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Abstract 

Background:  Advances in artificial intelligence (AI) have realized the potential of revolutionizing 
healthcare, such as predicting disease progression via longitudinal inspection of Electronic Health 
Records (EHRs) and lab tests from patients admitted to Intensive Care Units (ICU). Although substantial 
literature exists addressing broad subjects, including the prediction of mortality, length-of-stay, and 
readmission, studies focusing on forecasting Acute Kidney Injury (AKI), specifically dialysis anticipation 
like Continuous Renal Replacement Therapy (CRRT) are scarce. The technicality of how to implement AI 
remains elusive. 

Objective: This study aims to elucidate the important factors and methods that are required to develop 
effective predictive models of AKI and CRRT for patients admitted to ICU, using EHRs in the Medical 
Information Mart for Intensive Care (MIMIC) database. 

Methods: We conducted a comprehensive comparative analysis of established predictive models, 
considering both time-series measurements and clinical notes from MIMIC-IV databases. Subsequently, 
we proposed a novel multi-modal model which integrates embeddings of top-performing unimodal 
models, including Long Short-Term Memory (LSTM) and BioMedBERT, and leverages both unstructured 
clinical notes and structured time series measurements derived from EHRs to enable the early prediction 
of AKI and CRRT. 

Results: Our multimodal model achieved a lead time of at least 12 hours ahead of clinical manifestation, 
with an Area Under the Receiver Operating Characteristic Curve (AUROC) of 0.888 for AKI and 0.997 for 
CRRT, as well as an Area Under the Precision Recall Curve (AUPRC) of 0.727 for AKI and 0.840 for 
CRRT, respectively, which significantly outperformed the baseline models. Additionally, we performed a 
SHapley Additive exPlanation (SHAP) analysis using the expected gradients algorithm, which highlighted 
important, previously underappreciated predictive features for AKI and CRRT. 

Conclusion: Our study revealed the importance and the technicality of applying longitudinal, multimodal 
modeling to improve early prediction of AKI and CRRT, offering insights for timely interventions. The 
performance and interpretability of our model indicate its potential for further assessment towards clinical 
applications, to ultimately optimize AKI management and enhance patient outcomes. 
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1. Introduction 

AKI, characterized by a substantial elevation in serum creatinine (SCr) or a pronounced decline in urine 
output1, represents a severe clinical complication marked by a sudden decline in kidney function. AKI is a 
profoundly serious condition and needs to be intercepted immediately to prevent lasting kidney damage. 
This condition is linked to elevated hospital costs and extended length of stay2–4, with a prevalence 
exceeding 50% among intensive care units (ICU) patients and accompanied by an alarming mortality 
rate, up to 50% within the ICU settings5,6. The International Society of Nephrology7 emphasizes the 
significance of early identification of individuals at increased risk of developing AKI for potentially better 
outcomes. Early detection allows for therapeutic intervention before the onset of complications, such as 
anuria, and associated issues like acidosis, hyperkalemia, volume overload, as well as long-term 
complications such as lung injury, sepsis, and chronic kidney disease.8–11. Beyond the immediate health 
implications, AKI significantly impacts healthcare resource allocation, particularly in the context of dialysis. 
Among available dialysis techniques, Continuous Renal Replacement Therapy (CRRT) is the most 
commonly used method for hemodynamically unstable patients, accounting for up to 75% of instances in 
ICUs12. However, the decision to initiate CRRT is influenced by multiple factors. While there are 
guidelines and recommendations, there is not standardized criteria. Instead, the decision often depends 
on specific clinical context and individual patient conditions, highlighting the complexity of managing AKI-
induced resource utilization and underscoring the need for a comprehensive approach to enhance clinical 
decision-making and resource allocation strategies. 

