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Abstract
While monoclonal antibody-based targeted therapies have substantially improved progression-free
survival in cancer patients, the variability in individual responses poses a significant challenge in patient
care. Therefore, identifying cancer subtypes and their associated biomarkers is required for assigning
effective treatment. In this study, we integrated genotype and pre-treatment tissue RNA-seq data and
identified biomarkers causally associated with the overall survival (OS) of colorectal cancer (CRC)
patients treated with either cetuximab or bevacizumab. We performed enrichment analysis for specific
consensus molecular subtypes (CMS) of colorectal cancer and evaluated differential expression of
identified genes using paired tumor and normal tissue from an external cohort. In addition, we replicated
the causal effect of these genes on OS using validation cohort and assessed their association with the
Cancer Genome Atlas Program data as an external cohort. One of the replicated findings was WDR62,
whose overexpression shortened OS of patients treated with cetuximab. Enrichment of its over expression
in CMS1 and low expression in CMS4 suggests that patients with CMS4 subtype may drive greater
benefit from cetuximab. In summary, this study highlights the importance of integrating different omics
data for identifying promising biomarkers specific to a treatment or a cancer subtype.

Introduction
While targeted therapies utilizing monoclonal antibodies have improved progression-free survival in
patients, the pursuit of more effective cancer treatments remains a top priority. What complicates this
pursuit is the diverse range of patient responses to existing therapies, which manifests as a significant
obstacle in understanding the underlying variability in clinical outcomes1. Therefore, the key to
addressing this challenge is identifying cancer subtypes and their associated biomarkers, allowing for
precision in treatment strategies and ultimately leading to enhanced patient outcomes and a
personalized approach to cancer care.

In the context of colorectal cancer (CRC), the transcriptomics-based consensus molecular subtype (CMS)
classification has been an instrument to reveal molecular signatures closely associated with prognosis
and treatment response in CRC2. This classification categorizes CRC into four CMS groups, CMS1
(microsatellite instability immune), CMS2 (canonical), CMS3 (metabolic), and CMS4 (mesenchymal),
based on the underlying biology of the disease rather than relying solely on outcomes3. Nevertheless,
several key aspects of CRC progression and response to treatment remain unresolved4. Therefore, linking
these subtypes to clinical outcomes and identifying treatment-specific biomarkers for each subtype can
hold promise in contributing to the development of targeted therapies. Ultimately, this can advance
precision medicine in the management of CRC.

Here, we analyzed data from a randomized phase III trial (CALGB/SWOG 80405) involving 1,284 patients
with KRAS wild-type advanced or metastatic CRC. These patients were treated with either cetuximab or
bevacizumab in combination with chemotherapy (FOLFOX or FOLFIRI). Cetuximab targets the epidermal
growth factor receptor (EGFR) and influences immune cells, including natural killer (NK) cells and



Page 4/15

macrophages5. In contrast, bevacizumab targets vascular endothelial growth factor (VEGF) and inhibits
tumor angiogenesis. The clinical outcomes of this study did not reveal a significant difference in overall
survival (OS) between these two treatments when used as first-line therapy6. However, given the fact that
these treatments impact distinct biological pathways, different mechanisms play roles in the response or
resistance to these therapies. Hence, it is imperative to delve into these mechanisms at the molecular
level and associate them with specific cancer subtypes.

To investigate the influence of gene expressions on treatment response, we segmented our dataset into a
discovery cohort and a validation cohort, based on the availability of gene expression data. In the
discovery cohort, comprising samples with RNA-seq data, we conducted one-sample Mendelian
randomization (MR) analysis, integrating germline genotype, RNA-seq, and treatment-specific overall
survival (OS) data. In the validation cohort, which included patients with available germline genotype
data and clinical outcomes, including OS, we performed a two-sample MR analysis to replicate the results
obtained in the discovery cohort. Furthermore, we sought to replicate our findings using external cohorts,
including The Cancer Genome Atlas (TCGA) data and the GSE146889 dataset sourced from the Gene
Expression Omnibus database. To elucidate a more precise understanding of how these biomarkers
influence treatment responses within distinct patient groups, we linked the identified biomarkers with CRC
CMS (consensus molecular subtypes). 

