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ABSTRACT

Protein language models trained on evolutionary data have emerged as powerful tools for predictive problems involving protein
sequence, structure, and function. However, these models overlook decades of research into biophysical factors governing
protein function. We propose Mutational Effect Transfer Learning (METL), a protein language model framework that unites
advanced machine learning and biophysical modeling. Using the METL framework, we pretrain transformer-based neural
networks on biophysical simulation data to capture fundamental relationships between protein sequence, structure, and
energetics. We finetune METL on experimental sequence-function data to harness these biophysical signals and apply them
when predicting protein properties like thermostability, catalytic activity, and fluorescence. METL excels in challenging protein
engineering tasks like generalizing from small training sets and position extrapolation, although existing methods that train
on evolutionary signals remain powerful for many types of experimental assays. We demonstrate METL’s ability to design
functional green fluorescent protein variants when trained on only 64 examples, showcasing the potential of biophysics-based
protein language models for protein engineering.

Introduction
Just as words combine to form sentences that convey meaning in human languages, the specific arrangement of amino acids in
proteins can be viewed as an information-rich language describing molecular structure and behavior. Protein language models
(PLMs) harness advances in natural language processing to decode intricate patterns and relationships within protein sequences
[1]. These models learn meaningful, low-dimensional representations that capture the semantic organization of protein space
and have broad utility in protein engineering [2]. PLMs can be adapted to specific protein properties like enzyme activity or
stability with limited training examples [3, 4], and they can be used in predictive or generative settings to design custom-made
proteins with desired characteristics [5, 6].

PLMs such as UniRep [7] and Evolutionary Scale Modeling (ESM) [8] are trained on vast repositories of natural protein
sequences distributed across the evolutionary tree. The training process typically involves self-supervised autoregressive
next token prediction or masked token prediction [1, 9]. Through this process, PLMs learn context-aware representations of
amino acids within proteins. Training on examples of natural proteins produces PLMs that implicitly capture protein structure,
biological function, and other evolutionary pressures. While these models are powerful, they do not take advantage of the
extensive knowledge of protein biophysics and molecular mechanisms acquired over the last century, and thus, they are largely
unaware of the underlying physical principles governing protein function.

We introduce Mutational Effect Transfer Learning (METL), a pretraining strategy that integrates biophysical knowledge into
PLMs. We use molecular modeling to generate large-scale synthetic data across diverse protein sequences and folds and pretrain
a transformer-based PLM on this data to capture the underlying biophysical knowledge. We finetune the pretrained model using
experimental sequence-function data, producing biophysics-aware models that can predict specific protein properties. METL
excels in protein engineering tasks like generalizing from small training sets and extrapolating to mutations not observed in the
training data. We demonstrate METL’s ability to design functional green fluorescent protein (GFP) variants when trained on
only 64 sequence-function examples. METL provides a general framework for incorporating biophysical knowledge into PLMs
and will become increasingly powerful with advances in molecular modeling and simulation methods.
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Results

Pretraining protein language models with synthetic data generated from molecular modeling
Deep neural networks and language models are revolutionizing protein modeling and design, but these models struggle in low
data settings and when generalizing beyond their training data. Although neural networks have proven capable in learning
complex sequence-structure-function relationships, they largely ignore the vast accumulated knowledge of protein biophysics.
This limits their ability to perform the strong generalization needed for protein engineering, which is the process of modifying a
protein to improve its properties [10]. We introduce a framework that incorporates synthetic data from molecular simulations as
a means to augment experimental data with biophysical information (Fig. 1). Molecular modeling can generate large datasets
revealing mappings from amino acid sequences to protein structure and energetic attributes. Pretraining on this data imparts
fundamental biophysical knowledge that can be connected with experimental observations.

We introduce the METL framework for learning protein sequence-function relationships. METL operates in three steps:
synthetic data generation, synthetic data pretraining, and experimental data finetuning. First, we generate synthetic pretraining
data via molecular modeling with Rosetta [11] to model the structures of millions of protein sequence variants. For each
modeled structure, we extract 55 biophysical attributes including molecular surface areas, solvation energies, van der Waals
interactions, and hydrogen bonding (Table S1). Second, we pretrain a transformer encoder [12] to learn relationships between
amino acid sequences and these biophysical attributes and to form an internal representation of protein sequences based on
their underlying biophysics. The transformer uses a protein structure-based relative positional embedding [13] that considers
the three-dimensional distances between residues. Finally, we finetune the pretrained transformer encoder on experimental
sequence-function data to produce a model that integrates prior biophysical knowledge with experimental data. The finetuned
models input new sequences and predict the particular property learned from the sequence-function data.

We implement two pretraining strategies, METL-Local and METL-Global, that specialize across different scales of protein
sequence space (Fig. 1d). METL-Local learns a protein representation targeted to a specific protein of interest. We start with
the protein of interest, generate 20M sequence variants with up to 5 random amino acid substitutions, model the variants’
structures using Rosetta, compute the biophysical attributes, and train a transformer encoder to predict the biophysical attributes
from sequence. METL-Local demonstrates strong predictive performance on these attributes (Fig. S1a), achieving a mean
Spearman correlation of 0.91 for Rosetta’s total score energy term across the eight METL-Local source models we trained.
Although METL-Local accurately recapitulates the biophysical attributes, the primary purpose of pretraining is to learn an
information-rich protein representation that can be finetuned on experimental data.

METL-Global extends the pretraining to encapsulate a broader protein sequence space, learning a general protein represen-
tation applicable to any protein of interest. We select 148 diverse base proteins [14] (Table S2) and generate 200k sequence
variants with up to 5 random amino acid substitutions for each. We then model the approximately 30M resulting structures with
Rosetta, extract biophysical attributes, and train a transformer encoder, following a similar methodology to METL-Local. With
METL-Global, we observed a substantial difference in predictive ability for in-distribution structures (those included in the
METL-Global pretraining data, mean Rosetta total score Spearman correlation of 0.85) and out-of-distribution structures (those
not included, mean Rosetta total score Spearman correlation of 0.16) (Fig. S1b), indicating METL-Global overfits to the 148
base proteins present in the pretraining data. However, we find it still captures biologically relevant amino acid embeddings
(Fig. S2) that are informative for protein engineering tasks even on the out-of-distribution proteins.

Generalization abilities of biophysics-based protein language models
Generalizing to new data is challenging for neural networks trained with small or biased datasets. This issue is crucial in protein
engineering because experimental datasets often have few training examples and/or skewed mutation distributions. These
factors impact the accuracy and utility of learned models when using them to design new protein variants.

We rigorously evaluated the predictive generalization performance of METL on 11 experimental datasets, representing
proteins of varying sizes, folds, and functions: GFP, DLG4-Abundance (DLG4-A), DLG4-Binding (DLG4-B), GB1, GRB2-
Abundance (GRB2-A), GRB2-Binding (GRB2-B), Pab1, PTEN-Abundance (PTEN-A), PTEN-Activity (PTEN-E), TEM-1,
and Ube4b (Table S3). The METL-Global pretraining data contains proteins with sequence and structural similarity to DLG4,
GRB2, and TEM-1 (Table S4), although their sequence identities are all below 40%. We observed no meaningful performance
advantage for these proteins compared to others when using METL-Global to predict Rosetta scores (pre-finetuning) or
experimental function (post-finetuning).

We compared METL to established baseline methods that provide zero-shot or standalone predictions, including Rosetta’s
total score, the evolutionary model of variant effect (EVE) [15], and Rapid Stability Prediction (RaSP) [16]. We also evaluated
supervised learning and finetuning methods, including linear regression with a one hot amino acid sequence encoding (Linear),
an augmented EVE model that includes the EVE score as an input feature to linear regression in combination with the amino
acid sequence (Linear-EVE) [17], a non-parametric transformer for proteins (ProteinNPT) [18], and the ESM-2 [19] PLM
finetuned on experimental sequence-function data. We created comprehensive train, validation, and test splits, encompassing
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Figure 1. Mutational Effect Transfer Learning (METL). (a) METL combines sparse experimental protein
sequence-function data with dense biophysical simulation data to learn biophysics-informed sequence-function landscapes. (b)
The pretraining phase involves generating millions of protein sequence variants and computing biophysical attributes for them
with Rosetta, which are then used to pretrain a protein language model. The model is subsequently finetuned with experimental
sequence-function data to predict protein properties such as binding, enzyme activity, thermostability, and expression. (c) The
METL architecture consists of a transformer encoder with a structure-based relative position embedding. (d) METL-Local and
METL-Global differ in the sequences included in the pretraining data. METL-Local trains on the local sequence space around
a protein of interest, learning a representation specific to that protein. METL-Global trains on diverse sequences across protein
fold space, learning a general-purpose protein representation.

small training set sizes and difficult extrapolation tasks, and we tested multiple split replicates to account for variation in the
selection of training examples.

We evaluated the models’ ability to learn from limited data by sampling reduced training sets and evaluating performance
as a function of training set size (Fig. 2). The protein-specific models METL-Local, Linear-EVE, and ProteinNPT consistently
outperformed the general protein representation models METL-Global and ESM-2 on small training sets. Among the protein-
specific approaches, the best-performing method on small training sets tended to be either METL-Local or Linear-EVE, with
METL-Local demonstrating particularly strong performance on GFP and GB1. While ProteinNPT sometimes surpassed
METL-Local on small training sets, ProteinNPT was still generally outperformed by Linear-EVE in those instances. The
relative merits of METL-Local versus Linear-EVE partly depend on the respective correlations of Rosetta total score and EVE
with the experimental data. However, as the number of training examples increases, the METL-Local performance becomes
dominated by dataset-specific effects rather than Rosetta total score relevance (Fig. S3). For the general protein models,
METL-Global and ESM-2 remained competitive with each other for small to mid-size training sets, with ESM-2 typically
gaining an advantage as training set size increased.
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Figure 2. Comparative performance of Linear, Rosetta total score, EVE, RaSP, Linear-EVE, ESM-2, ProteinNPT,
METL-Global, and METL-Local across different training set sizes. Learning curves for 11 datasets showing the test set
Spearman correlation between true and predicted protein function scores across a number of training set sizes ranging from 8 to
16,384 examples. We tested multiple replicates for each training set size, starting with 101 replicates for the smallest train set
size and decreasing to 3 replicates for the largest size. We show the median Spearman correlation across these replicates. The
top left panel (“Average”) shows the mean of the learning curves across the 11 datasets.

We implemented four challenging extrapolation tasks — mutation, position, regime, and score extrapolation — to simulate
realistic protein engineering scenarios, such as datasets lacking mutations at certain positions, having biased score distributions
with predominantly low-scoring variants, and consisting of solely single-substitution variants (Fig. 3). Mutation extrapolation
evaluates a model’s ability to generalize across the 20 amino acids and make predictions for specific amino acid substitutions
not present in the training data [20] (Fig. 3a). The model observes some amino acid types at a given position and must infer the
effects of unobserved amino acids. We found ProteinNPT, ESM-2, METL-Local, Linear-EVE, and METL-Global all performed
well at this task, achieving average Spearman correlations across datasets ranging from ~0.70 to ~0.78. Position extrapolation
evaluates a model’s ability to generalize across sequence positions and make predictions for amino acid substitutions at
sites that do not vary in the training data [20–22] (Fig. 3b). This task is more challenging than mutation extrapolation and
requires the model to possess substantial prior knowledge or a structural understanding of the protein [23]. ProteinNPT and
METL-Local displayed the strongest average position extrapolation performance with Spearman correlations of 0.65 and 0.59,
respectively. METL-Local’s success in mutation and position extrapolation relative to METL-Global is likely the result of the
local pretraining data, which includes all mutations at all positions, providing the model with comprehensive prior knowledge
of the local landscape.

Regime extrapolation tests a model’s ability to predict how mutations combine by training on single amino acid substitutions
and predicting the effects of multiple substitutions [21, 22, 24, 25] (Figs. 3c and S4). The supervised models generally
performed well at regime extrapolation, achieving average Spearman correlations above 0.75. The strong performance of linear
regression, which relies on additive assumptions, suggests the functional landscape is dominated by additive effects. ProteinNPT
performed slightly worse than the other supervised models, with an average Spearman correlation of 0.67, partly driven by
lower performance on the GFP dataset. Score extrapolation tests a model’s ability to train on variants with lower-than-wild-type
scores and predict variants with higher-than-wild-type scores [25] (Fig. 3d). This proves to be a challenging extrapolation task,
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Figure 3. Comparative performance across extrapolation tasks. Correlation performance of Linear, Rosetta total score,
EVE, RaSP, Linear-EVE, ESM-2, ProteinNPT, METL-Global, and METL-Local on (a) mutation, (b) position, (c) regime, and
(d) score extrapolation. We tested 9 replicates for each type of extrapolation and show the median. Error bars indicate one
standard deviation.

with all models achieving a Spearman correlation less than 0.3 for most datasets. The GB1 dataset is an exception for which
all supervised models achieved Spearman correlations of at least 0.55, and both METL-Local and METL-Global displayed
correlations above 0.7. The difficulty of score extrapolation might be attributed to the fact that the mechanisms to break a
protein are distinctly different than those to enhance its activity. It is notable that Rosetta total score and EVE, which are
not trained on experimental data, performed worse at score extrapolation than they did at the other extrapolation tasks. This
suggests these methods are largely capturing whether a sequence is active or inactive, rather than the finer details of protein
activity.

