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Abstract 
Motivation: Oxford Nanopore Technologies (ONT) sequencers enable real-time generation of sequence data, which allows for concurrent 
analysis during a run. Adaptive sampling leverages this real-time capability in extremis, rejecting or accepting reads for sequencing based on as
sessment of the sequence from the start of each read. This functionality is provided by ONT’s software, MinKNOW (Oxford Nanopore 
Technologies). Designing and developing software to take advantage of adaptive sampling can be costly in terms of sequencing consumables, 
using precious samples and preparing sequencing libraries. MinKNOW addresses this in part by allowing the replay of previously sequenced 
runs for testing. However, as we show, the sequencing output only partially changes in response to adaptive sampling instructions. Here we 
present Icarust, a tool enabling more accurate approximations of sequencing runs. Icarust recreates all the required endpoints of MinKNOW to 
perform adaptive sampling and writes output compatible with current base-callers and analysis pipelines. Icarust serves nanopore signal simu
lating a MinION or PromethION flow cell experiment from any reference genome using either R9 or R10 pore models. We show that simulating 
sequencing runs with Icarust provides a realistic testing and development environment for software exploiting the real-time nature of 
Nanopore sequencing.
Availability and implementation: All code is open source and freely available here—https://github.com/LooseLab/Icarust. Icarust is imple
mented in Rust, with a docker container also available. The data underlying this article will be shared on reasonable request to the corresponding 
author.

1 Introduction
Nanopore sequencing, as developed by Oxford Nanopore 
Technologies (ONT), is unique as read data are available for 
analysis as soon as individual molecules complete passing 
through the nanopore (Hook and Timp 2023). It is even possi
ble to observe and analyse molecules as they are being se
quenced (Loose et al. 2016). These properties enable methods 
such as adaptive sampling whereby individual molecules can be 
chosen for sequencing from a library (Loose et al. 2016, Payne 
et al. 2021). Molecules which are on target are left to finish 
passing through the pore, whereas off target molecules are 
rejected from the pore, in a process known as unblocking. This 
frees up the pore to sequence more molecules. Real-time analy
sis of sequence data is possible, but tools utilizing these 
approaches can be complex and costly to develop. Additionally, 
any tool changing the output of a sequencer could, unintention
ally, negatively impact sequencing performance. Therefore thor
ough testing of tools is required ideally without incurring 
significant cost.

ONT provides a piece of software, MinKNOW, to control 
nanopore sequencing. All interactions with the sequencer are 
conducted via MinKNOW through an open Application 
Programming Interface (API) (https://github.com/nanopore 
tech/minknow_api). MinKNOW can be configured to play
back prerecorded sequencing data, which enables some 

simulation options, providing a route to develop tools and 
analysis methods without significant expense. However, these 
simulations are limited as reads rejected from a pore are not 
actually removed from the simulation—instead the original 
read is fragmented at the point the read would have been 
unblocked. This results in single original long reads being di
vided into smaller fragments if they are sent an unblock com
mand. This approach also requires a pre-recorded bulk file 
for a given sample and experiment (Payne et al. 2021). Other 
simulation tools have been developed to address similar prob
lems. Uncalled, software to implement adaptive sampling 
functionality, included a simulator that can be driven from 
pre-existing sequence fast5 files (Kovaka et al. 2021). 
However, to our knowledge this simulator does not remove 
the need for pre-existing data sets nor can any generic imple
mentation of adaptive sampling be developed to use it. Other 
ONT signal simulators exist including Squigulator and 
DeepSignal 1.5 (Li et al. 2020, Gamaarachchi et al. 2023), al
though these approaches do not enable real-time simulation 
for serving squiggle chunks for adaptive sampling.