Results
In our investigation of treatment-specific biomarkers for CRC, we focused on cetuximab and
bevacizumab monoclonal antibodies used in the randomized phase III trial CALGB/SWOG 80405. The
trial was designed to compare cetuximab, bevacizumab, or cetuximab + bevacizumab, each plus
chemotherapy as first-line therapy in KRAS wild-type advanced or metastatic CRC. The discovery cohort
encompassed 273 patients with pre-treatment tumor primary tissue RNA-seq and germline genotype data
(Figure S1-2). The validation cohort included 602 patients with germline genotype data (Figure S1-2). In
both cohorts, we had records of OS and conducted an MR technique, one- and two-sample MR to identify
genes with causal effect on treatment-specific OS.  In one-sample MR analysis, we assessed the causal
effect of the genes associated with OS. We replicated the identified associations using TCGA data.  To
reproduce the causal impact of genes on OS, we predicted gene expression levels by germline genotype
data in the validation cohort and eQTL summary statistics from the discovery cohort7 and performed a
two-sample MR analysis. In addition, we investigated the differential expression of findings in colorectal
tumors vs. normal tissue using the GSE146889 data from the Gene Expression Omnibus database. We
finally linked the findings to CMS to investigate the genetic basis underpinning CMS3.

The analyses reviewed above were adjusted for all RAS and BRAFv600E mutation statuses along with
age and gender (Figure 1). Additionally, to enhance the precision of our findings, we accounted for the
tumor microenvironment’s influence by adjusting for enriched immune cell abundances in the RNA-seq
data.
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The effect of genes on treatment-specific OS

To identify genes with causal effect on OS, we focused on 352 genes with eQTLs7, since they are good
candidates for MR analysis. In the first step, we filtered these genes by investigating their association
with OS. Out of the 352 genes with eQTLs, 79 genes were associated with OS (p-value < 0.1), including 47
under bevacizumab treatment and 32 under cetuximab (Figure 2A, Table S1-2)). We replicated the gene-
OS associations using the TCGA data. The rate of replication was 78% and 75% for bevacizumab and
cetuximab treatments, respectively (Figure 2B). Note that the replication rate is relatively high although
the TCGA data is not a perfect replication set for the data in this study due to the higher censoring rate of
the samples (Figure S3).  

The association between genes and OS was conducted using multivariable time-variant additive hazard
regression model which relaxes the assumption of the time-invariant effect of the genes on OS and
allows for estimating the causal effects8 in the second step. Therefore, focusing on 79 genes associated
with OS in the second step, we investigated the causal associations using one-sample MR technique with
treatment-specific OS as outcomes, gene expressions as explanatory variables (exposures), and eQTLs
as instrumental variables (IVs). To evaluate the validity of eQTLs as IVs, we assessed the lack of
pleiotropic action by performing a genome-wide association study (GWAS) to find the association of the
eQTLs with OS. The eQTLs did not show any significant association with OS at a level 1×10-4, which is
much larger than the GWAS threshold (5×10-8) (Figure 2C, S4). Using the eQTLs as valid IVs, we predicted
the expression levels of genes and estimated their causal effect on OS (Methods). We identified 5 genes
with causal effect on OS (p-value < 0.05), including OSBPL1A, SEMA6C, and SCD5 under bevacizumab
treatment and WDR62 and TCEA3 under cetuximab (Figure 2D).  

Replication of the causal genes 

We reproduced the findings of one-sample MR analysis in the discovery cohort by performing a two-
sample MR in the validation cohort. Using the eQTL summary statistics in CALGB-804057 and the
genotyping data in the validation cohort, we predicted expression levels in the validation cohort. We then
estimated the effect of predicted genes on treatment-specific OS which represents the causal effect of the
corresponding genes on OS (Methods). The p-values of significant genes-OS causal associations
followed the same trend in the discovery and validation cohorts for bevacizumab vs. cetuximab, except
OSBPL1A, (Figure 3A, Table S3).  In addition, this analysis replicated that the causal effects of
WDR62 and SCD5 were significant as identified in discovery cohort.  The negative causal effect of
WDR62 on OS under cetuximab treatment (p-value: 0.008) compared to bevacizumab (p-value: 0.16) was
replicated. Similarly, the positive causal effect of SCD5 was also replicated, indicating its impact on OS
under bevacizumab (p-value: 0.075) compared to cetuximab (p-value: 0.841).