We performed the above prediction and extrapolation tasks with several additional baselines, including METL-Local with
random initialization (Fig. S5), augmented linear regression with Rosetta’s total score as an input feature (Fig. S6), and sequence
convolutional networks and fully-connected networks (Fig. S7). METL-Local outperformed these additional baselines on
nearly every prediction task for every dataset or provided much better scalability. Further, we conducted a systematic evaluation
of the METL architecture to investigate one-dimensional (sequence-based) versus three-dimensional (structure-based) relative
position embeddings (Fig. S8), feature extraction versus finetuning (Fig. S9), global model sizes (Figs. S10 and S11), and the
extent of overfitting to the pretraining biophysical data (Fig. S12).
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Relative information value of simulated versus experimental data
METL models are trained on both simulated and experimental data. Generating simulated data is orders of magnitude faster and
less expensive than experimental data. We wanted to understand how these two sources of data interact and if simulated data can
partially compensate for a lack of experimental data. To quantify the relative information value of simulated versus experimental
data, we measured the performance of the GB1 METL-Local model pretrained on varying amounts of simulated data and
finetuned with varying amounts of experimental data (Fig. 4). Increasing both data sources improves model performance,
and there are eventually diminishing returns for adding additional simulated and experimental data. The shaded regions of
Fig. 4 define iso-performance lines with simulated and experimental data combinations that perform similarly. For instance, a
METL-Local model pretrained on 1,000 simulated data points and finetuned on 320 experimental data points performs similarly
to one pretrained on 8,000 simulated data points and finetuned on only 80 experimental data points. In this example, adding
7,000 simulated data points is equivalent to adding 240 experimental data points, and thus ~29 simulated data points give the
same performance boost as a single experimental data point.

Figure 4. Relationship between experimental and simulated data quantities for GB1. The contour plot illustrates the test
set Spearman’s correlation resulting from training METL-Local with varying amounts of simulated (pretraining) and
experimental (finetuning) data. The plot displays a grid of Spearman’s correlation values corresponding to discrete
combinations of experimental and simulated dataset sizes. The model benefits from larger quantities of experimental and
simulated data, with the latter producing diminishing returns after approximately 128k examples.

We observe distinct patterns in how different proteins respond to increasing amounts of simulated pretraining data (Fig. S13).
For larger proteins like GFP (237 residues), TEM-1 (286 residues), and PTEN (403 residues), we see a threshold effect wherein
performance for a given experimental dataset size remains relatively flat until reaching a critical mass of simulated examples, at
which point there is a sharp improvement in downstream performance. In contrast, smaller proteins like GB1 (56 residues),
GRB2 (56 residues), and Pab1 (75 residues) show a more gradual response to increased simulated data over the tested dataset
sizes. The performance gains are more modest, particularly when experimental data is abundant, but occur more consistently
across the range of pretraining data sizes, until hitting a point of diminishing returns. A number of factors could influence this
information gain phenomenon, including the protein’s size, the protein’s structural and functional properties, the experimental
assay characteristics, and Rosetta’s modeling accuracy. Finally, we observe diminishing returns and saturated performance
starting with simulated dataset sizes as small as ~16K examples, depending on the protein and number of experimental examples.
The point of diminishing returns occurs at a substantially smaller number of simulated examples than the ~20M used for our
main results, suggesting that less simulated data could be used to train METL-Local in practice.

Synthetic data pretraining imparts biophysical knowledge
The purpose of METL’s pretraining is to learn a useful biophysics-informed protein representation. To further probe METL’s
pretraining and gain insights into what the PLM has learned, we examined attention maps and residue representations for the
GB1 METL-Local model after pretraining on molecular simulations but before finetuning on experimental data (Fig. 5). Our
METL PLMs with 3D relative position embeddings start with a strong inductive bias and include the wild-type protein structure
as input. After pretraining, the METL attention map for the wild-type GB1 sequence closely resembles the residue distance
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Figure 5. METL attention maps and residue representations relate to structure and biophysical properties. (a) The
residue distance matrix shows Cβ distances between residues for the wild-type GB1 structure. (b-c) The attention maps show
the mean attention across layers and attention heads for the wild-type GB1 sequence when it is fed as input to the pretrained
GB1 METL-Local model. The 3D structure-based relative position embeddings (RPEs) enable the network to focus attention
on residues that are close in 3D space, effectively capturing GB1’s structural contacts. The 1D sequence-based RPEs do not.
(d) Principal component analysis (PCA) of the residue representations output by the pretrained GB1 METL-Local model,
averaged across the 20 possible amino acids at each sequence position. Points are colored according to relative solvent
accessibility (RSA) computed from the wild-type GB1 structure.

matrix of the wild-type GB1 structure (Fig. 5ab). In contrast, an alternative METL model with 1D relative position embeddings
that does not use the GB1 structure while training fails to learn an attention map that resembles the GB1 contacts (Fig. 5c). The
3D relative position embedding and pretraining successfully allows METL to focus attention on residue pairs that are close in
3D space and may be functionally important.

We further explored the information encoded in the pretrained GB1 METL model by visualizing residue-level representations
at each sequence position, averaged across amino acid types (Fig. 5d). These residue-level representations show strong clustering
based on a residue’s relative solvent accessibility (RSA) and weaker organization based on a residue’s location in the three-
dimensional structure, as observed through visual inspection and qualitative cross-checking with residue–residue distance
patterns. Analysis of the additional datasets in our study reaffirmed these findings: models with 3D relative position embeddings
consistently focused attention on spatially proximate residues, and residue representations showed RSA-based clustering
patterns across all datasets (Figs. S14 and S15). This suggests the pretrained METL models have an underlying understanding
of protein structure and important factors like residue burial, even before they have seen any experimental data.

To test whether METL pretraining learns underlying epistatic interactions, we evaluated GB1 variants with well-characterized
epistatic effects [26]. The pretrained METL-Local model successfully identifies known interacting positions in GB1’s dynamic
β1-β2 loop region, with pairwise combinations of positions 7, 9, and 11 all ranking in the top 10% of predicted positional
epistasis. The pretrained model also captures strong negative epistasis in the G41L,V54G double mutant (top 0.5% of predicted
epistasis), consistent with the known compensatory exchange of small-to-large and large-to-small residues. However, METL
underestimates the disulfide-driven positive epistasis in the Y3C,A26C variant, likely due to Rosetta’s lack of automatic
disulfide bond modeling while generating pretraining data. Overall, these findings demonstrate that METL’s pretrained repre-
sentations capture biologically-relevant structural information driving epistasis, while also highlighting a potential limitation of
Rosetta-based pretraining.

Function-specific synthetic data improves pretrained METL representations
METL models are pretrained on general structural and biophysical attributes but are not tailored to any particular protein
property such as ligand binding, enzyme activity, or fluorescence. There is a great body of research using molecular simulations
to model protein conformational dynamics, small molecule ligand and protein docking, enzyme transition state stabilization, and
other function-specific characteristics [27–31]. These function-specific simulations can be used to generate METL pretraining
data that is more closely aligned with target functions and experimental measurements. Similarity between pretraining and
target tasks is important to achieve strong performance and avoid detrimental effects in transfer learning [32].

To demonstrate how function-specific simulations can improve the initial pretrained METL model and its performance after
finetuning, we customized the GB1 simulations to more closely match the experimental conditions. The GB1 experimental
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data measured the binding interaction between GB1 variants and Immunoglobulin G (IgG) [26]. To match this experimentally
characterized function, we expanded our Rosetta pipeline to model the GB1-IgG complex and compute 17 attributes related to
energy changes upon binding (Table S5). These function-specific attributes are more correlated with the experimental data than
the general biophysical attributes (Fig. S16), suggesting they could provide a valuable signal for model pretraining.

We pretrained a METL PLM that incorporates the IgG binding attributes into its pretraining data and refer to it as METL-
Bind (Fig. 6a). METL-Bind is a variant of METL-Local and is specific to GB1. METL-Bind outperformed a standard
METL-Local PLM, pretrained only with GB1 biophysical attributes, when finetuned on limited experimental data (Fig. 6b-c and
Fig. S17). Pretraining on the additional GB1-IgG complex attributes successfully improved the model’s learned representation.
We calculated the predictive error for each residue position in the GB1 sequence to understand if the two models specialize on
distinct structural regions (Fig. 6d-e). METL-Bind performed better across most residue positions and was notably better at
predicting mutation effects at the GB1-IgG interface. The residue where METL-Bind showed the largest improvement was
glutamate 27, an interface residue vital for the formation of a stable GB1-IgG complex [33]. Pretraining on function-specific
simulations provides METL with an initial awareness of protein function that can be integrated with experimental data.

Figure 6. Function-specific simulations improve METL pretraining for GB1. (a) METL-Local (METL-L) pretrains on
general Rosetta biophysical attributes from the standalone GB1 structure. METL-Bind pretrains on both general biophysical
attributes from the standalone GB1 structure and binding-specific scores from the GB1-IgG complex structure. (b-c) Learning
curves and extrapolation performance for Linear, METL-Local, and METL-Bind on the GB1 dataset. We pretrained
METL-Local and METL-Bind on the same variants, differing only in the Rosetta score terms. We used the same finetuning
dataset splits and replicates as in Figure 2. The vertical red bar denotes the median of the extrapolation replicates, and the
square brackets indicate the median Spearman correlation. (d-e) The heatmap shows the fraction of test set variants for which
METL-Bind has lower error than METL-Local, broken down by sequence position. Results are shown for training set size 32
and averaged across replicates. Position 1 is marked with an “X” because the dataset does not contain variants with mutations
in that position. The structure shows the GB1-IgG interface with the GB1 structure colored using same error fraction as the
heatmap.
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METL generalization to design diverse GFP variants
Predictive models can guide searches over the sequence-function landscape to enhance natural proteins or design new proteins
[6, 34, 35]. However, these models often face the challenge of making predictions based on limited training data or extrapolating
to unexplored regions of sequence space. To demonstrate METL’s potential for real protein engineering applications, we tested
METL-Local’s ability to prioritize fluorescent GFP variants in these challenging design scenarios. We used METL-Local to
design 20 GFP sequences that were not part of the original dataset, and we experimentally validated the resulting variants to
measure their fluorescence brightness (Fig. 7).

We intentionally set up the design tasks to mimic real protein engineering settings with limited data and extrapolation. We
finetuned a METL-Local PLM on only 64 GFP variants randomly sampled from the full dataset. The 64 sampled variants had
an average of 3.9 amino acid substitutions and a fitness distribution similar to the full dataset (Figs. S18 and S19). We designed
variants with either 5 or 10 amino acid substitutions, forcing the model to perform regime extrapolation. Furthermore, we
tested two design scenarios, Observed AA and Unobserved AA, in which designed variants were constrained to either include or
exclude amino acid substitutions observed in the training set, respectively. The Unobserved AA setting forces the model to
perform mutation and/or position extrapolation. We designed five variants at each extrapolation distance (5- and 10-mutants)
and design setting (Observed AA and Unobserved AA) (Fig. S20 and Table S6). We used simulated annealing to search
sequence space for GFP designs that maximize METL-Local’s predicted fitness and clustered the designs to select diverse
sequences. We also sampled random variants under the same scenarios as the METL designs to serve as baselines.

We had the genes for the 20 GFP METL designs and the 20 random baselines synthesized and cloned into an expression
vector as a fusion protein with the fluorescent protein mKate2, emulating the conditions used to collect the training data [36].
The mKate2 is constant in each fusion protein, while the GFP sequence varies. The ratio of a GFP variant’s fluorescence
to mKate2’s fluorescence provides an intrinsic measure of the GFP variant’s “relative brightness” that is independent of the

Figure 7. Low-N GFP Design. (a) Overview of the GFP design experiment. We used METL-Local to guide GFP design in a
low-N setting with only N = 64 experimental training examples. We tested two different design constraints: Observed AA,
where sequences contain only amino acid substitutions observed in the training set, and Unobserved AA, where sequences
exclude any amino acid substitutions observed in the training set. (b) Multidimensional scaling (MDS) sequence space
visualization of the wild-type GFP sequence, the 64 GFP training sequences, and the 20 designed proteins. The designed
sequences contain either 5 or 10 amino acid substitutions from wild-type. Training set sequences are colored on a gradient
according to their experimental brightness score. Designed sequences are colored according to whether they exhibited
fluorescence, which we define as having at least 10% of wild-type GFP’s brightness. (c) Experimentally characterized
brightness of the designed sequences, the best training set sequence (BT), and the wild-type sequence (WT). Each dot
represents one distinct sample of the three replicates. (d) Experimentally characterized brightness of the random baselines.
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absolute protein expression level [37]. Overall, METL was successful at designing functional GFP variants, with 16 of the
20 designs exhibiting measurable fluorescence (Fig. 7c). Each design setting had notable differences in the success rates and
fluorescence characteristics of the designed GFP sequences. The Observed design setting was 100% successful at designing
fluorescent five (5/5) and ten (5/5) mutants, demonstrating METL’s robust ability to learn from very limited data and extrapolate
to higher mutational combinations. The more challenging Unobserved design setting had an 80% (4/5) hit rate with five mutants
and a 40% (2/5) hit rate with ten mutants. The Unobserved designs were less bright than wild-type GFP and the Observed
designs.

