrophage abundance in brain cancer (p-value: 

5.0 × 10−2 , Welch’s T test) (Extended Data Fig. 8d) (see Methods). The presence of 

macrophages that are polarized towards an immunosuppressive phenotype might therefore 

contribute to the negative correlation between HLA-D expression and survival in brain cancers 

and AML. In most other cancer types, HLA-D expression correlates with improved outcomes, 

which is consistent with a net positive effect of macrophages on patient survival.  
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Discussion 

DeepProfile represents a paradigm for applying unsupervised learning to the analysis of gene 

expression data. Common unsupervised machine learning techniques in this area fall into three 

categories: clustering, network inference, and representation learning. The mechanism by which 

statistical patterns are translated into concrete biological insights is important. DeepProfile 

represents a major departure from existing unsupervised learning paradigms. While the patterns 

learned by clustering and network inference algorithms have natural biological interpretations – 

with gene clusters corresponding to expression modules and network edges corresponding to 

potential regulatory interactions – representation learning largely lacks methods for such a 

translation. Linear methods like PCA, ICA, or “shallow” autoencoders have been interpreted by 

examining the magnitude of their learned weights; however, the “black box” nature of deep neural 

networks (DNNs) makes it difficult to understand how genes or biological processes are associated 

with each learned latent variable and how gene expression levels are related to phenotypes. 

DeepProfile provides a language based on rigorous machine learning principles to “read out” 

biologically meaningful information from deep representations, enabling discoveries not captured 

by existing unsupervised analysis paradigms. While DNNs have been successful mainly in tasks 

where a supervisory label is present17,74–76, DeepProfile opens the door for DNN-based approaches 

to be applied to unsupervised, comprehensive, exploratory analysis of accumulating published 

gene expression data. 

 

DeepProfile introduces a series of rigorous methodologies to “interrogate” DNNs to generate 

biological hypotheses. First, one of our key innovations is in the way each latent variable is 

biologically annotated. We adopted the axiomatic feature attribution method integrated 

gradients29, a principled way of estimating the contribution of each input gene variable onto each 

latent variable. This enabled the computation of gene importance scores for each latent variable, 

which can be followed by curated pathway gene sets enrichment analysis on top-scoring genes. 

Biological characterization of these latent variables is important, for example in cancer, to 

understand the individual variation in clinical outcomes, response to therapy, and coordinated 

transcriptional programs underlying cancer progression. The overall gene importance scores 

computed across all latent variables in the entire model results in top-scoring genes whose 

expression variation across samples explains a large portion of the expression variation of genes. 

These genes can be interpreted as master regulators, analogous to “hubs” that are considered 

important in traditional gene network learning approaches. Additionally, DeepProfile introduces 

various generalizable methodologies to examine the biological characterization of sample-level 

phenotypes (such as clinical outcomes and tumor mutational burden) based on the latent variables, 

the difference between samples with different labels (that is, cancer vs. normal tissues), and 

differences between different models (that is, cancer types). We showcase DeepProfile’s ability to 

reveal biological insights through our pan-cancer analysis using these methodologies detailed 

below. 

 

DeepProfile also introduces a way to ensemble the latent variables from many variational 

autoencoder models trained using varying numbers of latent dimensionalities and random 

initializations. The use of integrated gradients29 allowed the latent variables of our deep model 

(Extended Data Fig. 1) to be directly ensembled, increasing model stability and consistency, 

while remaining interpretable. Our experimental results show that DeepProfile’s ensembled latent 
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variables encode general and transferrable information about the cancer transcriptome (Fig. 2 and 

Extended Data Fig. 3). We also demonstrated that DeepProfile’s ensemble approach can learn 

better embeddings than individual variational autoencoders trained using specific dimensionalities 

(Supplementary Fig. 2), consistent with the conclusion of Way et al. that models with different 

latent dimensionality may learn different information20. The improvement in performance across 

a variety of tasks that DeepProfile attains suggests that further studies into ensemble methods for 

unsupervised gene expression analysis may be fruitful. Furthermore, while DeepProfile was able 

to extract more underlying biological signal than other unsupervised approaches (Fig. 2), the high-

dimensional and highly correlated nature of gene expression data means that there may have been 

more biological signal that was not able to be uncovered. Feature attribution methods tend to split 

credit among correlated features, potentially “washing out” the signal from large correlated 

groups77. Future work will be necessary to scale methods for disentangling causal effects from 

observational data to high-dimensional cancer expression data, at the level of either the models or 

the feature attributions77,78. 

 

The application of DeepProfile to a pan-cancer gene expression compendium exposed several 

intriguing biological patterns. These analyses were enabled by DeepProfile’s integration of the 

learned model with independent biological databases, including normal tissue expression data, 

patient level phenotype data, and protein-protein interaction databases. First, we observed that 

DeepProfile tagged as universally important a very specific category of immune-related genes. 