The widespread adoption of EHRs and the rapid advancements in computing offer new avenues for 
disease prediction and prevention. These advancements have been particularly transformative in 
developing integrated clinical decision support systems13,14. The volume of routine data collection during 
hospital stays, considering its high temporal resolution, often exceeds human cognitive processing 
capabilities15. In response to this data complexity, Artificial Intelligence (AI) emerges as a promising 
solution to effectively process such large-scale, high-dimensional datasets. This is particularly relevant in 
the context of AKI and CRRT prediction. AKI, characterized by its well-defined temporal progression and 
CRRT, are especially suited for EHR-based predictive modeling16, utilizing techniques such as logistic 
regression (LR), Extreme Gradient Boosting (XGBoost), Transformer and Long Short-Term Memory 
(LSTM). Meanwhile, in the realm of clinical records, researchers have actively sought to harness the 
capabilities of natural language processing (NLP) for medical prediction tasks. This pursuit has led to the 
exploration of various methodologies, including a convolutional document embedding method grounded 
in the unstructured textual content of clinical records17, an open set of biomedical word 
vectors/embeddings that integrates domain-specific biomedical knowledge18,19, and the latest 
Bidirectional Encoder Representations from Transformers (BERT) model20 which addresses the limitation 
of representing each word with only one vector21. Although several AKI or CRRT prediction models have 
been reported recently, notable limitations exist. First, these models have often been derived and 
validated within specific patient cohorts, such as those undergoing cardiac surgery or catheterization22–25, 
children26, elderly adults27, or the critically ill28. This specificity may limit their generalizability to broader 
patient populations. Second, a common short fall in these models is their reliance on static features or 
single-point measurements29–32. This approach does not fully capture the dynamic and rapidly evolving 
nature of patients’ health status, especially in the context of AKI development as well as in postoperative 
settings where physiological parameters can change quickly and unpredictably. The need for models that 
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adapt to these rapid changes in a patient’s condition is crucial for accurate AKI and CRRT prediction. 
Third, many studies do not account for non-zero gap times in their predictive frameworks, leading to the 
risk of temporal data leakage of label information during model training24,33,34. For instance, utilizing fixed 
6-hour input windows may inadvertently include data points just before the AKI diagnosis, potentially 
skewing the prediction by using information already known to the care team. Additionally, most existing 
models are unimodal, focusing either solely on laboratory measurements or clinical notes, thus lacking 
the comprehensive view provided by a multimodal approach. This limitation is particularly critical in 
scenarios, where data availability is constrained or highly imbalanced. Finally, it is noteworthy that a 
considerable portion of existing literature tends to limit its predictive analyses by relying on basic 
measurements, thus failing to optimize the full potential of the available datasets.  

To address these gaps, we have developed a multi-modal model that integrates the embeddings of LSTM 
and BioMedBERT. This advanced model leverages a blend of both unstructured clinical notes and 
structured time series measurements, incorporating over 50 features enhanced by medical insights 
derived from EHRs. It enables the early prediction of both AKI and the anticipation of the need for CRRT 
by providing a minimum of 12-hour lead time before clinical manifestation. Recognizing the clinical need 
for actionable insights, our model is designed not just to predict AKI earlier and with greater accuracy but 
also to influence ICU interventions. By identifying patients at high risk for AKI/CRRT, our model can 
potentially inform clinical decisions to minimize renal risk, such as the judicious use and dosage of 
nephrotoxic drugs, careful consideration of imaging procedures involving ionizing contrast dye, avoiding 
hypotension, and meticulous management of hydration levels. Understanding a patient's heightened risk 
of renal failure recalibrates the risk/benefit ratio of common ICU interventions, allowing clinicians to 
consider treatment strategies that reduce the likelihood of AKI and the need for CRRT, thereby potentially 
improving patient outcomes and resource utilization. 

Problem or Issue Forecasting AKI and the need for CRRT in ICU patients. 
What is Already Known Existing AKI/CRRT prediction models are limited in: often tailored to specific 

patient groups like cardiac surgery patients, relying on static features or 
single-point measurements, ignoring non-zero gap times, and using 
unimodal frameworks. 

What this Paper Adds We developed a machine-learning, longitudinal, multi-modal model that 
leverages both clinical notes and time-series measurements. Our model 
enables early prediction of AKI and CRRT with at least 12 hours' lead time. 
Furthermore, our model identifies previously overlooked factors contributing 
to AKI and CRRT need. 

 

2. Materials and methods 

2.1 Dataset description 

The dataset utilized in this study was sourced from the MIMIC-IV database, spanning a period from 2008 
to 2009 and including intensive care unit (ICU) patient stays at Beth Israel Deaconess Medical Center. 
The database comprises a comprehensive array of patient-related information, including demographics, 
laboratory test results, procedures, medications, clinical notes, imaging reports and mortality data, 
encompassing post-hospital discharge outcomes (Figure 1(a)). Within the MIMIC-IV database, patients 
are denoted as Subject_IDs, with each patient having one or more hospital admissions named 
Hadm_IDs. Within a single admission, a patient may undergo one or more ICU stays, referred to as 
Icustay_IDs. A clinical event is defined as an individual measurement, observation, or treatment. 
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2.2 Methodological framework 

In this study, we adopt the classification system proposed by the Acute Kidney Injury Working Group of 
the Kidney Disease: Improving Global Outcomes (KDIGO) Foundation to standardize the definition of 
AKI. As per the KDIGO criteria, AKI is categorized into three stages1,35,36, with Stage 1 indicating the initial 
phase of AKI, often asymptomatic. Stages 2 and 3 signify increasing severity of renal dysfunction. Our 
research focuses on patients diagnosed with Stage 2 and Stage 3 AKI, given their clinical significance 
and the progressive nature of the condition at these stages. Furthermore, we extend our analysis to 
predict the need for CRRT.  