The random baselines provide context for evaluating the designed variants and METL-Local’s predictions (Fig. 7d). Across
all design scenarios, the random baseline variants exhibited minimal or no fluorescence activity, with the exception of one of
the Observed 5-mutant baselines, which fluoresced. METL-Local assigns a high predicted score to this variant, showing its
ability to recognize functional sequences (Fig. S21). Conversely, METL-Local did not predict high scores for any of the other
random baselines. This suggests that the functional METL-designed variants likely emerged from the model’s understanding of
the GFP fluorescence landscape rather than random chance.

The mKate2 fluorescence signal provides additional insight into the designs (Fig. S22). The mKate2 protein is constant, so
changes in its fluorescence signal are caused by changes in mKate2-GFP fusion protein concentration and thus provide an
indirect readout of the GFP designs’ folding, stability, solubility, and aggregation. The Observed designs all exhibit higher
mKate2 fluorescence than wild-type GFP, possibly indicating moderate stabilization, while the Unobserved designs mostly
exhibit lower mKate2 fluorescence than wild-type GFP, suggesting destabilization.

Accessing METL tools
In addition to making the METL code, models, and datasets available (Methods), we also made them accessible through multiple
web interfaces. We provide a Hugging Face interface to download and use our METL models (https://huggingface.co/gitter-
lab/METL) and a Hugging Face Spaces demo (https://huggingface.co/spaces/gitter-lab/METL_demo) [38]. The Gradio [39]
web demo supports generating predictions with our pretrained METL models for a list of sequence variants and visualizes those
variants on the protein structure [40]. We created two Colab notebooks to run METL workflows with GPU support, which are
available from https://github.com/gitter-lab/metl. One notebook is for loading a pretrained METL model and finetuning it with
user-specified protein sequence-function data. The other is for making predictions with pretrained METL models, the same
functionality as the Hugging Face Spaces demo but better-suited for large datasets. These Colab notebooks are part of the Open
Protein Modeling Consortium [41]. Finally, the METL GitHub repository also links to a Jupyter notebook to generate Rosetta
pretraining data at scale in the Open Science Pool [42] for eligible researchers.

Discussion
Motivated by decades of research into biophysics, molecular dynamics, and protein simulation [11, 27, 28, 31, 43], we present
METL, which leverages synthetic data from molecular simulations to pretrain biophysics-aware PLMs. These biophysical
pretraining signals are in contrast to existing PLMs or multiple sequence alignment-based methods that train on natural
sequences and capture signals related to evolutionary selective pressures [2, 7, 8, 15, 44, 45]. By pretraining on large-scale
molecular simulations, METL learns a biophysically-informed representation of protein space, which provides valuable context
for understanding protein sequence-function relationships. Pretrained METL models can be finetuned on experimental data to
produce models that integrate biophysical knowledge and are capable of predicting properties such as binding, thermostability,
and expression. METL excels at challenging protein engineering tasks such as learning from limited data and extrapolating to
mutations not observed in the training data, enabling the design of new proteins with desired properties.

Our results highlight important differences between evolutionary data and biophysical simulations, especially in terms of
their effectiveness for pretraining PLMs to understand sequence-function relationships and predict experimental functions.
Evolutionary data, consisting of massive collections of naturally evolved protein sequences, captures information relevant to
organismal fitness, including protein expression, folding, stability, and biological function. However, the precise selective
pressures for each protein are different and largely unknown, and evolutionary patterns can be confounded by historical events,
phylogenetic biases, and unequal sequence sampling [46]. In contrast, biophysical simulations allow precise control of the input
sequence distribution, even sequences with non-natural amino acids [47, 48], and capture fundamental properties of protein
structure and energetics. Yet, biophysical simulations are only imperfect approximations of the true physics.

Generally, we found that the protein-specific models METL-Local, Linear-EVE, and ProteinNPT demonstrated superior
performance compared to general protein representation models METL-Global and ESM-2. The relative performance of
METL-Local and Linear-EVE was partly determined by a dataset’s correlation with Rosetta total score and EVE, respectively.
Certain protein properties and experimental measurements more closely align with either biophysical or evolutionary signals
[49–51], providing guidance on where different models may excel. One of METL’s key strengths is its ability to incorporate
function-specific molecular modeling and simulations. For instance, pretraining on GB1-IgG binding data led to improved
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performance compared to our standard METL-Local model, which was pretrained only on GB1 structure-derived data. This
opens the door to incorporating more sophisticated simulations, such as dynamic simulations of conformational transitions in
allosteric regulation, quantum mechanics/molecular mechanics (QM/MM) studies of enzyme catalysis, coarse grained models
of macromolecular machines, and small molecule docking to assess binding specificity. It would also be straightforward to
extend METL to make multitask predictions, such as both GB1 thermostability and GB1-IgG binding affinity.

The current version of METL-Global represents an initial step toward a universal biophysics-based representation of all
proteins. METL-Global provides a comparable or better representation than a similarly-sized ESM-2 model when finetuning
with small training sets for all datasets except GRB2-A (Fig. 2). However, METL-Global overfits to the proteins it was
pretrained on (Fig. S1), indicating there is room for improvement. We can greatly expand the number and diversity of protein
structures used for pretraining METL-Global using the RCSB Protein Data Bank (PDB) [52] or AlphaFold Protein Structure
Database [53]. Meta-learning strategies [54, 55] could alleviate overfitting to the pretraining structures and have helped with
domain generalization in chemical screening [56]. In this study, we intentionally examined biophysical and evolutionary signals
separately by training METL models from scratch and comparing them to evolutionary-based models. Future iterations of
METL-Global could integrate these signals by leveraging evolutionary PLMs as a pretrained foundation, potentially enhancing
generalization by combining complementary information from both domains. Sequence-based PLMs can learn about protein
structure from evolutionary statistics [19, 57–59]. However, many recent PLMs directly incorporate structural information
[60–64], and we envision METL-Global would continue to use this prior knowledge when it is available.

Prior studies have integrated biophysics and machine learning either by using biophysics-based features as input to machine
learning models or approximating biophysical simulations with machine learning. Rosetta and FoldX stability, energy, and
docking terms have been provided as features for an augmented linear regression model [17], random forests [65, 66], a 2D CNN
[67], and on nodes and edges in a graph neural network [68] for antibody and protein property prediction. Function-value-prior
augmented-Bayesian Neural Networks can incorporate Rosetta stability as a prior on protein function prediction in regions
where a Bayesian Neural Network has high epistemic uncertainty [69]. Molecular dynamics-derived features have been
included in supervised learning models of big potassium channels [70] and bovine enterokinase [71]. Wittmann et al. evaluate
Triad ∆∆G predictions for selecting initial variants for machine learning-guided directed evolution [72]. Unlike a finetuned
METL-Local model, all of these approaches must run the biophysics calculations for each sequence prediction, which could
limit their scalability to search sequence space for protein design. Other related work uses machine learning to approximate
molecular simulations [73], often with the goal of obtaining much faster approximate models [74]. This scenario is similar to
METL’s pretraining stage. These methods include the Epistasis Neural Network that has been used to engineer xylanases [75]
and GFP variants [76], molecular dynamics approximations to minimize energy and match a target structure [77], learning
to predict Rosetta protein-ligand binding energy to speed up variant scoring [78], and sampling protein conformations [79].
ForceGen trains a protein language diffusion model on molecular dynamics simulations of mechanical unfolding responses [80].
METL’s pretraining on biophysical attributes for protein engineering is also related to the long-standing problem of predicting
protein stability [81–92]. Finally, machine learning has been integrated into Rosetta to guide its sampling [93].

Machine learning-guided protein engineering is often data-limited due to experimental throughput constraints, with datasets
sometimes containing as few as tens to hundreds of sequence-function examples [34, 94–99]. We demonstrated METL’s
performance in realistic protein engineering settings with limited data (low-N) and extrapolation. PLMs are an important
component in many existing methods for low-N protein engineering. They have been used to extract protein sequence
representations [3, 100–103], for finetuning on the low-N function data [102, 104–106], to predict structures and derive features
[107], and to generate auxiliary training data in more complex models [18, 105, 108]. Other computational strategies for
addressing the low-N problem include Gaussian processes [101, 109, 110], augmenting regression models with sequence-based
[17, 111] or structure-based [112] scores, custom protein representations that can produce pretraining data [113], representations
of proteins’ 3D shape [114], active learning [115], few-shot learning [116], meta learning [117, 118], contrastive finetuning
[119], and causal inference [120].

Our GFP design experiments showcased METL’s ability to learn from only 64 training examples and generalize to distant
and unexplored regions of sequence space. METL’s success in the Unobserved AA design setting was especially remarkable
because it requires the model to infer the effects of mutations it has not observed and predict how these mutations combine in 5-
and 10-mutants. It is notable that none of the designed GFPs appeared brighter than wild-type GFP. We estimated brightness
as the ratio of GFP fluorescence to mKate2 fluorescence. We noticed many of the designed variants exhibited absolute GFP
and mKate2 fluorescence signals higher than wildtype, indicating that the mKate2-GFP fusion protein may have increased
expression levels and improved stability in these variants. In limited data settings, METL-Local’s strong biophysical prior may
indirectly improve designs through stabilizing effects rather than directly improving the brightness.

Examples across diverse scientific domains have demonstrated the power of combining simulations and machine learning
[121], spanning topics such as gene regulatory network reconstruction [122], chemical foundation model pretraining [123],
climate emulation [124], and quantum chemistry approximation [31, 125]. METL fits within this broader trend and represents
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a significant step toward effectively integrating biophysics insights with machine learning-based protein fitness prediction.
The METL framework pretrains PLMs on molecular simulations to capture accumulated biophysical knowledge, and this
pretraining strategy will benefit from continued advances in computation and molecular simulation. METL can pretrain on
general structural and energetic terms or more focused function-specific terms, offering the potential to model completely
non-natural protein functions with nonexistent evolutionary signals. PLMs fluent in fundamental biophysical dialect will push
the boundaries of protein design to new realms of sequence-function space.

Methods

Generating Rosetta pretraining data
The Rosetta pretraining data consists of protein sequences and their corresponding score terms, computed by modeling the
sequences with Rosetta. We refer to the METL models pretrained on the Rosetta biophysical attributes as source models. The
data used for local and global source models differs in what sequences are included. Rosetta data for local source models
contains protein variants within the local sequence space surrounding the protein of interest. Rosetta data for global source
models contains protein variants from a diverse range of base sequences and structures.

We generated local Rosetta datasets for each target protein from the experimental datasets (Table S3). We acquired the
target protein structures from RCSB PDB [52] and AlphaFold Protein Structure Database [53]. For cases where the acquired
structure did not match the reference sequence of the target protein, we used Rosetta comparative modeling or truncated the
acquired structure to match the reference sequence. For each local pretraining dataset, we generated ~20M protein sequence
variants with a maximum of 5 amino acid substitutions. See Table S7 for additional details regarding local Rosetta dataset
structures and variants, including exceptions to the above.

We generated the global Rosetta dataset based on 150 diverse protein structures identified in Supplementary Table 1 of
Kosciolek and Jones [14]. We downloaded the 150 structures from RCSB PDB [52]. Some structures contained modified or
missing residues. We replaced modified residues with canonical amino acids and used the RosettaRemodel application to fill in
the structure of missing residues. We were unable to remodel PDB IDs 1J3A and 1JBE, thus we excluded these structures
from the final dataset. For each of the remaining 148 structures (Table S2), we generated ~200K variants with a maximum of 5
amino acid substitutions, for a total of ~30M variants.

To assess the similarity between the 148 proteins used for pretraining METL-Global and the 8 proteins used for evaluation,
we clustered all proteins based on sequence and structure representations. We ran sequence-based clustering with MMseqs2
v15.6f452 [126] and structure-based clustering with Foldseek v9.427df8a [127]. We set a coverage threshold 0.5 for both
sequence- and structure-based clustering and identified clusters that contained structures from the METL-Global pretraining
collection and one of the 8 unique structures used for evaluation. At this threshold, both MMseqs2 and Foldseek identified
structures in the METL-Global pretraining collection that are similar to the GRB2 and TEM-1 structures. Foldseek also detected
a match for DLG4 and a second matching structure for GRB2. We aligned the pairs of co-clustered structures with the RCSB
PDB pairwise structure alignment tool [128] and the TM-align alignment method [129].