Our analysis suggested that these genes did not merely reflect the admixture of different immune 

cell types in the tumor microenvironment. Instead, they were enriched for cell surface receptors 

that transduce external signals and thus influence downstream gene expression in a variety of 

immune cells. Why do these genes capture variance so efficiently? The simplest explanation is 

that they are representative of recurring transcriptional phenotypes of common immune cells. 

Depending on the level of immune cell admixture - and thus the magnitude of the immune cell 

contribution to the overall expression profile - this may be sufficient to propel these genes to such 

a prominent position. However, an even more powerful explanation is that transcriptional states of 

malignant cells and infiltrating immune cells are correlated to some degree. For example, cancers 

with high expression of genes indicative of epithelial-to-mesenchymal transition exhibit a distinct, 

suppressed immune landscape79. Single cell sequencing studies have shown that transcriptional 

profiles of immune and cancer cells can co-vary and suggest the existence of recurring “hubs” of 

interacting cells80. Genes that are characteristic of such hubs would be expected to capture 

particularly high levels of variance, as they would be predictive of both immune and tumor cell 

transcriptomes. Identification of such genes may be of particular interest from a therapeutic 

perspective. Careful investigation of top universal DeepProfile genes in single cell gene expression 

data across different cancers will undoubtedly shed more light on this question in the future. 

 

In our cancer-specificity analysis, DeepProfile excelled at extracting disease subtype-specific 

signatures from the data in an unsupervised manner. We consider this impressive, given that the 

input datasets were not curated and carefully standardized, such as the ones that were used for the 

initial discovery of these signatures, but unstructured and variable data deposited in a public 

database by hundreds of different research groups. DeepProfile’s excellent performance in this 

setting shows that it can robustly identify relevant biological signals in challenging situations in 

which other methods (like PCA) do not perform adequately. Analysis of cancer-specific 

DeepProfile pathways identified disease-specific processes, such as porphyrin metabolism in 
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AML or lipid transport in brain cancer. By further annotating these pathways by their specificity 

to malignancy, highlighting those that play a comparatively minor role in normal tissue gene 

expression (via embeddings of GTEx profiles), DeepProfile has generated a list of prime candidate 

pathways that can be explored for therapeutic intervention opportunities.   

 

Perhaps the most interesting aspect of our analysis was the establishment of a quantitatively 

rigorous connection between DeepProfile embeddings and patient survival characteristics. The 

results were unexpected and surprising. Low expression of DNA mismatch repair transcripts was 

significantly associated with improved survival in this large cohort of varied cancer types, most of 

which are expected to be mismatch repair proficient. These results suggest that capacity for DNA 

mismatch repair may exist on a transcriptionally-driven spectrum and that a tumor’s exact position 

on this continuum may be therapeutically relevant. Microsatellite unstable tumors across all tissues 

respond well to immune checkpoint therapy, and are thus universally approved for treatment with 

pembrolizumab81. Our results raise the question whether cancers with low DNA mismatch repair 

gene expression might also benefit from immune checkpoint inhibition. 

 

Finally, analysis based on DeepProfile’s latent spaces showed that adaptive immunity pathways, 

particularly those related to MHC class II antigen presentation, were the most consistently 

survival-related among 1,077 tested functional gene sets, the latter surpassing even DNA mismatch 

repair. This surprising result was highly specific to patient survival, as demonstrated by a 

comparative analysis for TMB, in which the adaptive immune system did not play a significant 

role. Focusing on the top-scoring genes from the MHC class II antigen presentation gene set, we 

found that HLA-D transcripts were largely responsible for the strong outcome association. Given 

that a limited number of immune cells express HLA-D genes, we were able to nominate 

macrophages as the ‘prime suspect’ source of these survival-associated transcripts in the tumor 

microenvironment. The effect of HLA-D expression, however, was bifurcated across tumor types. 

Brain cancer and AML patients had a worse outcome if HLA-D expression was high, while 

melanoma and uterine cancer patients benefitted. We speculate that the transcriptional phenotype 

of tumor-resident macrophages (pro- or anti-inflammatory) determines whether the presence of 

these cells has a net beneficial or harmful effect. We found that in glioblastoma, expression of 

transcripts characteristic of anti-inflammatory macrophages, which are thought to drive tumor 

progression82, was predominant, potentially explaining the negative correlation between HLA-D 

expression and outcome. Pro- and anti-inflammatory macrophage transcripts were more balanced 

in other tumor types, including melanoma and uterine cancer. In these cases, the net effect of the 

total macrophage population appears to be positive. Importantly, these results are in line with a 

recent meta-analysis which suggested that expression of anti-inflammatory macrophage markers 

was correlated with worse prognosis across multiple cancer types, while expression of pro-

inflammatory markers was associated with improved survival82. Again, it will be important to 

follow up on these observations in single cell data sets, once their size has grown sufficiently to 

conduct robust survival analyses, or in more extensive immunohistochemical studies of 

macrophage polarization across large patient cohorts.  