The predictive model we propose is specifically designed to analyze time series laboratory measurements 
collected in the first 6 hours post-admission. Our goal is to forecast the probability of a patient being 
diagnosed with AKI or requiring CRRT within a 12-hour period after this initial 6-hour data collection 
window. This design ensures that our predictions apply to patients diagnosed at least 18 hours after 
admission, thereby reducing the risk of predicting AKI in individuals who might have been diagnosed prior 
to hospitalization.  

In terms of clinical notes, our model selectively incorporates notes recorded at the time of patient 
admission. This includes information of the chief complaint, history of present illness, past medical history, 
initial physical examination findings, and initial clinical impressions. Importantly, we exclude discharge 
notes to focus on data relevant to the initial phase of hospitalization, therefore enhancing the model’s 
precision and clinical utility.  

2.3 Time series embedding model 

We designed the Time Series Embedding Model to acquire the temporal representation of patients 
utilizing 50 distinct features selected based on medical knowledge. Our investigation delved into three 
prominent classification methodologies: logistic regression (LR), Extreme Gradient Boosting (XGBoost), 
and Long Short-Term Memory (LSTM). These models are widely acknowledged and extensively 
employed in the biomedical domain, as depicted visually in Figure 1(b). While Transformer-based 
architectures37–39, have gained significant traction in recent years, their substantial data requirements, 
e.g., included several million samples in38, make them less suitable for our investigation. 

2.3.1 Logistic regression (LR): 

LR is characterized as a linear classification model with limited complexity and moderate interpretability. 
Due to its inherent limitation in handling temporal data, we concatenated 6 one-hour measurements from 
patients into a single vector. In this model, we used a more elaborate version of the hand-engineered 
features40,41, incorporating six distinct sample statistic features for each variable within a given time 
series. These features encompass the minimum, maximum, mean, standard deviation, skew, and the 
number of measurements within each subsequence. 

2.3.2 Extreme Gradient Boosting (XGBoost): 

XGBoost is a state-of-the-art machine learning algorithm utilizing gradient-boosting trees for predictive 
modeling42. Its notable advantages include high predictive accuracy, automatic modeling of non-linearities 
and high-order interactions, as well as robustness to multicollinearity. Similar to LR, we utilized XGBoost 
to process temporal data by concatenating 6-hour measurements into a single vector. 

2.3.3 Long Short-Term Memory (LSTM): 
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LSTM models43, a popular variant of recurrent neural networks (RNNs), exhibit the capacity to process 
sequences of arbitrary lengths in a non-linear and high-capacity manner. This enables the learning of 
sequential relations and long-term temporal dependencies within time series data. The crucial role in 
achieving this function lies in the gate and state of the network, with the forget gate determines whether to 
delete the previous state. The final hidden state of the LSTM serves as the time series embedding, 
utilized for subsequent predictions. 

It is noteworthy that both LR and XGBoost generate predictions based on a flattened vector of the 6-hour 
time series data, while LSTM can directly process the time series input to make binary predictions. Our 
results have shown that the LSTM model outperforms the other two models — LR and XGBoost (Table 
1). Consequently, we have made the informed decision to incorporate the LSTM model as a crucial 
component of our multimodal model. 

 

2.4 Clinical notes embedding model 

Our study delves into the exploration of two established BERT-based models, namely BioMedBERT and 
ClinicalBERT, specifically tailored to enhance natural language processing within the biomedical and 
clinical literature domains. We enhance this capability through the fine-tuning process on specific tasks, 
thereby constructing a specialized BERT-based AKI/CRRT prediction model.  

2.4.1 BioMedBERT44: 

BioMedBERT, previously named PubMedBERT, specially pretrained from scratch using abstracts from 
PubMed and full-text articles from PubMed Central, excels in capturing the nuances of medical 
terminology, scientific jargon, and the vast array of topics within the biomedical field. It has demonstrated 
remarkable performance in tasks, such as document classification and information retrieval within the 
biomedical domain. 

2.4.2 ClinicalBERT45: 

(a)                                                                       (b) 

Figure 1. (a) MIMIC-IV built by merging the various data sources (the BIDMC data warehouse, the ICU 
information system, and external sources) into a single schema with five modules. (b) Comparative 
analysis of three model types (XGBoost, Logistic Regression, LSTM) for processing 6-hour time 
series lab measurement data. 
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ClinicalBERT focuses on clinical notes/EHRs, and other healthcare-related documents. By training a 
BERT model on clinical text, ClinicalBERT has been optimized to understand the specific language 
nuances present in patient records, medical reports, and uncovers relationships between medical 
concepts that match physician judgment. 