We implemented a custom sub-variants sampling algorithm to generate the variants for both the local and global datasets.
The algorithm iteratively samples a random variant with 5 amino acid substitutions from the wild-type sequence then generates
all possible 4-, 3-, 2- and 1-substitution sub-variants with the same amino acid substitutions as the 5-substitution variant.
Duplicate variants generated through this process are discarded. The iterations terminate when the target number of variants is
reached. For the global dataset, we used the sub-variants sampling algorithm to generate all of the ~200K variants per base
sequence. For the local datasets, we first generated all possible 1-substitution or 1- and 2-substitution variants, and then we
used the sub-variants sampling algorithm to generate the remainder of the ~20M variants per target protein (Table S7).

Once sequence variants were generated, we used Rosetta to compute biophysical attributes for each variant sequence. We
first prepared each base PDB file for use with Rosetta by following the recommendation in the Rosetta documentation. We ran
Rosetta’s clean_pdb.py and relaxed the structure with all-heavy-atom constraints. We generated 10 structures and selected
the lowest energy structure to serve as the base structure for subsequent steps.

We used Rosetta v3.13 [11] to compute full-atom energy terms (ref2015 score function), centroid-atom energy terms (score3
score function), and custom filter terms based on Rocklin et al. [130]. For each variant, we introduced the variant’s mutations to
the corresponding base structure using a Rosetta resfile. Then, to generate the full-atom energy terms, we used FastRelax to
relax the mutated structure using the ref2015 score function, only repacking residues within 10Å of the mutated residues, with 1
repeat. To generate the centroid-atom energy terms, we used score_jd2 to score the resulting structure using the score3 score
function. Finally, to generate the remainder of the score terms used in the standard version of METL, we used a RosettaScript
to compute custom filter terms on the relaxed structure. To calculate additional binding scores for METL-Bind, we used the
Rosetta InterfaceAnalyzer protocol. See Tables S1 and S5 for a list and description of each term. We designed a computing
workflow based on HTCondor [131] to orchestrate the Rosetta scoring on the Open Science Pool [42]. Rosetta simulation times
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scale with protein sequence length. Average runtimes per variant ranged from ~37-50 seconds for smaller proteins (56-102
residues, e.g., GB1, GRB2, Pab1, Ube4b) to 135-215 seconds for larger proteins (237-403 residues, e.g., GFP, PTEN, TEM-1).

Preprocessing Rosetta pretraining data
Prior to training neural networks, we preprocessed the raw Rosetta data by dropping variants with NaN values for any of the
biophysical attributes, removing duplicates by randomly selecting one of the duplicates to keep, and filtering out variants with
outlier total_score values. We grouped variants by base PDB and removed outliers independently for each group using a
modified z-score method, which uses the median and median absolute deviation instead of the mean and standard deviation.
For each data point i, we calculated the modified z-score using the following equation:

si =
|xi − x̃|
MAD

, (1)

where si is the modified z-score, xi is the Rosetta total_score, x̃ is the median total_score of the group, and MAD is the Median
Absolute Deviation, defined as MAD = median(|x j − x̃|) ∀ x j ∈ {x}, or the median of the absolute deviations of all data points
from the median of the group. We removed variants with si > 6.5 from the dataset.

Additionally, we standardized the Rosetta scores to equalize the contribution of each score term to the model’s loss function
and to ensure score terms are comparable across different base PDBs in the global dataset. Once again, we grouped variants by
base PDB, and then we standardized each group and score term independently by subtracting the mean and dividing by the
standard deviation. We calculated the mean and standard deviation using only the training set data. This process scales the
score terms to have zero mean and a standard deviation of one.

We excluded the following score terms from the final dataset because the values were zero for a large portion of base
PDBs: dslf_fa13 (from ref2015 score function), linear_chainbreak and overlap_chainbreak (from score3 score function), and
filter_total_score (custom filter term). We also discarded res_count_all (custom filter term that counts the residues in the protein)
because it did not vary among variants of an individual protein. After these removals, 55 score terms remained (Table S1).

METL source model architecture
The METL source model architecture accepts amino acid sequences as input and outputs predictions for each of the 55 Rosetta
score terms. The main component of the source model architecture is a transformer encoder based on the original transformer
architecture [12], with the notable differences being the use of a relative positional embedding [13] instead of a sinusoidal
positional encoding and pre-layer normalization instead of post-layer normalization [132]. METL-Local source models total
~2.5M parameters and have transformer encoders consisting of a 256 embedding size, 3 encoder layers, 4 attention heads, a 1024
feed forward hidden size, and 0.1 dropout. METL-Global source models total ~20M parameters and have transformer encoders
consisting of a 512 embedding size, 6 encoder layers, 8 attention heads, a 2048 feed forward hidden size, and 0.1 dropout. We
also evaluated a METL-Global source model with ~50M parameters, consisting of a similar architecture as the 20M parameter
METL-Global source model but with 16 encoder layers instead of 6 encoder layers. After the transformer encoder, source
models implement an additional layer normalization layer, a global average pooling layer, a nonlinear fully-connected layer,
and a linear output layer with 55 output nodes corresponding to the 55 Rosetta score terms. The global average pooling layer
computes the mean of the per-residue encodings, which are output from the encoder, to produce a sequence-level representation
of the same size as the embedding dimension. This sequence-level encoding is fed into a fully-connected layer with 256 hidden
nodes for the local model and 512 hidden nodes for the global model. We used the rectified linear unit (ReLU) activation
function for the transformer encoder and final fully-connected layer.

We implemented relative position embeddings as described by Shaw et al. [13]. In contrast to the absolute position encoding
used in the original transformer architecture [12], the relative position embedding enables the network to consider positional
representations of the inputs in terms of distances between sequence positions. We consider two distinct ways to encode relative
distances, generating what we refer to as 1D positional embeddings and 3D positional embeddings. In the 1D approach, relative
distances are based on the protein amino acid sequence alone. This approach is identical to the implementation of relative
position embeddings described by Shaw et al. In the 3D approach, relative distances are based on the 3D protein structure.

In the 1D approach, we calculate relative distances by determining the offset between each pair of sequence positions (i,
j) in the input. The relative distance is defined as d = j− i, representing how far sequence position j is relative to position i.
A negative value signifies that j precedes i in the sequence, and a positive value signifies that j succeeds i. We map each of
the possible relative distances to a pair of learnable embedding vectors, corresponding to attention keys and values. When
calculating attention between sequence positions i and j, we add the key and value positional embedding vectors to the keys
and values, respectively. As was hypothesized by Shaw et al., precise relative position information might not be useful beyond
a certain distance. Thus, we clipped the possible relative distances to ±8.
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In the 3D approach, we calculate relative distances using the protein 3D structure instead of the amino acid sequence. When
using 3D relative position embeddings, the model requires a protein structure in the form of a PDB file, corresponding to the
base protein that the input variant sequence is based on. We first represent the protein structure as an undirected graph, where
each node corresponds to a residue. We place an edge between any pair of nodes if the beta carbon atoms (Cβ ) of the residues
are within 8Å of each other in the 3D space. We define the relative distance between residues (i, j) as the minimum path length
from node i to node j in the graph. Unlike the 1D approach, relative distances computed using the 3D approach cannot be
negative values. We clip the 3D relative distances at 3, effectively transforming distances greater than 3 into a relative distance
of 3. A relative distance of 0 represents a node with itself, 1 signifies direct neighbors, 2 signifies second degree neighbors, and
3 encapsulates any other node not covered by the previous categories. As in the 1D approach, each possible relative distance in
the 3D approach is mapped to a pair of embedding vectors corresponding to keys and values. These vectors are learned during
training and are added to keys and values during the attention calculation.

METL source model training
We split the Rosetta source data into randomly sampled train, validation, test, and withheld sets. For each dataset, we first
withheld 5% of the data to be used for final evaluations. We split the remaining data into 80% train, 10% validation, and 10%
test sets.

We trained source models for 30 epochs using the AdamW optimizer [133] with a learning rate of 0.001. We applied a linear
warm-up learning rate scheduler, with a warm-up period of 2% of the total training steps. Additional AdamW hyperparameters
were weight_decay = 0.01, β1 = 0.9, β2 = 0.999, and ε = 1e−8. We computed mean squared error loss independently for
each of the 55 prediction tasks (corresponding to the 55 Rosetta biophysical attributes) and took the sum to compute the final
loss for the network. We applied gradient norm clipping with a max norm of 0.5. We employed distributed data parallel (DDP)
training with 4 GPUs using PyTorch Lightning [134, 135]. We trained local source models with an effective batch size of
2048 (512 x 4 GPUs) and global source models with an effective batch size of 1024 (256 x 4 GPUs). For the METL-Bind
experiment, we trained both standard METL-Local and METL-Bind using the same process, except using 2 GPUs instead of
4 and a batch size of 1024 instead of 512, which yielded an effective batch size 2048, identical to the source models trained
for the main experiment. METL-Bind was trained on 17 additional binding scores, for a total of 55+17 = 72 tasks, but was
otherwise identical to the standard METL-Local model.

The global source data contains variants of 148 base sequences, with most having different sequence lengths. This
complicates the process of encoding data into a single fixed-length batch. Padding is a commonly employed approach in
such scenarios. However, incorporating different sequence lengths and base structures in a single batch would negatively
impact efficiency of computing attention with our implementation of relative position embeddings. Thus, we implemented a
PDB-based data sampler that ensures each batch only contains variants from a single base PDB structure. Due to the use of
DDP training with 4 GPUs, each aggregated training batch effectively contains variants from 4 base PDBs.

Pretraining times depend on the model size, protein size, amount of simulated data, and computational resources. For a 2M
parameter METL-Local model with a simulated data size of ~20M examples, running on 4x NVIDIA A100 or A30 GPUs,
pretraining times ranged from 6-13 hours for 30 epochs (12 to 26 minutes per epoch) for most proteins, with the exception of
PTEN, which took ~33 hours for 30 epochs (1.1 hours per epoch). With a smaller training size of ~1M examples and just a
single GPU, training times ranged from 6-26 hours for 100 epochs for most proteins (4 to 16 minutes per epoch). Pretraining
METL-Global with 20M parameters took ~50 hours on 4x A100s and ~142 hours with 50M parameters.

Experimental datasets for target model training
The METL target model architecture accepts amino acid sequences as input and outputs predictions for one specific protein
function. We evaluated METL on experimental datasets representing proteins of varying sizes, folds, and functions: GFP
[36], DLG4-2021 [136], DLG4-Abundance [137], DLG4-Binding [137], GB1 [26], GRB2-Abundance [137], GRB2-Binding
[137], Pab1 [138], PTEN-Abundance [139], PTEN-Activity [140], TEM-1 [141], and Ube4b [142] (Table S3). We acquired
raw datasets from published manuscript supplements, MaveDB [143], and NCBI GEO [144]. We transformed raw data into
a standardized format, making sure that functional scores were log-transformed, normalized so that the wild-type score is 0,
and rounded to 7 decimal places. We removed variants with mutations to stop codons and converted variant indexing to be
0-based. For DLG4-2021 and GB1, we filtered variants to ensure a minimum number of reads. See Table S8 for additional
details about dataset transformations. We opted to use the DLG4 dataset instead of the DLG4-2021 dataset in our main analysis
due to weak correlation between the two datasets (Fig. S23) and because linear regression yielded better results on the DLG4
dataset, suggesting a cleaner signal.

We used GB1 as an exploratory dataset during method development to make modeling decisions such as at what size
validation set to enable model selection, where to place the prediction head on the source model, whether to use a linear or
nonlinear prediction head, and others. Due to this, there is potential we overfit to GB1 and that our final results are optimistic
for GB1. That said, we took precautions to limit the potential impact of using GB1 as our development dataset. The results
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presented for the small training set size experiment use an evaluation dataset that was completely held out, even during method
development. The randomly sampled train and validation sets used to generate the final results are also different splits than the
ones we used during method development. Additionally, the results presented for the extrapolation experiments use different
splits than the ones we used to test extrapolation during method development.

We adjusted the GFP dataset preprocessing after seeing early small training set size results. Performance was lower than
expected, which led us to realize that the dataset scores were not normalized so wild-type is 0. We modified the GFP dataset to
normalize the scores and set wild-type to 0 by subtracting the wild-type score from all the scores. All our other datasets were
already normalized so wild-type is 0.

METL target model architecture
METL target models are made up of a backbone and a head. The backbone contains network layers from the METL source
model, pretrained to predict Rosetta biophysical attributes. The head is a new, randomly-initialized linear layer placed on top
of the backbone to predict experimental functional scores. We also added a dropout layer with dropout rate 0.5 between the
backbone and the head. For METL-Local source models, we attach the head immediately after the final fully-connected layer.
For METL-Global source models, we attach the head immediately after the global pooling layer. METL target models have a
single output node corresponding to the experimental functional score prediction.

