Skip to main content
[Preprint]. 2024 Mar 15:2024.03.14.585055. [Version 1] doi: 10.1101/2024.03.14.585055
Algorithm 1: Complete Optimization Algorithm Pseudocode
1Input:BudgetCost function;Constraint Bounds and Data Typesl,u,c;Number of sampling points periterationnj;Number of iterationsM,exploration coefficientej;Maximum cost and regularizationparametersc,λ;Mesh,gradient descent,and acquisition function parameters(see Table 1)2Initialize empty data matrix,X,surrogate loss and cost functionL^,C^3Sample initial latin hypercube design of sizen0while maintaining cost constraints,add to data matrix X4In parallel,simulate points in data matrix X according to the underlying biological problem and generatescoress5Train Gaussian process model for loss function (and,if necessary,the cost function) using X6Sort X by score7whileM>0do891011121314151617Sample latin hypercube of large size(e.g.100nj)Get LCB acquisition function values for this sample and picknjejnew search points based on minimalvalues and cost constraintsGenerate remainingnjnjejpoints via mesh search and gradient descent steps using surrogate andcurrent data matrix along with a priori parameter valuesAdd new points to XIn parallel,simulate new points in X according to biological knowledge and generate scoresUpdate mesh size and gradient descent parametersSort data matrix X by scoreUpdate surrogate Gaussian process models using new data point scoresM=M1Check stopping criterion andbreakif criterion is met18end19Output:Ranked matrix of study designs,Surrogate model