2.4.3 Probability calculation of solely BERT-based model 

The computation of predictions for patients with an extensive volume of clinical notes entails a binning 
process, wherein predictions are aggregated for each subsequence. In the context of a patient whose 
notes are segmented into n subsequences, the BERT-based model generates a probability estimate for 
each respective subsequence. As per the methodology established by Huang45, the probability of AKI and 
CRRT for a given patient is expressed as: 

𝑃(𝑐𝑙𝑎𝑠𝑠 = 1	|	ℎ!"#$%&#) = 	
'!"#
$ (	'!%"$

$ & *⁄
,(& *⁄

, 

where 𝑐 is the scaling factor to control over the influence of the number of subsequences 𝑛, and ℎ!"#$%&# 
denotes the implicit representation encompassing all notes associated with a specific patient. The 
probabilities 𝑃-".&  and 𝑃-%"&&  represent the maximum and mean probabilities of AKI/CRRT over 𝑛 
subsequences. 

The underlying concept posits that certain subsequences may lack informative content regarding 
AKI/CRRT, while others are relevant. Therefore, computation of AKI/CRRT risk is selectively performed 
using subsequences that exhibit correlation with the target outcome, thereby minimizing the impact of 
less informative subsequences. However, it is worth noting that maximum probability may be caused by 
noise. In this context, we include the mean probability (𝑃-%"&& ) to have a trade-off between the mean and 
maximum probabilities. Finally, to adjust for patients with varying quantities of clinical notes, we introduce 
a scaling factor 𝑛/𝑐, providing a larger weight for the mean prediction in cases where patients possess a 
higher volume of notes. Notably, empirical findings by Huang45 indicate that 𝑐=2 yields optimal 
performance based on validation data. 

The comparison results from the experiment section reveal that BioMedBERT has a superior performance 
compared to ClinicalBERT. Notably, one of the key differentiators lies in the foundational pretraining 
approach employed for each model. BioMedBERT is pretrained from scratch, allowing it to capture 
intricate nuances and domain-specific intricacies. On the other hand, ClinicalBERT is built upon the BERT 
model, with its training grounded in general-domain language models. As a result, we decided to integrate 
the BioMedBERT model as an essential element within our multimodal framework. 

2.5 Multimodal Learning 

All those models above use only one data source to make predictions. Previous studies show that the 
combination of time series and clinical record is useful for the prediction18,46,47. Therefore, we used a 
representation of the clinical record in conjunction with the time series portion of the patient data and 
incorporated the fusion module to improve the performance of the prediction.  

As depicted in Figure 2, our proposed model seamlessly integrates two distinct modalities. Specifically, 
we concatenate the embeddings of two top-performing unimodal models—LSTM for time-series 
measurements and BioMedBERT for clinical notes. The multimodal encoder harmonizes these 
embeddings, fusing the information from both modalities and projecting them into a shared space.  
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𝐸#/ = 𝐿𝑆𝑇𝑀	(𝑋#/) 

𝐸&0#%/ = 𝐵𝑖𝑜𝑀𝑒𝑑𝐵𝐸𝑅𝑇	(𝑋&0#%/) 

𝐸11 = 𝑀𝑢𝑙𝑡𝑖𝑀𝑜𝑑𝑎𝑙	(𝐸#/ 	⊕ 	𝐸&0#%/) 

 

In this study, we utilize time series measurements denoted as 𝑋#/ ∈ 𝑅2×4, where 𝑋#/ represents the time 
series measurements with L length of measurements counted by hours, and 𝐷 variables. In our case, L is 
set to 6, and D is 100, as following Harutyunyan’s setup41 that 𝑋#/ is composed of original time series 
variables and binary time series variables which indicates whether the corresponding variables are 
observed or imputed. The details regarding data curation are described in the experiment section.  

The final hidden state of LSTM model, denoted as 𝐸#/, serves as the embedding of the time-series data 
with default 64 dimensions. Concurrently, 𝑋&0#%/ represents clinical notes with a dimension of 512, 
complying with the maximum input size requirement of BioMedBERT. As illustrated in Figure 2, a 
necessity arises to partition the clinical notes into several subsequences to meet the specified 
requirement. The embedding matrix 𝐸&0#%/ ∈ 𝑅5,6×789 is elucidated, where 512 corresponds to the 
dimensionality of the embedding for each token, encapsulating contextual relationships of the word within 
a 512-dimensional space. The value 768 designates the hidden size in the transformer model, 

Figure 2. Schematic Representation of the Proposed Multimodal Model: The diagram illustrates our 
proposed framework, wherein we concatenate embeddings derived from 6 hours' time-series 
measurements using LSTM and clinical notes processed by BioMedBERT. This combined 
representation is utilized for the prediction of AKI/CRRT, aiming to forecast clinical manifestation at 
least 12 hours in advance. 
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representing the broader contextual understanding of the input sequence which determined by the 
transformer’s self-attention mechanism. 