METL target model training
We implemented two training strategies for PLM target models: feature extraction and finetuning. Feature extraction is a
training strategy where only the head is trained, and the backbone weights are not updated during the training process. In
contrast, finetuning is a training strategy where both the backbone and head weights are updated during training. For feature
extraction, we trained the head using scikit-learn [145] ridge regression with al pha = 1.0 and the cholesky solver. This provides
a closed-form solution for the ridge regression weights.

For finetuning, we implemented a dual-phase finetuning strategy [146]. In the first phase, we froze the backbone and trained
only the head for 250 epochs. In the second phase, we trained both the backbone and the head for an additional 250 epochs at a
reduced learning rate. We used the AdamW optimizer with a learning rate of 0.001 in the first phase and 0.0001 in the second
phase. We applied a learning rate scheduler with linear warm-up and cosine decay to each phase, with a warm-up period of 1%
of the total training steps. Additional AdamW hyperparameters were set as follows: weight_decay = 0.1, β1 = 0.9, β2 = 0.999,
and ε = 1e−8. We used a batch size of 128 and mean squared error loss. We applied gradient norm clipping with a max norm
of 0.5.

After the full training period, we selected the model from the epoch with the lowest validation set loss. We only performed
model selection if the validation set size was ≥ 32 for METL-Local and ≥ 128 for METL-Global and ESM-2. We found the
optimization was more stable for METL-Local than METL-Global and ESM-2, thus smaller validation sets were still reliable.
For validation sets smaller than those thresholds, we did not perform model selection. Instead, we used the model from the last
epoch of training. We determined these thresholds using the GB1 dataset, which we designated as our development dataset, by
selecting the dataset size along the learning curve where using model selection started to outperform not using model selection.
In retrospect, these thresholds were too low for other datasets, leading to the dips in METL-Global correlations observed in
Figure 2.

Finetuning METL-Local was relatively quick, with training times scaling with the experimental dataset size. For a dataset
size of 320 examples, finetuning typically took ~2-5 minutes; for 20,480 examples, it took ~20-42 minutes. Finetuning
METL-Global (20M parameters) took between 7-45 minutes for small datasets (320 examples) and 40-150 minutes for large
datasets (20,480 examples).

Target model dataset splits
We created comprehensive train, validation, and test splits to evaluate performance with small training set sizes and a range of
extrapolation tasks, including position, mutation, regime, and score extrapolation. For small training set sizes, we first sampled
a random 10% test set from each full dataset. Then, from the remaining data, we sampled datasets of sizes 10, 20, 40, 80, 160,
320, 640, 1280, 2560, 5120, 10240, and 20480. To account for especially easy or difficult training sets that may be sampled by
chance, we generated multiple replicates for each dataset size. The number of replicates decreases as the dataset size increases:
101 replicates for the smallest dataset size, followed by 23, 11, 11, 11, 11, 7, 7, 5, 5, 3, and 3 replicates for the largest dataset
size. We split the sampled datasets into 80% train and 20% validation sets. We used the same test set across all dataset sizes
and replicates. We report median performance metrics across replicates.

Whereas the small dataset splits are sampled randomly, the extrapolation splits are specially designed to assess the models’
ability to generalize to more challenging test sets. For position, mutation, and score extrapolation, we randomly resampled
any datasets with > 50000 variants down to 50000 variants before generating the extrapolation splits. To account for random
effects, we generated 9 replicate splits for each extrapolation type. We report the median across the 9 replicates.
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Position extrapolation tests the ability of a model to generalize to sequence positions not present in the training data. To
generate position extrapolation splits, we first randomly designated 80% of sequence positions as train and the other 20% as
test. Then, we divided all variants (single- and multi-mutant) into training and testing pools depending on whether the variants
contain mutations only in positions designated as train or only in positions designated as test. If a multi-mutant variant had
mutations in both train and test positions, we discarded it. To create the final train, validation, and test sets, we split the train
pool into randomly sampled 90% train and 10% validation sets. We used the entire test pool as the test set.

Mutation extrapolation tests the ability of a model to generalize to mutations not present in the training data. To generate
mutation extrapolation splits, we followed a similar procedure as position extrapolation, except with mutations instead of
sequence positions. We randomly designated 80% of mutations present in the dataset as train and the other 20% as test. We
divided all variants (single- and multi-mutant) into training and testing pools depending on whether the variants contain only
mutations designated as train or only designated as test. If a multi-mutant variant had mutations that were designated as train
and test, we discarded it. We split the train pool into randomly sampled 90% train and 10% validation sets and used the entire
test pool as the test set.

Regime extrapolation tests the ability of the model to generalize from lower numbers of amino acid substitutions to higher
numbers of amino acid substitutions. For datasets with single and double substitution variants, we divided the variants into
a train pool comprising of the single substitution variants and a test pool comprising of the double substitution variants. We
split the train pool into into an 80% train and a 20% validation set. We sampled a 10% test set from the test pool. For datasets
containing greater than double substitution variants, we also implemented another regime extrapolation split where the train
pool was comprised of single and double substitution variants and the test pool was comprised of variants with three or more
substitutions.

Score extrapolation tests the ability of a model to generalize from low-scoring variants to high-scoring variants. We divided
variants into train and test pools depending on whether the variant had a score less than wild-type (train pool) or greater than
wild-type (test pool). We split the train pool into a 90% train and a 10% validation set and used the entire test pool as the test
set.

Baseline models
We implemented and evaluated additional baseline models: Linear, a fully-connected neural network (FCN), a sequence
convolutional neural network (CNN), METL-Local with random initialization, Rosetta’s total score as a standalone prediction,
and linear regression with Rosetta total score (Linear-RTS).

Linear is a linear regression model that uses one hot encoded sequences as inputs. One hot encoding captures the specific
amino acid at each sequence position. It consists of a length 21 vector where each position represents one of the possible amino
acids or the stop codon. All positions are zero except the position of the amino acid being encoded, which is set to a value
of one. Note that we removed variants containing mutations to the stop codon during dataset preprocessing, so this feature
was not used in our analysis. We implemented linear regression using scikit-learn’s ridge regression class, which incorporates
L2 regularization. We set the solver to cholesky to calculate a closed-form solution for the ridge regression weights. We set
alpha, the constant that controls regularization strength, to the default value of 1.0. We set all other parameters to the default
scikit-learn values.

For baseline neural networks, we tested an FCN, a CNN, and a transformer encoder with a similar architecture as METL-
Local, but with a random initialization. The FCN and CNN used one hot encoded sequences as input. The FCN consisted of 1
hidden layer with 1024 nodes followed by a dropout layer with a dropout rate of 0.2. The CNN consisted of 1 convolutional
layer with kernel size 7, 128 filters, and zero-padding to ensure the output has the same shape as the input (padding mode
“same” in PyTorch’s Conv2d class). Following the convolutional layer, we placed a fully-connected layer with 256 nodes and
a dropout layer with a dropout rate of 0.2. We used the ReLU activation function for both models. In addition to the FCN
and CNN, we tested a randomly initialized transformer encoder neural network with a similar architecture as METL-Local.
Unlike METL-Local, this randomly initialized version was set up with a single output node corresponding to the experimental
functional score instead of multiple output nodes corresponding to Rosetta scores.

We trained the FCN, CNN, and randomly initialized METL-Local for 500 epochs using the AdamW optimizer with a base
learning rate of 0.001. We applied a learning rate scheduler with linear warm-up and cosine decay, with a warm-up period
of 2% of the total training steps. Additional AdamW hyperparameters were set as follows: weight_decay = 0.1, β1 = 0.9,
β2 = 0.999, and ε = 1e−8. We used a batch size of 128 and mean squared error loss. We applied gradient norm clipping with
a max norm of 0.5. Similar to METL-Local finetuning, we selected the model from the epoch with the lowest validation loss
when the validation set size was ≥ 32. Otherwise, we used the model from the last epoch of training.

We evaluated Rosetta’s total score as a standalone, unsupervised prediction, as well as an additional input feature for
linear regression, which we refer to as Linear-RTS. By default, the lower Rosetta’s total score, the more stable the structure is
predicted to be. Thus, when using Rosetta’s total score as an unsupervised prediction, we multiplied it by -1 before computing

16/54

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2025. ; https://doi.org/10.1101/2024.03.15.585128doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.15.585128
http://creativecommons.org/licenses/by/4.0/


correlation with the experimental functional score. We also tested Rosetta’s total score as part of a supervised learning
framework. Linear-RTS is identical to Linear, but it uses Rosetta total score as an additional input feature in combination with
the one hot encoded sequence in an augmented regression setting [17]. We standardized the total score for use as an input
feature by first calculating its mean and standard deviation in the train set. Then, we subtracted the mean and divided by the
standard deviation.

Comparison to ESM-2
We used the ESM-2 [19] 35M parameter model with identifier esm2_t12_35M_UR50D as our default ESM model so
that the comparisons with the 20M parameter METL-Global model would primarily emphasize their different pretraining
strategies rather than model size. We incorporated several additional layers to match the METL architecture, including a global
mean pooling layer, a dropout layer with dropout rate 0.5, and a linear prediction head. We attached these additional layers
immediately after layer 12. We trained the ESM-2 models using the same training procedures we used for the METL models. We
also explored feature extraction with larger 150M and 650M parameter ESM-2 models (identifiers esm2_t30_150M_UR50D
and esm2_t33_650M_UR50D). For these larger models, we attached the additional layers after layers 30 and 33, respectively.

Comparison to RaSP
We compared METL to RaSP [87] using the pre-trained model weights for both the cavity model and downstream models shared
by the authors on their GitHub repository (https://github.com/KULL-Centre/_2022_ML-ddG-Blaabjerg).
RaSP is a relevant comparison to METL since it is trained on ∆∆G values predicted using the Rosetta cartesian_ddg
protocol [87]. Since RaSP is a point mutation stability predictor, it is not designed to handle mutants with multiple mutations
(multi-mutants). After consulting with the authors, we adapted RaSP to handle multi-mutants by assuming an additive effect
for each mutation in multi-mutants. As a result, we scored multi-mutants by scoring each point mutation individually and
adding their scores. We used default parameters to extract the atomic environment for each mutant. After extracting the atomic
environment, we used RaSP’s cavity model to get a vectorized representation of the atomic environment followed by the
ensemble of downstream models to predict the stability effect of a variant. We used RaSP in a zero-shot setting, i.e. we did
not finetune the model on examples from our target experimental dataset. Lastly, the authors note that RaSP is neither trained
nor evaluated on disulfide-bonded cystine residues since they cannot be predicted using the Rosetta protocol used to generate
RaSP’s training data [16]. Since the goal of our evaluations was to test how well models predict protein functions measured by
the various assays, we do not filter our test data based on this criteria.

Comparison to EVE
We obtained multiple sequence alignments (MSAs) for GB1, Ube4b, GFP, and Pab1 from the EVcouplings web server [147] in
March 2023. We obtained MSAs for TEM-1, GRB2, and DLG4 in July 2023 and for PTEN in September 2024. We queried
the UniRef100 database with search parameters consistent with those in EVMutation [148]: a position sequence filter of 70
percent, a sequence fragment filter of 50 percent, 100 percent removal of similar sequences, and 80 percent down weighting
of similar sequences. We started our bitscore value at 0.5 bits per residue. If we did not have 80 percent sequence coverage,
we increased the threshold by 0.05 bits per residue until the constraint was satisfied. If the number of effective sequences in
the alignment was less than 10 times the length of the protein, we decreased the bits per residue until the requirement was
satisfied. We prioritized the number of effective sequences objective if the two were in conflict. We trained EVE using the
default training parameters of 40,000 training iterations, sampling 20,000 evolutionary indices, and a default theta reweighting
value of 0.2 to preprocess the MSA. We made mutation effect predictions for every position in the sequence by capitalizing all
amino acids in the MSA.

In addition to using EVE as a standalone zero-shot method, we incorporated the EVE score into a supervised learning
model. We selected EVE for augmented regression instead of the models evaluated by Hsu et al. [17] because EVE outperforms
them in ProteinGym’s zero-shot substitution deep mutational scanning evaluation [51], therefore providing a stronger baseline.
The augmented regression model Linear-EVE is identical to the Linear model described above, but it uses the EVE score as an
additional input feature in combination with the one hot encoded protein sequence. We standardized the EVE score for use as
an input feature by first calculating its mean and standard deviation in the train set. Then, we subtracted the mean and divided
by the standard deviation.

Comparison to ProteinNPT
We ran the full ProteinNPT [18] pipeline, including the optional step of computing zero-shot fitness predictions with MSA
Transformer [149] and incorporating them as auxiliary labels. The authors state this optional step helps improve performance,
especially for position extrapolation. We followed the instructions from the ProteinNPT GitHub repository (https://
github.com/OATML-Markslab/ProteinNPT) and used the model configuration defined in PNPT_final.json.
This configuration specifies the MSA Transformer model with identifier esm_msa1b_t12_100M_UR50S as the sequence
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embedding model and 10,000 total training steps. We used the same MSAs obtained from the EVCouplings web server that we
used for EVE (see above).