In addition, we investigated whether genes causally associated with OS show differential expression
between normal and tumor tissues. To assess this, we utilized GSE146889 data from the Gene
Expression Omnibus database9 as an external cohort, which comprise 85 paired samples from normal
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and CRC tumor tissue. We applied DESeq210 to 21,983 genes and corrected for multiple testing using
Benjamini–Hochberg method (false discovery rate (FDR) < 0.05). We observed differential expression in
OSBPL1A, SEMA6C, WDR62, and TCEA3 (Figure 3B). 

Enrichment analysis for colorectal cancer subtypes

We investigated if the causal genes are enriched in CMSs of colorectal cancer: CMS1 (MSI Immune)-
Tumors with high microsatellite instability (MSI-H) and strong immune activation; CMS2 (Canonical)-
Tumors with features of traditional CRC, characterized by WNT and MYC signaling activation; CMS3
(Metabolic)- Tumors with metabolic dysregulation and KRAS mutations; CMS4 (Mesenchymal)- Tumors
with prominent stromal infiltration, inflammation, and angiogenesis3. We dichotomized the expression
levels of the casual genes into two categories: “beneficial” and “non-beneficial.” This dichotomization
was based on the median expression level observed across all samples in our study. We then calculated
the rate of patients with “beneficial” and “non-beneficial” expression levels within each subtype. We
considered a threshold of 70%, and if over 70% of patients within a specific subtype showed either
“beneficial” or “non-beneficial” gene expression, the subtype was considered enriched for the expression
of the gene. Non-beneficial expressions of OSBPL1A and WDR62 were enriched in CMS1 (rate 76% and
81%, respectively), whereas its beneficial expression levels were enriched in CMS2 (rate 72%). The CMS3
subtype exhibits an enrichment of non-beneficial levels of TCEA3 (Rate: 83%), and the CMS4 subtype
exhibits an enrichment of beneficial expression levels of SEMA6C, SCD5, and WDR62 (Rate: 75%, 73%,
79%, respectively), (Figure 3C). The distribution of gene expressions specific to each subtype indicated an
enrichment of gene expressions causally associated with overall survival in a specific subtype (Figure
3D).

Discussion
Here, we integrated germline genotype and RNA-seq data from a randomized phase III trial and assessed
the causal effect of gene expressions on OS of patients treated with either cetuximab or bevacizumab
monoclonal antibodies. We identified 47 genes associated with OS of patients treated with bevacizumab
and 32 genes in cetuximab, where three genes OSBPL1A, SCD5, and SEMA6C showed causal effect on OS
in bevacizumab arm and two genes TCEA3 and WDR62 in cetuximab respectively. Replicating these
results using external cohort represented differential expression of OSBPL1A, SEMA6C, TCEA3, and
WDR62. We also replicated the causal effect of WDR62 and SCD5 on OS using a validation cohort with
602 additional samples.

TCEA3 (Transcription Elongation Factor A3) is a protein-coding gene that is involved in the regulation of
transcription, particularly in the elongation phase of transcription. Our study showed that the
overexpression of TCEA3 reduces the OS of patients treated with cetuximab. Additionally, more than 80%
of patients with the CMS3 subtype exhibited high expression of TCEA3. In consistence with this finding
here, the inhibition of TCEA3 is suggested as an effective agent to enhance various chemotherapeutics-
induced pyroptosis11.
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OSBPL1A (Oxysterol-Binding Protein-Like 1A) is a gene that encodes a protein involved in the transport
and regulation of lipids, specifically oxysterols. Oxysterols are oxidized derivatives of cholesterol and play
roles in various cellular processes, including cholesterol homeostasis and lipid signaling which can affect
the development and progression of various cancers, such as CRC. We observed negative impact of high
expression of this gene on the OS of patients treated with bevacizumab, which was enriched among
patients with CMS1 subtype.  