The calculation of 	𝐸&0#%/ involves two steps: initially, the average of the embeddings of all the 
subsequences from the same patient is computed, followed by taking the mean in the 512 dimensions, 
representing the average contribution of each dimension across all embeddings, and providing a 
condensed representation of the overall information captured by the embedding. Consequently, 	𝐸&0#%/ is 
a vector with 768 dimensions. The symbol ⊕ denotes the concatenate operation, wherein the 
embeddings from LSTM and BioMedBERT are combined to form the final embedding 𝐸11 for predictive 
tasks. As depicted in Figure 2, the ultimate embedding undergoes processing through a fully connected 
layer and a Softmax layer to derive predictions for the designated task. 

3 Results 

3.1 Data processing 

In this study, we utilized the complete  MIMIC-IV database48, which includes approximately 73,181 ICU 
stays across 50,920 critical care patients. We curated time series data from this resource inspired by prior 
work41,49,50 .Figure 3 summarizes the data extraction and processing steps.  

To select our cohort as illustrated in Figure 3, we extracted pertinent data from the raw MIMIC-IV tables 
and organizing them by patient as the initial step. Exclusion criteria are applied to admissions and ICU 
stays, first excluding hospital admissions with multiple ICU stays or transfers between different ICU units 
to mitigate outcome ambiguity associated with hospital admissions. Additionally, we excluded ICU stays 
involving patients under 18 due to significant physiological differences between adults and pediatric 
patients. The resulting root cohort comprises 45,127 unique patients, with a total of 56,908 ICU stays and 
over 300 million clinical events. 

We next moved into the data processing phase, where clinical aggregation is initially performed. Each 
measurement in the MIMIC-IV database is associated with a unique ItemID, but multiple ItemIDs may 
match to semantically equivalent clinical features because of the different version of EHR or the same 
measurement at various places, e.g., admission and ICU. For example, “Weight” may be recorded under 
224639, 226512, or 226531. Then a clinical taxonomy49 is employed to group semantically equivalent 
ItemIDs into more robust “clinical aggregate” features, thereby reducing data missingness and duplicate 
measures. Subsequently, unit conversion and outlier detection are executed to address data unit 
inconsistencies and handle outliers. Measurements are standardized into consistent units, with clinical 
experts’ input used to define valid clinical measure ranges and thresholds for detecting unusable 
outliers41. This comprehensive data curation ensures the integrity and quality of the dataset for 
subsequent analyses. 
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After the data cleaning 
phase, we generated time-
series data and imputed 
missing values. In the MIMIC-
IV raw data, fine-grained 
timestamps are provided for 
each laboratory 
measurement and recorded 
vital sign. However, the 
frequency of most 
measurements is notably 
sparse, with certain variables 
having infrequent 
occurrences. To create a 
more interpretable and 
machine-learning-friendly 
representation, we employed 
an aggregation strategy for 
the observations within each 
ICU stay's time-series. 
Specifically, we discretized 
the data into hourly buckets, 
facilitating a denser 
representation conducive to 
modern machine learning 
methods designed for time-
series analyses that expect 
discretized time 
representations. In cases 
where multiple 
measurements of the same 
variable are within a single 
hour, we selected the 
measurement that is nearest 
to the discrete integer time 
point. Conversely, if no 
measurement occurred within 
an hour, we resorted to 
imputation by selecting the value from the previous hour. In the last step, we performed normalization, 
ensuring that the time-series data is scaled for seamless integration into the subsequent modeling stages. 

For the clinical notes, while the patients typically possess a myriad of diverse notes, the inherent 
constraints of BERT-based models necessitate adherence to a fixed maximum input sequence length. To 
address this, we systematically divided notes into subsequences, each containing up to 300 words. It is 
pertinent to note that BERT processes input using sub-word units (WordPieces) rather than entire words. 
Given BERT's restriction to a maximum sequence of 512 sub-word unit tokens, equivalent to 
approximately 300 words, we aligned our subsequence length accordingly. In addition, we kept the 
relevant information of the clinical notes (described in 2.2 Methodological framework section) and 

Figure 3: MIMIC-IV Data Processing Diagram: First, a cohort is 
established by applying predefined selection criteria. Next, the data 
undergoes manipulation involving the aggregation of measurements, 
unit conversion, outlier filtration, discretization, imputation, and 
normalization. Finally, data extraction is conducted in alignment with 
our task definition. 
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converted words to lowercase, removing line breaks and carriage returns, de-identifying brackets, and 
eliminating special characters such as "==", "--" 45. 