Calculating predicted epistasis
For the GB1 epistasis analysis, we computed predicted epistasis using the pretrained METL-Local GB1 model. Let score(S)
denote the model-predicted Rosetta total_score for variant S, and let wt_score denote the predicted total_score for the wild-type
sequence. For each possible single and double variant, we first computed its effect relative to wild type:

w(S) = score(S)−wt_score.

Then, we computed epistasis as:

E(S) = w(S)− ∑
m∈S

w(m),

where m represents each single mutation in variant S. To compute pairwise positional epistasis, we calculated the mean absolute
epistasis across all variants with mutations in the given pair of positions.

GFP sequence design
We finetuned a pretrained METL-Local model on 64 randomly sampled variants from the GFP dataset. The selected variants
had 1 to 11 mutations, and their experimental score distribution was bimodal (Fig. S18), similar to the distribution of the
full GFP dataset. We refer to the finetuned METL-Local GFP model in this low-N setting as METL-L-GFP. We inspected
the extrapolation behaviors of the METL-L-GFP model for increasing number of mutations. For increasing numbers of
mutations selected with simulated annealing, the predicted brightness approximately stabilized at a positive value (Fig. S24), in
contrast to what has been observed in convolutional neural networks [150]. Conversely, for increasing numbers of randomly
selected mutations, the predicted brightness stabilized at a negative value (Fig. S25). That the predicted scores did not continue
to increase positively or negatively with the number of mutations was a basic verification of the METL-L-GFP model’s
extrapolation properties.

We performed in silico optimization with METL-L-GFP to design a total of 20 variants distributed evenly across 4 different
design criteria. These criteria are the product of 2 primary design categories: the number of mutations (either 5 or 10) and the
constraints on mutation selection (either Observed or Unobserved). In the Observed constraint, the designed sequences contain
only amino acid substitutions found in the 64-variant training set. Conversely, in the Unobserved constraint, the designed
sequences exclude any amino acid substitutions found in the 64-variant training set. The combinations of these categories
resulted in the 4 design criteria: Observed 5-mutant, Unobserved 5-mutant, Observed 10-mutant, and Unobserved 10-mutant.
We designed 5 sequences for each criterion, resulting in a total of 20 designed sequences.

To perform the in silico optimization, we ran simulated annealing 10,000 times for each design criterion. For each simulated
annealing run, we changed the random seed and executed the Monte Carlo optimization for 10,000 steps. Each step consisted
of suggesting a mutation for the currently sampled variant and deciding whether to accept the new variant according to the
Metropolis-Hastings criteria. We decreased the optimization temperature according to a logarithmic gradient beginning at 101

and ending at 10−2. The initial temperature was chosen by randomly sampling 10,000 variants, predicting their brightness
with METL-L-GFP, and calculating the absolute value of the difference between the lowest and highest predicted brightness,
rounded to the nearest power of 10. The final temperature was determined by calculating the absolute value of the smallest
difference in predicted brightness between any two variants in the 64 variant training set, rounded to the nearest power to 10.
The initial temperature encouraged acceptance of all variants, while the final temperature meant that only variants better than
the current ones would be accepted.

The simulation began by randomly selecting a variant with the necessary number of mutations depending on the design
criterion. We determined how many mutations to change at each step by sampling from a Poisson distribution. To generate
a new variant from an existing one, we first determined the difference between the number of mutations to change and the
maximum allowable mutations, which indicated the number of current mutations to keep, m. We randomly sampled which m
mutations to keep, and reset the other mutations to wild type. Subsequently, we compiled all feasible single mutations of the
sequence with the m existing mutations and randomly sampled new mutations without replacement until the variant mutation
count reached the maximum allowable mutations.

The optimization process described above yielded 10,000 designs for each criterion, which we downsampled to 5 designs
for each criterion via clustering. Our downsampling approach prioritized diversity and was predicated on the idea that repeated
convergence to similar sequences may correlate with higher true fitness values, as these regions of the fitness landscape would
have broader peaks and allow more room for error in the model predictions or optimization process. We clustered the 10,000
designs using scikit-learn’s agglomerative clustering with complete linkage and a BLOSUM62-based distance metric. Because
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selecting 10, 20, or 50 clusters did not substantially impact the diversity of the selected mutations, we chose 20 clusters. We
then removed clusters that contained less than 100 sequences, which represented 1% of the simulated annealing solutions.

To select 5 (or 10) clusters from those remaining, we employed an iterative, greedy approach. We identified a representative
sequence for each cluster, choosing the one with the lowest average BLOSUM62-based distance to all other sequences within
the same cluster. To initialize, we selected the largest cluster. We then proceeded iteratively, selecting additional clusters one at
a time. In each iteration, we calculated the distances between the representative sequences of the already selected clusters and
the remaining unselected clusters. We selected the cluster with the largest mean distance to the already selected clusters to
promote sequence diversity. The GFP sequence designs were the representative sequences from the selected clusters.

To generate the baseline random GFP variants, we used two different random sampling algorithms corresponding to the
different design criteria. For the Observed random variants, we randomly sampled individual mutations without replacement
from the 209 unique mutations in the training set. For the Unobserved random variants, we randomly sampled individual
mutations without replacement from all other all possible mutations excluding those 209 in the training set.

Cloning and experimental validation of GFP variants
We modeled our expression system on that used in Sarkysian et al. [36], which uses a pQE-30 vector (Qiagen) to express GFP
as a fusion protein with mKate2. To generate the expression construct, we used the vector backbone from a related pQE-30
system that expresses KillerOrange (Addgene 74748) and ordered the mKate2-GFP fusion protein as a gene fragment from
Twist Biosciences. We first removed a BsaI restriction site in the AmpR gene from the backbone using site directed mutagenesis
(NEB M0554S) and then used Golden Gate cloning to replace KillerOrange with the fusion protein. We incubated (1 hr, 37
C) the backbone and insert with BsaI (15 U, NEB: R3733), T4 Ligase (1,000 U, NEB M0202), and T4 Ligase Buffer (NEB
B0202) to assemble the vector. The assembly was cleaned up with a PCR Clean and Concentrate column (Zymogen D4003)
and transformed into in-house DH5a cells. Plasmid stock was purified from an overnight culture starting from a single colony
using a Qiagen Miniprep kit (Qiagen 27104), and the vector was on-boarded with Twist Biosciences. All GFP variants were
ordered as clonal genes from Twist Biosciences wherein the wild-type GFP sequence was replaced with the variant sequence.
For each variant, the nucleotide sequence was kept the same as the wild-type sequence except at mutated residues. We selected
new codons for mutated residues based on an E. coli codon usage index [151] to mitigate poor expression due to rare codons.

Clonal genes ordered from Twist Biosciences were transformed into NEBExpress Iq Competent E. coli (NEB C3037I)
cells and plated on Luria Broth (LB) plates with carbenecillin selection (0.1 mg/mL). Proteins were expressed as previously
described in Sarkysian et al. [36]. Briefly, freshly plated transformants were incubated overnight at 37 ◦C and then moved to 4
◦C the following day. After 24 hours, plates were washed with 4 mL LB and normalized to 1 OD. This wash was used to create
triplicate expression cultures where protein expression was induced for 2 hours with 1 mM IPTG at 23 ◦C. An empty pQE-30
vector was used as a negative expression control.

To prepare cultures for fluorescence measurement, expression cultures were pelleted (3,000xg, 5 mins) and re-suspended in
sterile 1X PBS to a concentration of 1 OD. Cells were diluted 2-fold into 96-well plates to measure fluorescence and culture
density. Measurements were taken with either the Tecan Spark 10M or the Tecan Infinite M1000 Pro. Measurements for GFP
(ex. 405 nm, em. 510 nm), mKate2 (ex. 561 nm, em. 670 nm), and OD600 (abs. 600 nm) were collected.

Relative brightness was reported as the ratio of GFP fluorescence to mKate2 fluorescence averaged across replicates. First,
raw fluorescent measurements were normalized to cell density by dividing by the sample’s OD600 value. The background
fluorescence signal was subtracted out of each sample. The background fluorescence signals for GFP and mKate2 were
measured from negative control cells containing no fluorescent protein. A sample’s relative brightness was calculated for each
sample by dividing the normalized background-subtracted GFP fluorescence by the normalized background-subtracted mKate2
fluorescence. All fluorescent values were normalized to wildtype avGFP.

Visualizations
We used FreeSASA [152] to compute relative solvent accessibility (RSA), which was used to color the points in Figures 5d,
S14, and S15. We used Multidimensional Scaling (MDS) from scikit-learn to visualize GFP designs in Figure 7b. MDS is a
dimensionality reduction technique that preserves relative distances between observations [153]. We used Hamming distance
between sequences, which had the effect of making variants show up in concentric circles around the wild-type sequence based
on the number of mutations from wild-type.

Data availability
Pretrained METL models are available at doi:10.5281/zenodo.11051644. Rosetta simulation datasets are available at
doi:10.5281/zenodo.10967412. Additional data is available at https://github.com/gitter-lab/metl-pub (archived at
doi:10.5281/zenodo.10819536).
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Code availability
We provide a collection of METL software repositories to reproduce the results of this manuscript and run METL on new data:

• https://github.com/gitter-lab/metl for pretraining and finetuning METL PLMs along with links to all notebooks (archived
at doi:10.5281/zenodo.10819483)

• https://github.com/gitter-lab/metl-sim for generating biophysical attributes with Rosetta (archived at
doi:10.5281/zenodo.10819523)

• https://github.com/gitter-lab/metl-pretrained for making predictions with pretrained METL PLMs (archived at
doi:10.5281/zenodo.10819499)

• https://github.com/gitter-lab/metl-pub for additional code and data to reproduce these results (archived at
doi:10.5281/zenodo.10819536)

• https://huggingface.co/gitter-lab/METL for a Hugging Face wrapper for the METL models and a link to the Hugging
Face Spaces demo

All code is available under the MIT license.

Unique biological materials
All unique biological materials are available upon request from the authors.
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Supplementary Information: Biophysics-based protein language models for protein
engineering

Sam Gelman, Bryce Johnson, Chase Freschlin, Arnav Sharma, Sameer D’Costa, John Peters, Anthony
Gitter, Philip A. Romero