Our study revealed that the upregulation of SCD5 (Stearoyl-CoA Desaturase 5) potentially elongates OS in
patients treated with bevacizumab, which is a VEGF inhibitor. SCD5 is required for lipid synthesis, a key
regulator of energy metabolism. Dysregulation of SCD5 may play a role in dyslipidemia, characterized by
abnormal lipid levels in the blood. Furthermore, dyslipidemia has been associated with CRC and tumor
progression12. Moreover, the risk of dyslipidemia with the use of VEGF/VEGFR inhibitors has been
observed13. Therefore, understanding the interplay between SCD5, dyslipidemia, and VEGF inhibition
could yield valuable insights into CRC pathogenesis and therapeutic strategies.

Furthermore, our study showed that the overexpression of WDR62 (WD repeat domain 62) shortened the
OS of patients treated with cetuximab and may contribute to cetuximab-resistant CRC. WDR62 is a
scaffold protein involved in several important cellular processes, such as forming of the structure of the
cell nucleus, regulation of gene expression, and ensuring proper division of cells during cell division.
WDR62 coordinates TNFα receptor signaling pathway to the JNK activation14.   In addition, there is a
complex interaction between TNF  and EGFR, which is the targeted pathway of cetuximab15. WDR62 also
contributes to multidrug resistance of gastric cancer through activation of MAPK signaling16. In our
study, overexpression of WDR62 is enriched in CMS1 whereas its under expression is enriched in
CMS4. Therefore, WDR62 may be instrumental in understanding interactions between JNK signaling and
specific CRC subtypes, potentially contributing to the development of more personalized and effective
treatment strategies.

Collectively, our study underscores the utility of incorporating genotype data into gene-OS investigations
and in increasing the likelihood of discovering novel biomarkers while shedding light on unrecognized
mechanisms specific to cancer subtypes. 

Materials And Methods
Data 

Patients in this study were drawn from the Cancer and Leukemia Group B (CALGB; now a part of the
Alliance for Clinical Trials in Oncology) and SWOG 80405 (Alliance) trial. The trial was initiated in
September 2005 with a total of 2,326 patients randomized to the three treatment arms (bevacizumab,
cetuximab, or their combination in addition to chemotherapy with FOLFIRI or FOLFOX). 
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Genotyping: DNA was extracted from peripheral blood. The first genotyping batch was performed on the
Illumina HumanOmniExpress-12v1 platform at the Riken Institute (Tokyo, Japan) and included 731,412
genotyped variants. The second genotyping batch was performed on the Illumina HumanOmniExpress-
8v1 and included 964,193 SNPs. A total of 719,461 SNPs from HapMap from batch 1 were also on the
chip from batch 2. The QC was performed to remove SNPs with mismatched annotation between the two
platforms, genotyping call rates less than 99%, departure from Hardy–Weinberg equilibrium (P<10-8),
allele frequencies less than 0.05, and individuals with genotyping call rate < 0.90.  Passing the filters,
540,021 SNPs genotyped for 1,165 samples were remained17. 

Tumor RNA sequencing: Tumor RNA was extracted from formalin-fixed paraffin-embedded (FFPE) tumor
blocks (96% primary, 2% metastatic, 2% unknown) from 584 CALGB/SWOG 80405 patients at the
baseline. TruSeq RNA Access target enrichment and library preparation protocol was performed using
250 ng of template RNA. Sequencing was done using synthesis chemistry targeting 50 M reads with a
read length of 2x100 bp per sample on the HiSeq 2500. Data processing was conducted using standard
procedures18. 