3.2 Generation of training and testing data 

Guided by the task definition in the Figure 3 and description in 2.2 Methodological framework section, we 
generated training and testing datasets tailored for AKI and CRRT prediction. Given that patients with 
time-series data and with clinical notes do not exhibit a one-to-one correspondence, we selected patients 
who possess both types of information. Subsequently, we randomly allocated approximately 80% of the 
events as training data and the remaining 20% as testing data for both AKI and CRRT prediction. The 
resultant dataset comprised 38,400 records for AKI training data, of which 14,168 are positive instances. 
For AKI testing data, we had 10,586 records, with 2,103 of them being positive instances. Similarly, the 
CRRT training data encompassed 18,697 records, with 764 positive instances. The CRRT testing data 
comprised 4,473 records, with 52 positive instances. It is imperative to highlight the inherent challenge of 
class imbalance in CRRT prediction. The marked disproportion in the number of positive instances poses 
an additional layer of complexity to the predictive modeling task. 

3.3 Performance comparison 

Next, we evaluated and compared the performance of corresponding unimodal models on the same tasks 
across the two distinct data types with the goal of identifying the most effective models within their 
respective domains to serve as baselines for comparison with the performance of the multimodal model 
we have proposed. 

3.3.1 Time-series unimodal models’ comparison 

The results presented in Table 1 provide a comparative analysis of unimodal models utilizing time-series 
data. Notably, LSTM consistently outperforms the other two models across both tasks, particularly when 
evaluating metrics such as AUPRC, precision, and recall. 

Table 1. LSTM, LR, and XGBoost performance comparison for (a) AKI (b) prediction. 

Model Accuracy Precision Recall AUROC AUPRC 

LSTM 0.854 0.628 0.673 0.873 0.699 
LR 0.816 0.532 0.618 0.832 0.566 

XGBoost 0.831 0.571 0.638 0.855 0.658 
(a) 

Model Accuracy Precision Recall AUROC AUPRC 

LSTM 0.992 0.595 0.537 0.985 0.603 
LR 0.985 0.226 0.135 0.906 0.213 

XGBoost 0.991 0.538 0.512 0.967 0.522 
(b) 

3.3.2 Clinical notes unimodal models’ comparison 

Table 2 illustrate the performance comparison of unimodal models utilizing clinical notes data. Although 
the ClinicalBERT model exhibits slightly superior recall, considering numerous factors, especially the 
AUPRC, which is indicative of performance in imbalanced data scenarios, we conclude that BioMedBERT 
is the more suitable model for this comparison. 
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Table 2. BioMedBERT and ClinicalBERT performance comparison for (a) AKI (b) CRRT prediction. 

Model Accuracy Precision Recall AUROC AUPRC 

BioMedBERT 0.727 0.376 0.542 0.742 0.420 
ClinicalBERT 0.683 0.334 0.578 0.705 0.357 

(a) 

Model Accuracy Precision Recall AUROC AUPRC 

BioMedBERT 0.989 0.556 0.294 0.970 0.411 
ClinicalBERT 0.987 0.353 0.118 0.924 0.219 

(b) 

3.3.3 Performance of multimodal model 

Next, we compared the performance of our multimodal model with that of the top-performing unimodal 
model. The results as detailed in Table 3 and Figure 4 consistently highlights the superior efficacy of the 
multimodal model with p-value 3.7x10-3 (AKI) and 2.68x10-5 (CRRT) of McNemar’s test comparing with 
LSTM. Analysis of precision and recall in CRRT predictions (Table 3(b)) indicates that our multimodal 
model identifies over 25% more patients who require dialysis than the unimodal model (LSTM). This 
translates to an increase in prediction accuracy for CRRT of approximately 25%, a significant 
improvement with the potential to reduce hospital complications and improve patient outcomes. 
Moreover, the AUPRC (Figure 4(b)) for our multimodal model shows an improvement of more than 20% 
over the unimodal model (LSTM), suggesting that the multimodal model can effectively minimize 
unnecessary treatments or interventions while accurately identifying critical cases. This finding is critical in 
the context of CRRT data because it is highly imbalanced and provides limited input for unimodal models. 
The strength of our multimodal approach is its ability to leverage complementary insights from different 
data sources, leading to a more comprehensive understanding of underlying patient data patterns. 