Figure S1. Performance of pretrained METL source models in predicting Rosetta scores. This figure shows Spearman
correlations between true and predicted Rosetta scores for each of the 55 Rosetta score terms. (a) Correlation of METL-Local
models predicting Rosetta biophysical attributes for the protein-specific pretraining data test sets. (b) Correlation of
METL-Global in predicting Rosetta scores for protein variants originating from in-distribution base PDBs (those included in
METL-Global pretraining) and out-of-distribution base PDBs (those not included). We show the mean Spearman correlation
across base PDBs. To evaluate in-distribution PDBs, we used variants in the pretraining data test set. To evaluate
out-of-distribution PDBs, we used variants from the deep mutational scanning datasets included in this study. METL-Global
performs substantially better for in-distribution PDBs, suggesting there is overfitting to the PDBs present in the training data.
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Figure S2. METL-Global amino acid embeddings We applied principal component analysis (PCA) to reduce the
METL-Global length 512 amino acid embeddings down to 2 dimensions, capturing 33% of the variance in data. This scatter
plot of the 2-dimensional amino acid embeddings is annotated with amino acid properties. METL-Global groups amino acids
with similar biochemical properties in the embedding space, like protein language models (PLMs) trained on millions of
natural protein sequences [1].
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Figure S3. Relationship between METL-Local performance and the relatedness of Rosetta and experimental scores.
The figure displays a series of scatterplots showing the relationship between METL-Local performance and the relatedness of
Rosetta and experimental scores, across multiple experimental datasets and training set sizes. The x-axis shows the Spearman
correlation between Rosetta total score and the experimental functional score for the entire dataset, representing the similarity
between the Rosetta total score and the experimental functional score. The y-axis shows the METL-Local performance for the
respective training set size, as determined by the Spearman correlation on the test set. As the similarity between Rosetta total
score and the experimental functional score increases, so does the METL-Local performance, at least for small training set
sizes. However, with increasing experimental training set sizes, the similarity between Rosetta total score and experimental
functional score becomes less important to the METL-Local performance, suggesting a shift in METL-Local away from the
Rosetta pretraining data and more toward the experimental finetuning data.
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Figure S4. Regime extrapolation for GFP and Ube4b datasets. The GFP and Ube4b datasets contain variants with higher
order mutations, enabling us to test two types of regime extrapolation: Train 1 and Train 1+2. The bar plots (left) show the
counts of variants with the specified number of mutations for each dataset. The strip plots (right) show the performance of
regime extrapolation for Train 1, where we train on single substitution variants and evaluate on variants with 2+ substitutions,
and Train 1+2, where we train on variants with single or double substitutions, and evaluate on variants with 3+ substitutions.
The strip plots show the performance of 9 test set replicates, and the red vertical line denotes the median.
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Figure S5. Performance of METL-Local with and without pretraining. These plots show the correlation performance of
Linear, METL-Local (random init), and METL-Local. METL-Local (random init) is a model with the same architecture as
METL-Local but without pretraining on Rosetta scores. (a) The learning curves show that METL-Local (random init)
substantially underperforms both Linear and pretrained METL-Local, emphasizing the impact pretraining on Rosetta scores has
on this transformer-based architecture. Given enough experimental training data, METL-Local (random init) converges to the
performance of the other models for most datasets. (b) METL-Local (random init) outperforms Linear for position
extrapolation due to the fact that Linear is not able to perform position extrapolation but is substantially worse than
METL-Local. For the other types of extrapolation, METL-Local (random init) performs about the same or worse than Linear.
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Figure S6. Performance of baseline models directly using Rosetta total score. Rosetta total score is the score term from
Rosetta with no supervised training on experimental data. Linear-RTS is a linear ridge regression model trained on
experimental data with one hot encoding features augmented with the Rosetta total score as an additional input feature. Both of
these models require running Rosetta to compute the total score for every variant, even during inference. For comparison, this
figure also shows the performance of Linear and METL-Local. (a) For small training set sizes, incorporating Rosetta total score
as an additional input feature for ridge regression greatly improved performance over solely using one hot encoding features, as
demonstrated by the difference in performance between Linear and Linear-RTS. While Linear-RTS sometimes matched
METL-Local’s performance and even exceeded it on the GRB2-A dataset, METL-Local still outperformed Linear-RTS on
average by a small amount and is much faster. (b) METL-Local outperformed Linear-RTS across most datasets and
extrapolation tasks. The performance differences were sometimes substantial, such as for position extrapolation with GB1. In
other cases, the performance differences were much smaller, such as for regime extrapolation. This analysis does not use all of
the deep mutational scanning datasets.
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Figure S7. Performance of additional baseline models. Correlation performance of Linear, fully-connected networks (FC),
sequence convolutional networks (CNN), and METL-Local. (a) METL-Local has strong advantages over the fully-connected
network and CNN on nearly every dataset. The CNN performed about the same as Linear across different sized training sets.
The fully-connected network typically performed about the same or worse than Linear, especially for mid-size training sets. (b)
METL-Local exhibits much better position extrapolation capabilities than all three baseline models as well as substantially
better GFP regime extrapolation. This analysis does not use all of the deep mutational scanning datasets.
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Figure S8. Performance of one-dimensional and three-dimensional relative position embeddings. This figure shows the
performance of METL-Local and METL-Global with one-dimensional (1D) sequence-based and three-dimensional (3D)
structure-based relative position embeddings. (a) Learning curves showing Spearman correlation between true and predicted
scores across a range of training set sizes. (b) Spearman correlation between true and predicted scores for position, mutation,
score, and regime extrapolation. Overall, METL-Local does not benefit much from three-dimensional embeddings over
one-dimensional, while METL-Global shows consistent improvement with the three-dimensional embeddings. This analysis
does not use all of the deep mutational scanning datasets.

35/54

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2025. ; https://doi.org/10.1101/2024.03.15.585128doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.15.585128
http://creativecommons.org/licenses/by/4.0/


S
p

ea
rm

an
S

p
ea

rm
an

Experimental train size Experimental train sizeExperimental train size
101 102 103 104 101 102 103 104101 102 103 104

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

S
p

ea
rm

an

0.00

0.25

0.50

0.75

1.00
a

S
p

ea
rm

an
S

p
ea

rm
an

0.0

0.5

1.0

0.0

0.5

1.0

b

Avg GFP DLG4 GB1 GRB2-A GRB2-B Pab1 TEM-1 Ube4bAvg GFP DLG4 GB1 GRB2-A GRB2-B Pab1 TEM-1 Ube4b

Avg GFP DLG4 GB1 GRB2-A GRB2-B Pab1 TEM-1 Ube4bAvg GFP DLG4 GB1 GRB2-A GRB2-B Pab1 TEM-1 Ube4b

Linear METL-L (FT) METL-L (EX) METL-G (FT) METL-G (EX) ESM-2 (FT) ESM-2 (EX)

Average

Pab1

GB1

Ube4b

GRB2-B

DLG4

TEM-1

GRB2-A

GFP

Position Mutation

Score Regime

Figure S9. Performance of PLM finetuning and feature extraction. This figure shows the performance of METL-Local,
METL-Global, and ESM-2 with both finetuning (FT) and feature extraction (EX). To perform feature extraction, we saved
outputs from the appropriate internal layer of each model and then used those features as inputs to train linear ridge regression.
Finetuning consistently outperformed feature extraction for METL-Local and METL-Global across (a) different training set
sizes and (b) extrapolation tasks. For ESM-2, there were several instances where feature extraction substantially outperformed
finetuning when applied to (a) small training set sizes, namely for the DLG4, GRB2-B, Pab1, and TEM-1 datasets. Notably, the
performance of ESM-2 feature extraction exceeded the performance METL-Local finetuning for DLG4 and Pab1 with the
smallest training set sizes. For (b) extrapolation tasks, ESM-2 finetuning generally performed better than feature extraction.
This analysis does not use all of the deep mutational scanning datasets.
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Figure S10. Feature extraction performance of ESM-2 models with 35M, 150M, and 650M parameters. (a) Across the
range of training set sizes, the 150M parameter model consistently outperformed the 35M parameter model, with the exception
of the DLG4 dataset, where the 35M parameter model performed better. Surprisingly, for small training set sizes, the 650M
parameter model performed worse than both the 35M and 150M parameter models with the GFP, DLG4, and Pab1 datasets. For
larger training set sizes, the 650M parameter model offered some improvement over the 35M and 150M parameter models with
the GB1, GRB2-A, and GRB2-B datasets. However, in all cases Linear was the best model with larger datasets. (b) Across
extrapolation tasks, the 35M parameter model tended to perform worse than the 150M and 650M parameter models. The 650M
parameter model often performed the best, but not in all instances, and the differences between the models were minor in some
cases. The Linear baseline was better than the feature extraction ESM-2 models on average for score and regime extrapolation.
This analysis does not use all of the deep mutational scanning datasets.
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Figure S11. Performance of METL-Global with 20M and 50M parameters (a) Across different training set sizes, the 50M
parameter model performed similarly to the 20M parameter model on average. (b) For position, mutation, and regime
extrapolation, the 50M parameter model performed slightly better on average than the 20M parameter model. For score
extrapolation, the two models performed similarly on average. This analysis does not use all of the deep mutational scanning
datasets.
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Figure S12. Performance of METL-Global source models predicting Rosetta total score. This figure shows the
performance of 20M and 50M parameter METL-Global source models on predicting Rosetta total score for both in-distribution
and out-of-distribution PDBs. In-distribution PDBs are the 148 PDBs that were used as part of the METL-Global pretraining
data, while out-of-distribution PDBs consist of the experimental dataset PDBs, which were not used for METL-Global
pretraining. The 50M parameter METL-Global model overfits more than the 20M parameter model when predicting Rosetta
total score on in-distribution PDBs, and it generalizes worse to out-of-distribution PDBs.
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Figure S13. Relationships between experimental and simulated data quantities. These contour plots illustrate the test set
Spearman’s correlation resulting from training METL-Local with varying amounts of simulated (pretraining) and experimental
(finetuning) data. The plots display a grid of Spearman’s correlation values corresponding to discrete combinations of
experimental and simulated dataset sizes.
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Figure S14. METL attention maps and residue representations for GFP, DLG4, and GRB2. The residue distance matrix
shows Cβ distances between residues for the wild-type structure. The attention maps show the mean attention across layers and
attention heads for the wild-type sequence when it is fed as input to the pretrained METL-Local model. The residue-wise
representations show the principal component analysis (PCA) of the residue representations output by the pretrained
METL-Local model, averaged across the 20 possible amino acids at each sequence position. Points are colored according to
relative solvent accessibility (RSA) computed from the wild-type structure.
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Figure S15. METL attention maps and residue representations for Pab1, TEM-1, and Ube4b. The residue distance
matrix shows Cβ distances between residues for the wild-type structure. The attention maps show the mean attention across
layers and attention heads for the wild-type sequence when it is fed as input to the pretrained METL-Local model. The
residue-wise representations show the principal component analysis (PCA) of the residue representations output by the
pretrained METL-Local model, averaged across the 20 possible amino acids at each sequence position. Points are colored
according to relative solvent accessibility (RSA) computed from the wild-type structure.
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Figure S16. Pairwise correlations between GB1 DMS score and Rosetta scores. Heatmap showing pairwise Spearman
correlations between the GB1 experimental functional score (DMS Score) and Rosetta score terms. Rosetta scores are color
coded, with green representing all-atom REF15 scores, blue representing filter scores, orange representing centroid score3
scores, and red representing InterfaceAnalyzer binding scores. Correlations were computed using the GB1 DMS variants.
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Figure S17. METL-Local and METL-Bind performance for individual training replicates. These scatterplots show the
METL-Local and METL-Bind Spearman correlation performance for individual training replicates across different
experimental dataset sizes and extrapolation tasks. The text indicates the percentage of replicates where METL-Bind performs
better (upper left) or METL-Local performs better (lower right). For dataset sizes with at least 7 replicates (n ≥ 7), the plots are
annotated with the p-value from a paired t-test, which evaluates whether the observed differences in mean performance between
the two methods are statistically significant. These statistical tests confirm that METL-Bind’s improvements over METL are
statistically significant (p ≤ 0.01) across all training set sizes with n ≥ 7 and for regime and score extrapolation even though
the effect size can be small.
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Figure S18. Score distribution of the 64 GFP variants. The 64 GFP variants randomly selected for METL-L-GFP training
were split by score into three bins for visualization purposes. The bins were manually defined based on one threshold
separating the two main modes of the distribution and another at the wild type score of 0. There are only eight variants in the
bin with positive scores. The score represents the variant’s brightness.
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Figure S19. The positions of all 209 unique mutations for the 64 GFP variants The mutations are divided using the same
binning procedure and bin labels as Fig. S18. If there were multiple mutations at a position within a bin, it is marked with a
numeric label. White indicates that no mutation is present at that position. A bar with no numeric label indicates there is only
one mutation present at that position.
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Figure S20. The 20 engineered GFP variants. Each row corresponds to a variant, where if a mutation was made it is shown
in bold at the corresponding sequence position. O5 corresponds to Observed 5 mutant designs, U5 Unobserved 5 mutants, O10
Observed 10 mutants, and U10 Unobserved 10 mutants. The wild-type GFP sequence is shown in the top row.
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Figure S21. METL predictions for experimentally characterized GFP variants. METL-Local score predictions are
shown for both METL-derived and random GFP variants that we experimentally characterized. Predictions from METL-Local
models using 1D and 3D relative position embeddings are included. Stars represent predicted scores for the full 5- or
10-mutation variants, whereas black dots indicate the predicted scores for the single-mutation variants that compose these
multi-mutation designs. BT represents the METL-Local training set variant with the highest assay score from the DMS dataset.
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Figure S22. Experimental GFP and mKate2 fluorescence for engineered GFP variants. We expressed the GFP variants
as fusion proteins with mKate2. The mKate2 sequence remained constant across the different GFP variants. These plots show
GFP and mKate2 fluorescence normalized to optical density and with background fluorescence in negative control subtracted
out. The best training set sequence (BT) and the wild-type sequence (WT) are included. Variants are colored according to
whether they exhibited GFP fluorescence. Multiple replicates are shown. Because the mKate2 sequence remained constant,
variation in mKate2 fluorescence may be due to changes in GFP stability.