Clinical outcomes and covariates: The primary endpoint of OS was calculated from the time of study
entry to death or last known follow-up for those without reported death. The median follow-up of 640
samples in bevacizumab, cetuximab was 65.7 months (95% confidence interval, 63.5-70). In addition,
BRAF and all RAS mutation status were determined by BEAMing (beads, emulsion, amplification,
magnetics; Hamburg, Germany) technology19 and included in the analysis as covariates in addition to
age and gender. 

Methods

Data preprocessing

Among 584 samples with RNA-seq data, 86% were Caucasian, 9% African American, 5% from other
ethnicities. Therefore, we focused on primary tumor samples from Caucasians to avoid analysis being
confounded due to population stratification. We excluded genes with low expression variation across
samples (standard deviation < 0.5) and genes with low counts across the samples (> 30% zeros). The
remaining was 8301 genes for the analysis and we applied upper quartile normalization to make gene
expression values comparable among different samples. We removed duplicated samples (n=5) and
tumors with low gene expression across the genome (> 50% genes with zero counts, n=1). We then
transformed the RNA-seq data into the log2 scale for the analysis. We performed principal component
analysis to assess for batch effect or hidden population stratification in RNA-seq data (Figure S5). To
verify the self-reported gender, we applied k-mean clustering using the expression of genes in
chromosome Y, resulting in 5 samples with mismatched biological gender and recorded gender7 (Figure
S6).
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We used 1,055 tumor samples (Caucasian), genotyped at 540,021 SNPs for imputation. We used phased
haplotypes from the Haplotype Reference Consortium (HRC) panel through the Michigan server20.
Phasing was done using Eagle v2.4 algorithm21. The HRC panel combines sequence data across >
32,000 individuals from >20 medical sequencing studies. The imputed genotype data with imputation
score > 0.7 and minor allele frequency (MAF) > 0.05 included 5,539,144 common SNPs. These SNPs were
used in all the analyses. 

Immune cell type abundance

Since the RNA-seq data in this study has been generated from heterogeneous tumor samples composed
of multiple cell types, correcting for the abundance of different cell types in the data is crucial to avoid the
analysis being confounded. We estimated the abundance of immune cell types in our RNA-seq data using
CIBERSORTx22with the validated leukocyte gene signature matrix as a reference. We defined a cell
phenotype to be enriched in our data if at most 30% of its estimated scores across samples are zero and
its standard deviation is greater than 0.12. As a result, 9 hematopoietic cell phenotypes were enriched in
our data: naive and memory B cells, plasma cells, CD8+ T cells, resting and activated memory CD4+ T
cells, M0 and M2 macrophages, and activated mast cells27. 

cis-eQTL analysis

To identify germline genetic variants associated with tumor gene expression, we previously focused on
cis-eQTL23,24. For all pairs of genes and SNPs within 1 Mb upstream and downstream of the gene’
transcription start site (TSS), we applied a linear regression model while accounting for covariates
(gender, age, BRAF V600E mutations and all RAS mutation status, batch effects, enriched cell type
abundance). We performed cis-eQTL mapping using FastQT25. We applied the adaptive permutation
mode of FastQTL while setting for 10,000 permutations and selected genes with at least one cis-eQTL
with an adjusted p-value < 0.05 at the gene level. The result of cis-eQTL analysis is published
elsewhere7 (Figure S7-8).  Hereafter, for simplicity, we use eQTL to refer to cis-eQTL.

Mendelian randomization (MR) study. To apply MR technique and fulfill the assumptions, we take the
following steps focusing on the genes with eQTLs. 

1. Gene-OS association: To investigate if genes with eQTL are associated with OS (i.e, the outcome), we
applied multivariable time-variant additive hazard regression model. This additive hazard regression
model relaxes the assumption of the time invariant effect of the genes on OS and allows for estimating
causal effects8. To enhance the feasibility of conducting multivariable analysis and to prevent overfitting,
we employed k-mean clustering and clustered all genes in 4 clusters7. Using these clusters, we partitioned
352 genes into 4 clusters and performed multivariable analysis by including all the genes in each cluster
in the model. The analyses were performed separately for the patients under bevacizumab treatment and
cetuximab treatment while accounting for the tumor microenvironment's influence by adjusting for
enriched immune cell abundances in our RNA-seq data in addition to the set of covariates gender, age,
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BRAF V600E mutations and all RAS mutation status. Gene associated with OS (p-value < 0.1) were
considered for causal study using the MR technique reviewed in the next steps. 