Table 3. Multimodal and unimodal model performance comparison for (a) AKI (b) CRRT prediction. 

Model Accuracy Precision Recall AUROC AUPRC 

Multi-Modal 0.860 0.642 0.693 0.888 0.727 
LSTM 0.854 0.628 0.673 0.873 0.699 

BioMedBERT 0.727 0.376 0.542 0.742 0.420 
(a) 

 
Model Accuracy Precision Recall AUROC AUPRC 

Multi-Modal 0.997 0.895 0.829 0.997 0.840 
LSTM 0.992 0.595 0.537 0.985 0.603 

BioMedBERT 0.989 0.556 0.294 0.970 0.411 
(b) 
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For clinical tasks, where false positives are of paramount concern, a precision threshold of 80% is set to 
minimize the risk of alarm fatigue. Our results, specifically AUPRC plots in Figure 4(b), show that at the 
level of precision, our multimodal model achieves almost 50% higher recall than the unimodal model 
(yellow dotted line). This strategic evaluation approach ensures the minimization of false positives while 
optimizing recall, contributing to the clinical utility and reliability of the unimodal model in real-world 
applications. 

3.4 Elucidating Feature Importance in AKI and CRRT Prediction Using SHAP Values 

Building upon the enhanced performance of our multimodal model, we prioritized interpretability, which is 
essential for clinical adoption. Leveraging concepts from Integrated Gradients and SmoothGrad51,52, the 
integration of SHapley Additive exPlanation (SHAP) values with the expected gradients algorithm allowed 
us to dissect the model's predictive mechanics at various time points, providing actionable insights into 
the features most contributory to the risk of AKI and CRRT requirement. 

Analysis of the top SHAP values across six time points reveals that the model assigns varying degrees of 
importance to different clinical features in the prediction of AKI (Figure 5(a)). These features include 

(a) 

(b) 

Figure 4. Multimodal and unimodal model performance comparison for (a) AKI (b) CRRT prediction. 
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physiological parameters, laboratory results, and patient vitals, which are known to be associated with 
kidney function and AKI risk. At the first time-point; we identified urine output, oxygen saturation, and 
diastolic blood pressure as the most influential features. Urine output is a direct measure of kidney 
function, with deviations from normal ranges indicating potential renal compromise. Oxygen saturation 
reflects systemic oxygen delivery, where hypoxia may contribute to renal ischemia53. Diastolic blood 
pressure is indicative of renal perfusion, with both hypotension and hypertension potentially leading to 
AKI. As the patients’ clinical course progresses at the second timepoint, urine output remains a 
predominant feature, emphasizing its critical role in ongoing AKI risk assessment. Oxygen saturation and 
diastolic blood pressure continue to be significant, alongside red blood cell count, which may indicate 
changes in blood volume or hematologic conditions affecting kidney function. By the third timepoint, 
additionally, red blood cell count, and weight emerge as key indicators, with weight potentially reflecting 
fluid balance, a crucial factor in AKI development54. Respiratory rate and neutrophils also rank highly, the 
former potentially signifying respiratory compensation for metabolic acidosis, and the latter suggesting an 
inflammatory or infectious process that could impact kidney health. At the fourth timepoint, urine output, 
red blood cell count, and oxygen saturation continue to dominate the model's attention, sustaining their 
roles as essential markers for AKI prediction. Notably, albumin and lactate levels come into focus, where 
hypoalbuminemia can be associated with chronic illness impacting the kidneys55, and elevated lactate 
may indicate tissue hypoxia and metabolic distress, often preceding renal injury56,57. By the 5th and 6th 
time-points, the significance of urine output in AKI prediction is highlighted as it remains as the feature 
with the highest SHAP value. 

The consistent prominence of urine output across all timepoints stresses its essential role in assessing 
renal function and in AKI staging criteria. The presence of vital signs such as blood pressure and oxygen 
saturation across multiple timepoints highlights the systemic nature of AKI, where renal health is closely 
tied to overall hemodynamic stability of the patient. Laboratory parameters such as red blood cell count 
and albumin levels provide insight into the patient's volume status and nutritional state, which are integral 
to kidney function. These trends align with the known pathophysiology of AKI, where both acute changes 
and underlying chronic conditions converge to impact renal health. 