 

In summary, we have devised and implemented a deep learning framework to extract robust 

biological signals from large-scale cancer gene expression data. DeepProfile is designed to be a 

resource for the cancer research community. Using our framework, researchers can create robust 

and interpretable embeddings of new expression data (Extended Data Fig. 2), improving 
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performance on downstream tasks and increasing insight into relevant transcriptional programs in 

their samples. The demonstrated compatibility between microarray data and bulk RNA-seq data 

(Extended Data Fig. 3) suggests that the learned model can be used for bulk RNA-seq data as 

well. Beyond the computational advance represented by this approach, DeepProfile provides 

hundreds of biological insights gleaned from existing compendia that can be mined by researchers 

to advance our understanding of different human malignancies. 
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Fig. 1 DeepProfile Pan-Cancer Framework. 
Data Collector: We downloaded gene expression datasets for 18 cancer types from the common 

microarray platforms, preprocessing and concatenating them into cancer-specific expression 

matrices. In total, we have over 50,000 samples from over 1,000 GEO datasets. Deep Learner: 

We pass the expression matrices to Deep Learner models to learn cancer-specific latent spaces. 

Deep Learner is an ensemble of variational autoencoders (VAEs) that encodes the high-

dimensional expression signals to a biologically informative latent space. We then map the 

training samples to the learned latent spaces and define cancer sample embeddings, where each 

DeepProfile latent variable encodes a certain source of variance across cancer samples. 

Interpreter: We pass the learned embeddings to Interpreter models to extract gene-level and 

pathway-level attributions for each latent variable. Gene-level attributions denote how much each 

gene contributes to a latent variable. Similarly, pathway-level attributions denote the pathways 

significantly associated with the most important genes of each latent variable. Pan-Cancer 

Analyzer: Using the cancer-specific embeddings and attributions; we carry a detailed pan-cancer 

analysis including (1) analyzing the latent spaces of 18 cancers to discover cancer-common and 

specific patterns, (2) differentiating cancer-specific patterns from tissue-specifying ones by 

contrasting cancer embeddings to normal tissue embeddings and (3) investigating survival and 

mutation related signals by integrating DeepProfile embeddings with survival and tumor 

mutational burden profiles (See Extended Data Fig. 1 and 2). 
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Fig. 2 Comparison of pathway enrichment of DeepProfile and other dimensionality 

reduction methods. a. The average number of pathways significantly captured (FDR corrected p-

value < 0.05) by latent variables of latent embeddings of DeepProfile and other dimensionality 

reduction methods are shown for KEGG, BioCarta, Reactome pathways (Top Plot) and Oncogenic 

Signatures gene sets (Bottom Plot). Each latent variable of each embedding is associated with 

each pathway with a p-value and we count the number of pathways significantly captured by each 

latent variable. We then average these pathway counts over all latent variables to define the average 

number of pathways significantly captured by a method. b. Distribution plots of number of KEGG, 

BioCarta, Reactome pathways significantly captured (FDR corrected p-value < 0.05) by each 

latent variable shown for 3 cancer types (see Extended Data Fig. 4 for all 18 cancers). c. 

Comparison of the percent of latent variables annotated by at least one pathway above the 

significance threshold. The percent of annotated latent variables are shown for multiple 

significance thresholds for DeepProfile and alternative dimensionality reduction methods. 

Examples from 3 cancer types are provided (see Extended Data Fig. 5 for all 18 cancers).  
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Fig. 3 DeepProfile cancer commonality analysis. a. List of top highest-scoring genes across 18 

cancer types for DeepProfile. The percentile scores of the top scoring genes are shown for all 

cancers and the average percentile scores across 18 cancers are highlighted. We calculated the 

average importance of a gene for DeepProfile embedding by calculating the average gene 

importance scores across all latent variables of the embedding, converting the average importance 

scores to percentile scores and averaging these percentile scores across all 18 cancers. The plot is 

zoomed in for clear comparison. The universal importance scores for all genes are available in 

Supplementary File 2. b. The top enriched pathways (KEGG, BioCarta, Reactome) for the top 

100 universally important DeepProfile genes and the corresponding FDR-corrected p-values. 