2. Instrumental variables and the lack of pleiotropy assessment: MR techniques aim at distinguishing
causations from associations in observational studies by using genetic factors as instrumental variables
(IVs). All 352 genes considered in the step 1 for association study were genes with eQTLs. We considered
eQTLs as potential IVs and staringly assessed the lack of pleiotropic action. We conducted a GWAS and
estimated the effect of IVs on OS via a Cox proportional hazard model while adjusting for covariates
gender, age, tumor location, all-RAS, and KRAS mutation as well as the first principal component
accounting for the batch effect (Figure S10). The significance threshold in GWAS is typically set at a p-
value of less than 5×10-8. Any association above this threshold for IV-OS associations can be assumed
as a lack of pleiotropy. However, we employed a stringent threshold of p-value < 1×10-4 and excluded IVs
with p-values < 1×10-4 to ensure that the assumption of lack of pleiotropy holds.

3. Gene-OS causal association: We evaluated the causal impact of associated genes with OS by
predicting the expression level of each gene using its IVs. If the predicted expression value is associated
with OS, the corresponding gene is considered as a putative cause of OS. 

To predict the expression level of a gene, we initially clustered the IVs of the gene based on their
correlation (r2 > 0.1 within each cluster) using hierarchical clustering. We then selected one IV from each
cluster as the proxy to avoid overfitting. We then predicted the expression level of each gene (ĝ) as
follows  

Replication of one-sample MR findings by a two-sample MR study: For the replication of causal genes
from the previous section, we used 602 samples in the validation cohort (296 under bevacizumab
treatment and 306 under cetuximab treatment) with genotype and clinical outcome and no RNA-seq data.
We first compared the clinical characteristics and demography of patients in discovery and validation
cohorts1 (Table S4) to ensure compatibility of the cohorts. We then predicted gene expression levels of
the causal genes in the validation cohort using summary statistics of eQTLs from discovery cohort as:
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 treatment-specific additive hazard model, we considered it a replication for the one-sample MR. This
analysis has some similarities with transcriptome-wide association studies (TWAS). But the main
difference is that, in the two-sample MR analysis, genetic variants as predictors satisfy MR assumptions,
which might not be the case in TWAS.
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Figures

Figure 1
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Study design and analytic workflow. The reported number of samples is after excluding patients with
missing clinical outcomes or covariates.

Figure 2

Gene-OS relationships. A. Genes associated with OS using the treatment-specific additive multivariable
hazard model. B. The pie charts represent the percentage of replicated gene-OS association using
univariate analysis of the TCGA data. The rate of replication is relatively high even though the censoring
rate of TCGA-COAD data is higher than the data in this study. C. The Manhattan plot of the GWAS
representing -log10 (p-value) observed for genetic variants-OS associations. The GWAS threshold and the
maximum -log(p-value) observed for the eQTL-OS associations are depicted on the plot.  D. Genes
causally associated with treatment-specific OS based on a one-sample MR technique (p-value ≤ 0.05).
The p-values under both treatments are presented for comparison.
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Figure 3

Replication of causal genes. A. Replication of causal effect of genes on treatment-specific OS in a
validation cohort. The cyan bars represent p-values calculated in the discovery cohort using one-sample
MR analysis for each treatment. The navy bars represent p-values calculated in the validation cohort
using a two-sample MR study. The dashed line shows the p-value threshold level for significance. B.
 Summary statistics of differential expression analysis of causal genes in normal vs. CRC tumor tissues
using an external cohort. C. The enrichment of gene expressions causally associated with overall survival
in each subtype is determined based on the high percentage of patients with beneficial or non-beneficial
gene expression within that specific subtype (>70%). D.  Illustrates the subtype-specific distribution of
gene expression and their enrichment. The red dashed line represents the median expression level
observed across all samples.
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