47/54

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2025. ; https://doi.org/10.1101/2024.03.15.585128doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.15.585128
http://creativecommons.org/licenses/by/4.0/


Figure S23. Correlation between DLG4 and DLG4-2021 dataset scores for 3,825 intersecting variants. These datasets
both assayed PSD-95 PDZ3 binding to CRIPT, yet they disagree on scores, suggesting differences in methodology. We used
DLG4 in our main analysis.
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Figure S24. Distribution of METL-L-GFP predicted brightness of best variant found when increasing number of
optimized mutations. We ran simulated annealing at different mutational distances from wild type using the same procedure
used to design the 20 GFP variants with one exception. Instead of running simulated annealing 10,000 times for each mutation
distance, we only ran it 100 times. The distribution of METL-L-GFP predicted brightness scores does not continue to increase
as the number of mutations increases.
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Figure S25. Distribution of METL-L-GFP predicted brightness for increasing number of random mutations. For each
mutational distance from wild type, we randomly selected 10,000 variants and calculated their predicted brightness scores. At
higher mutational distances, METL-L-GFP predicts lower brightness scores. However, the predicted brightness scores stabilize
and do not continue decreasing.
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Rosetta score term Description Rosetta score term Description

total_score REF15 exposed_np_AFIMLWVY Custom
fa_atr REF15 exposed_polars Custom
fa_dun REF15 exposed_total Custom
fa_elec REF15 one_core_each Custom
fa_intra_rep REF15 pack Custom
fa_intra_sol_xover4 REF15 res_count_buried_core Custom
fa_rep REF15 res_count_buried_core_boundary Custom
fa_sol REF15 res_count_buried_np_core Custom
hbond_bb_sc REF15 res_count_buried_np_core_boundary Custom
hbond_lr_bb REF15 ss_contributes_core Custom
hbond_sc REF15 ss_mis Custom
hbond_sr_bb REF15 total_hydrophobic Custom
lk_ball_wtd REF15 total_hydrophobic_AFILMVWY Custom
omega REF15 total_sasa Custom
p_aa_pp REF15 two_core_each Custom
pro_close REF15 unsat_hbond Custom
rama_prepro REF15 centroid_total_score Centroid
ref REF15 cbeta Centroid
yhh_planarity REF15 cenpack Centroid
buried_all Custom env Centroid
buried_np Custom hs_pair Centroid
contact_all Custom pair Centroid
contact_buried_core Custom rg Centroid
contact_buried_core_boundary Custom rsigma Centroid
degree Custom sheet Centroid
degree_core Custom ss_pair Centroid
degree_core_boundary Custom vdw Centroid
exposed_hydrophobics Custom

Table S1. Rosetta score terms. The Rosetta score terms used to train METL.

50/54

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2025. ; https://doi.org/10.1101/2024.03.15.585128doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.15.585128
http://creativecommons.org/licenses/by/4.0/


PDB Len

1A3A 148
1A6M 151
1A70 97
1AAP 58
1ABA 87
1AG6 99
1AOE 192
1ATL 202
1ATZ 189
1AVS 90
1BDO 80
1BEB 162
1BEH 187
1BKR 109
1BRF 53
1BSG 266
1C44 123
1C52 131
1C9O 66
1CC8 73
1CHD 203
1CJW 166
1CKE 227
1CTF 74
1CXY 90
1CZN 169
1D0Q 103
1D1Q 161
1D4O 184
1DBX 158
1DIX 208
1DLW 116
1DMG 225
1DQG 135
1DSX 87
1EAZ 125
1EJ0 180

PDB Len

1EJ8 140
1EK0 170
1F6B 198
1FCY 236
1FK5 93
1FL0 171
1FNA 91
1FQT 112
1FVG 199
1FVK 189
1FX2 235
1G2R 100
1G9O 91
1GBS 185
1GMI 136
1GMX 108
1GUU 52
1GZ2 142
1GZC 239
1H0P 182
1H2E 207
1H4X 117
1H98 78
1HDO 206
1HFC 169
1HH8 213
1HTW 158
1HXN 219
1I1J 108
1I1N 226
1I4J 110
1I58 189
1I5G 144
1I71 83
1IHZ 149
1IIB 106
1IM5 180

PDB Len

1IWD 215
1JBK 195
1JFU 186
1JFX 217
1JKX 212
1JL1 155
1JO0 98
1JO8 58
1JOS 128
1JVW 167
1JWQ 179
1JYH 157
1K6K 143
1K7C 233
1K7J 206
1KID 203
1KQ6 141
1KQR 179
1KTG 138
1KU3 73
1KW4 89
1LM4 194
1LO7 141
1LPY 164
1M4J 142
1M8A 70
1MK0 97
1MUG 168
1NB9 147
1NE2 200
1NPS 88
1NRV 105
1NY1 240
1O1Z 234
1P90 145
1PCH 88
1PKO 139

PDB Len

1QF9 194
1QJP 171
1QL0 241
1R26 125
1ROA 122
1RW1 114
1RW7 243
1RYB 205
1SMX 96
1SVY 114
1T8K 77
1TIF 78
1TQG 105
1TQH 247
1TZV 142
1VFY 73
1VHU 211
1VJK 98
1VMB 140
1VP6 138
1W0H 204
1WHI 122
1WJX 122
1WKC 184
1XDZ 240
1XFF 240
1XKR 206
2ARC 164
2CUA 135
2HS1 99
2MHR 118
2PHY 125
2TPS 227
2VXN 251
3BOR 237
3DQG 151
5PTP 223

Table S2. METL-Global training PDBs. The 148 base PDBs used for the METL-Global simulated pretraining data and their
sequence lengths.

Description Organism Molecular function Selection Length Variants Ref.

GFP Green fluorescent protein A. victoria Fluorescence Brightness 237 51714 [2]
DLG4-A Postsynaptic density protein 95 PDZ3 domain H. sapiens Synaptic organization Abundance 84 6976 [3]
DLG4-B Postsynaptic density protein 95 PDZ3 domain H. sapiens Synaptic organization CRIPT binding 84 8251 [3]
GB1 Protein G B1 domain Streptococcus sp. Antibody binding IgG-Fc binding 56 536084 [4]
GRB2-A Growth factor receptor-bound protein 2 SH3 domain H. sapiens Signaling adaptor Abundance 56 63366 [3]
GRB2-B Growth factor receptor-bound protein 2 SH3 domain H. sapiens Signaling adaptor GAB2 binding 56 33441 [3]
Pab1 Pab1 RNA recognition motif (RRM) domain S. cerevisiae Poly(A) binding mRNA binding 75 37710 [5]
PTEN-A Phosphatase and tensin homolog H. sapiens Lipid phosphatase Abundance 403 4387 [6]
PTEN-E Phosphatase and tensin homolog H. sapiens Lipid phosphatase Lipid phosphatase activity 403 6564 [7]
TEM-1 TEM-1 β -lactamase E. coli Antibiotic hydrolysis Ampicillin resistance 286 12374 [8]
Ube4b Ubiquitination factor E4B U-box domain M. musculus Ubiquitin activation Ubiquitin ligase activity 102 88375 [9]

Table S3. Experimental datasets. We evaluated METL on experimental datasets representing proteins of varying sizes, folds,
and functions.
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Protein Eval structure Pretrain struct. RMSD TM-score Identity Aligned residues Eval len Pretrain len

DLG4 6qji_p_trunc_2022.pdb 1g9o_A_p.pdb 1.79 0.87 27% 80 84 91
GRB2 AF-P62993-F1-model_v4_trunc_p.pdb 1jo8_A_p.pdb 1.16 0.90 39% 55 56 58
GRB2 AF-P62993-F1-model_v4_trunc_p.pdb 1i1j_remod_p.pdb 1.34 0.86 23% 56 56 108
TEM-1 AF-Q6SJ61-F1-model_v4_p.pdb 1bsg_p.pdb 1.90 0.85 39% 246 286 266

Table S4. Similarity between METL-Global pretraining structures and the downstream evaluation proteins. We
clustered protein sequences and structures and used the RCSB PDB pairwise structure alignment tool to compare the
METL-Global pretraining structures with the downstream evaluation proteins. Root-Mean-Square-Deviation (RMSD) is
reported in Ångstroms. Template modeling score (TM-score) ranges from 0 to 1, with higher scores indicating stronger
similarity. Identity is the percent sequence identity.

Rosetta score term Description

complex_normalized InterfaceAnalzyer
dG_cross InterfaceAnalzyer
dG_cross/dSASAx100 InterfaceAnalzyer
dG_separated InterfaceAnalzyer
dG_separated/dSASAx100 InterfaceAnalzyer
dSASA_hphobic InterfaceAnalzyer
dSASA_int InterfaceAnalzyer
dSASA_polar InterfaceAnalzyer
delta_unsatHbonds InterfaceAnalzyer
hbond_E_fraction InterfaceAnalzyer
hbonds_int InterfaceAnalzyer
nres_int InterfaceAnalzyer
per_residue_energy_int InterfaceAnalzyer
side1_normalized InterfaceAnalzyer
side1_score InterfaceAnalzyer
side2_normalized InterfaceAnalzyer
side2_score InterfaceAnalzyer

Table S5. Binding score terms. The Rosetta binding score terms, calculated on the GB1-IgG complex structure and used in
addition to the standard score terms to train METL-Bind.
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ID Constraint # Muts Mutations

1 Observed 5 S26R,K164R,Q175L,N196Y,G226W
2 Observed 5 S26R,I126V,K164R,Q175L,D195Y
3 Observed 5 K164R,Q175L,N196Y,A204T,G226R
4 Observed 5 S26R,S70G,Q175L,G226W,Y235H
5 Observed 5 K164R,Q175L,N196Y,G226R,I227F
6 Unobserved 5 N103I,I150W,V161I,G230K,K236R
7 Unobserved 5 L42V,N162R,L176W,D195C,L219F
8 Unobserved 5 D34W,F97Y,L176R,N183V,G230R
9 Unobserved 5 I12L,S26T,Q175V,A225R,G226K
10 Unobserved 5 P11R,N103I,V161M,G230W,L234M
11 Observed 10 S26R,I121V,I126V,K164R,Q175L,N196Y,S200N,S203T,A225G,G226W
12 Observed 10 S26R,F97S,N103S,I121V,K164R,Q175L,N196Y,G226R,I227F,Y235H
13 Observed 10 S26R,S70G,D100G,K105E,I126V,Q175L,N196Y,S203T,G226R,Y235H
14 Observed 10 S26R,K39R,S70G,I126V,Q175L,S200N,S203T,A225G,G226W,I227F
15 Observed 10 S26R,K105E,I126T,E140V,K164R,Q175L,N196Y,S203T,G226W,Y235H
16 Unobserved 10 F97W,V161M,S173E,Q175Y,Q182R,S200M,A204C,L219I,V222L,G230R
17 Unobserved 10 V9I,S28R,F97Y,N103I,L176R,N183V,H197F,L219W,A225W,G230Q
18 Unobserved 10 V9R,V91M,E93W,K105R,N162R,T184V,L193M,S203Q,G230M,L234W
19 Unobserved 10 D34W,I126E,L139M,E140R,Q175V,L193F,A204W,T228S,G230N,E233Q
20 Unobserved 10 P11H,E15N,S26E,S28I,I96W,S173K,Q175M,H197F,A225R,G230R

Table S6. METL-designed GFP sequences. The METL-designed sequences in the GFP low-N design experiment.

Dataset Structure acquired from Notes Num variants
GFP RosettaCM 18,681,329
DLG4-2021 PDB: 6QJI Structure not truncated. 20,270,692

DLG4-A/B PDB: 6QJI
Structure not truncated. Dataset is based on the DLG4-2021 dataset but contains approximately
2M additional variants to cover additional residues present in the reference sequence. 22,221,845

GB1 PDB: 2QMT 12,556,374
GRB2-A/B AlphaFold DB: AF-P62993-F1-model_v4 Structure truncated to match DMS sequence. 20,294,793
Pab1 RosettaCM 19,667,539
PTEN-A/E AlphaFold DB: AF-P60484-F1-model_v4 19,832,384
TEM-1 AlphaFold DB: AF-Q6SJ61-F1-model_v4 19,441,290
Ube4b RosettaCM 19,734,229

Table S7. Rosetta datasets for METL-Local. Information about the Rosetta datasets used to train the METL-Local source
models, including PDB origin and the final number of variants in each dataset. The DLG4-2021 dataset was not used in the
main analysis.

Acquired from Files / URN / Accession Variant filtering Score transformation Ref.

GFP Paper supplement amino_acid_genotypes_to_brightness.tsv Drop variants with mutations to stop codons Normalized to WT by subtracting WT score [2]
DLG4-2021 MaveDB urn:mavedb:00000053-a Keep if (inp >= 200) or (inp > 10 and sel >= 1) N/A [10]
DLG4-Abundance NCBI GEO GSE184042 N/A Normalized to WT by subtracting WT score [3]
DLG4-Binding NCBI GEO GSE184042 N/A Normalized to WT by subtracting WT score [3]
GB1 Paper supplement mmc2.xlsx Keep if input_count + sel_count >= 5 Computed from read counts w/ Enrich2 [11] [4]
GRB2-Abundance NCBI GEO GSE184042 N/A Normalized to WT by subtracting WT score [3]
GRB2-Binding NCBI GEO GSE184042 N/A Normalized to WT by subtracting WT score [3]
Pab1 Paper supplement Supplementary tables 2 and 5 N/A Converted to log scores by taking log base 2 [5]
PTEN-Abundance Paper supplement Supplementary table 3 Keep only missense variants Normalized to WT by subtracting WT score [6]
PTEN-Activity Paper supplement Supplementary table 2 Keep high-confidence missense; drop NaN scores N/A [7]
TEM-1 Paper supplement mmc2.xlsx N/A Converted to log scores by taking log base 2 [8]
Ube4b MaveDB urn:mavedb:00000004-a-3 Drop variants with mutations to stop codons N/A [9]

Table S8. Experimental dataset preprocessing. This table specifies the experimental datasets used in this study, where we
acquired them from, and any filtering or transformations we applied to standardize the dataset format. The DLG4-2021 dataset
was not used in the main analysis.
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