Enrichment scores for all pathways are available in Supplementary File 2. c. Network of top 100 

genes with universal importance. The network is generated with StringDB and disconnected latent 

variables are excluded. The size of a latent variable is determined by hubness, i.e., the number of 

edges. Genes that are included in immune response related pathways are colored blue. d. The 

enrichment p-values for cell surface and cytokine receptors for DeepProfile and PCA top 100 

universally important genes. 
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Fig. 4 List of top KEGG, BioCarta, Reactome pathways that are universally important. The 

pathways are sorted based on the number of cancer types significantly capturing the pathway. All 

the scores for all pathways are available in Supplementary File 3. i Number of cancer types (out 

of 18) significantly capturing (FDR-corrected p-value < 0.05) each pathway. ii –log10(p-value of 

enrichment) averaged over all cancers significantly capturing the pathway.  iii Heatmap denoting 

the significance of enrichment p-values for top pathways and all cancer types. The star annotations 

correspond to the significance of enrichment (* = p-value < 0.05, ** = p-value < 0.01, *** = p-

value < 0.001, **** = p-value < 0.0001). iv Cancer character scores of pathways. The cancer 

character score denotes the relevance of each pathway to normal or cancerous tissue where a higher 

score indicates that the pathway is specifically important for cancerous tissues. 

The pathways are grouped manually in terms of their functional relations. The order of the groups 

is determined by the average cancer character score of each pathway group. 
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Fig. 5 DeepProfile cancer specificity analysis. a. The plots of cancer-specific genes shown for 4 

cancer types. The difference between the percentile score for the specific cancer type and the 

highest percentile score among all the other 17 cancer types for the top 20 genes with the highest 

difference score are shown for each cancer type separately. The colored dots show the percentile 

score of one gene for the specific cancer type and the gray dots show the highest percentile score 

the same gene has among all the other cancer types. The genes are sorted based on the difference 

values. The gene percentile scores for all cancers are available in Supplementary File 3. b, The 

plots of cancer-specific pathways along with cancer character scores for 4 cancer types. Pathways 

are sorted based on the difference between the -log10(p-value) for the specific cancer type and the 

highest -log10(p-value) among all the other 17 cancer types. Each dot pair represents the -log10(p-

value) corresponding to one pathway for the specific cancer type and the highest -log10(p-value) 

among all the other cancer types. The vector of cancer character scores shows the cancer character 

percentile score of the latent variable that is capturing the shown pathway. A higher cancer 

character score indicates that the given latent variable, therefore pathway, specifically important 

in cancerous tissue. The pathway enrichment scores for all cancers are available in 

Supplementary File 3.  
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Fig. 6 DeepProfile survival and mutation analysis. (a,b). The network of top survival-related 

(a) and TMB-related (b) pathways. For each pathway group, we show the number of cancers for 

which the pathway is significantly enriched and significantly associated with survival/TMB (p-

value < 0.05). We further show the –log10(p-value) of enrichment and –log10(p-value) of 

survival/TMB association averaged across all cancers detecting the pathway to be relevant to 

survival. The connections between pathways are determined based on gene membership Jaccard 

similarities. c. Plots of top survival and mutation associated pathways for brain cancer (left) and 

sarcoma (right). The upper plot shows the top 10 pathways with highest survival scores for the 

shown cancers along with the survival and enrichment –log10(p-values) and the lower plot shows 

the top 10 pathways with highest mutation scores for the shown cancers. The scores for all 

pathways and cancer types are available in Supplementary File 9. 
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Fig. 7 Mismatch repair pathway survival analysis. a Heatmap of survival z-scores of all genes 

included in KEGG mismatch repair pathway (* = magnitude of z-score > 1, ** = magnitude of z-

score > 2, *** = magnitude of z-score > 3, **** = magnitude of z-score > 4). 6 cancer types 

detected by DeepProfile are highlighted. b. Kaplan-Meier plots of average expression of mismatch 

repair pathway. The samples with an expression above (mean + one standard deviation) are marked 

as highly expressed and below -(mean + one standard deviation) are marked as lowly expressed. 

The log rank test p-values and the percent of censored samples are reported for each cancer. 5 

cancer types with a log rank test p-value below 0.05 are shown. c. Schematic of mismatch repair 

mechanism. 
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Fig. 8 MHC class II pathway survival analysis. a. Heatmap of survival z-scores of all HLA-D 

genes included in Reactome MHC class II antigen presentation pathway. 7 cancer types detected 

by DeepProfile are highlighted. b. Kaplan-Meier plots of average expression of HLA-D genes for 

cancer types with a log rank test p-value below 0.05. c. Comparison of average percentile scores 

of gene dendritic cells, b cells, and macrophages shown for 18 cancers. d. Comparison of average 

Pearson correlation between the expression of HLA-D genes and cell type signatures for the three 

cell types shown for 18 cancers. e. Comparison of average percentile scores of pro- and anti-

inflammatory macrophages shown for 18 cancers. (See Supplementary Fig. 8) 
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