Similarly for our predictive model for CRRT requirement, we observed the urine output as the most 
important and consistent predictor across all time points (Figure 5(b)). The anion gap is a marker for 
metabolic acidosis, a common occurrence in renal failure and an indicator for CRRT58. Beginning from the 
second time point, we begin observing anion gap as an important feature and its feature importance rank 
increases with time. Elevated phosphate levels can indicate renal dysfunction, as kidneys play a central 
role in phosphate regulation. Our results show phosphate levels are among the most important and 
persistent features that predict CRRT need in our patient cohort. By the fourth timepoint, the model 
highlights the anion gap and respiratory rate, the latter of which may signify respiratory compensation for 
metabolic acidosis—a condition often necessitating CRRT. In the final timepoint analysis, urine output, 
alongside anion gap and phosphate, remains a principal feature. Our analyses reveal a clear trend: 
certain features, particularly urine output, the anion gap, and phosphate, are consistently prominent 
across all timepoints in predicting the need for CRRT. This indicates a strong association of these 
features with the underlying pathophysiological processes leading to requirement for CRRT, such as fluid 
overload, electrolyte imbalances, and acid-base disturbances. 

Collectively, the interpretative power of SHAP values in our models not only validates the clinical 
relevance of the identified features but also enhances the model's utility by offering clinicians a detailed 
profile of AKI features and CRRT risk factors as they evolve over time. Recognizing these features' 
significance can assist clinicians in early identification of patients who may benefit from CRRT, thereby 
potentially improving outcomes in critically ill patients, through timely and targeted interventions. 
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3.5 Clinical notes analysis using BioMedBERT embeddings 

The incorporation of BioMedBERT allowed our multimodal model to analyze unstructured clinical notes 
from the MIMIC-IV database for the prediction of AKI and CRRT. Through this analysis, we identified key 
terms (tokens) that BioMedBERT attributed with high importance scores, potentially revealing clinical 
narratives associated with these conditions. Here it is important to remember that we only included notes 

(a) 

(b) 

Figure 5: (a) AKI (b) CRRT prediction SHAP values across timepoints 
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recorded at the time of patient admission and excluded discharge notes to focus on data relevant to the 
initial phase of hospitalization.  

Our results showed that for AKI prediction, the term 'hemodialysis' appeared with the highest importance 
score and similarly, 'dialysis' was captured as significant, which may initially seem inconsistent with our 
focus on the initial phase of hospitalization. However, these terms likely represent significant risk factors 
in the patient's past medical history, which are crucial for predicting the development of AKI. The 
presence of these tokens shows our model's ability to identify patients with pre-existing conditions that 
elevate the risk of AKI, even if the actual treatment or condition is not an immediate concern at the point 
of hospital admission. We also observed 'hd' (hemodialysis) and 'laparotomy' (which is a surgical 
procedure involving a large incision through the abdominal wall) in the token list, suggesting possible 
postoperative kidney stress, which is a recognized risk factor for AKI development59,60. Moreover, the 
presence of terms such as 'ckd' (chronic kidney disease), 'cirrhosis,' and 'ascites' indicates underlying 
chronic conditions that can predispose patients to AKI. Additionally, tokens like 'jaundice,' and 'ed' 
(emergency department) highlight symptoms and care settings that may be relevant to the patient's acute 
or chronic health challenges. 

For the predictions related to CRRT, the token ‘endotracheal’ is associated with the highest importance 
score. It is relevant as it indicates airway management typically required for critically ill patients, who may 
also be at an elevated risk for CRRT. The presence of 'obese' and 'intubation' as important tokens 
correlates with known risk factors for AKI, which can lead to CRRT. Obesity is associated with several 
comorbidities that predispose individuals to kidney stress61, and intubation is often part of the 
management of severely ill patients who are at an increased risk for renal complications. 

Overall, our multimodal model's ability to identify significant tokens from clinical admission notes offers a 
promising avenue for enhancing patient risk assessment during the critical initial phase of hospitalization. 
The detection of terms related to prior renal health problems provides a deeper insight into the patient's 
condition, facilitating a proactive approach to AKI and CRRT management. This can be particularly 
beneficial for tailoring both monitoring and treatment strategies, potentially reducing the progression to 
severe renal events. 

4. Conclusions 

In this study, we developed a longitudinal, multimodal model that capitalizes on both unstructured clinical 
notes and structured time-series measurements derived from EHRs for the early AKI prediction and the 
prospective identification of the necessity for CRRT. Our model demonstrates exceptional predictive 
accuracy, offering valuable insights into AKI and CRRT needs at least 12 hours ahead of clinical 
manifestation. The achieved AUROC and AUPRC metrics further underscore the robustness of our 
system. The incorporation of interpretability measures, including SHAP values and the expected 
gradients algorithm, ensures transparency and positions our model as a reliable candidate for clinical 
deployment. This research holds promise in optimizing AKI management, contributing to improved patient 
outcomes, and marks a significant stride toward enhancing healthcare practices. 
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