To address these challenges, we developed Icarust which 
mimics the functions of MinKNOW. Icarust generates signal 
data (“squiggle”) derived from the output of “Scrappie” 
(https://github.com/nanoporetech/scrappie) and serves this 
signal in real-time using an identical API to the one imple
mented in MinKNOW itself. Icarust can also generate R10.4 
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pore squiggle data, and RNA02 squiggle data using models 
provided by ONT (https://github.com/nanoporetech/kmer_ 
models/). Icarust can simulate any genome, incorporate barc
odes and respond to requests to reject reads via the same 
adaptive sampling API as MinKNOW. Icarust can also simu
late amplicon based sequencing experiments. Data from 
Icarust are written to files (FAST5 or POD5) which are com
patible with Oxford Nanopore base-callers. Importantly, this 
tool is not intended to be used to explore base-calling itself. 
None of the signal methods employed will capture any of the 
nuance of real signal, rather they are simply signals that can 
be meaningfully interpreted by base-callers. This tool enables 
cheap testing and development of software designed to ex
ploit adaptive sampling and real-time analysis of nanopore 
sequence data.

2 Software implementation
Icarust is implemented in Rust (https://www.rust-lang.org/), us
ing the tonic package (https://github.com/hyperium/tonic/tree/ 
master) to provide gRPC Remote Procedural Call (gRPC) 
support. Rust was chosen as it was the fastest gRPC implemen
tation (https://github.com/LesnyRumcajs/grpc_bench/wiki/ 
2022-01-11-bench-results), and is naturally asynchronous. An 
overview of the architecture is shown in Supplementary Fig. S1. 
All MinKNOW API endpoints required by ReadFish (Payne 
et al. 2021) are implemented.

2.1 Squiggle generation
In order to serve signal data (squiggle), we employ one of two 
methods. For R9 data, we utilize the ONT base-caller Scrappie 
to convert the reference to an array of squiggle values. These 
have to be pre-computed as the conversion is slower than se
quence data are generated. Icarust then randomly selects a read 
length and starting location from the pre-computed array for 
each channel, and serves chunks of this selection, at approxi
mately 4 kHz. This approach is useful as the signal is generated 
by reversing the base-caller network, but is limited by the large 
file size of the pre-computed squiggle and the lack of support 
for later pore types in Scrappie.

The second method utilizes pore models provided by ONT 
for research purposes (https://github.com/nanoporetech/kmer_ 
models/). We again select a random start point and read length 
from the reference sequence and convert to signal according to 
the pore model. The pore models are z-score normalized so 
must be denormalized for base-calling as in Equation (1). 

Z � score value� Signal Std: devþ Signal mean (1) 

Parameter values are chosen sufficient to obtain signal that 
can be aligned, see the Supplementary repository for note
books detailing Z-score denormalization. Denormalization is 
sufficiently fast that is possible to directly convert sequence at 
the start of the simulation, and so no pre-computation is re
quired. The signal obtained is only sufficient for testing the 
real-time feedback properties of sequencing, it is not designed 
to simulate signal perfectly. See Supplementary Fig. S4 for 
identities of simulated reads.

2.2 Barcoding
In order to simulate multiplexed samples, the sequences for 
the NB12 barcoding kit (ONT) were converted to squiggle. 
The correct complements are then added to the start and end 

of the squiggle for a read, and are padded with some 
“adaptor” signal. The ratio of barcodes in a sample can be al
tered by providing weights to each barcode in a simulation 
profile TOML.

2.3 Flow cell health modelling
To more accurately recreate the decline of flow cell health 
across a sequencing run and capture the effects of applying 
adaptive sampling, we assign each simulated “channel” a 
probability to become saturated and so unavailable for fur
ther sequencing. When simulation begins, some channels are 
labelled as saturated immediately (default 15%). After a read 
ends, either naturally or as a result of an unblock, we deter
mine if the channel can produce another read. The probabil
ity of this is determined by the base chance (described in 
Equation (2)) multiplied by the length of the read, divided by 
10 000. This takes into account the fact that longer reads are 
more likely to block a channel than shorter reads. 

1:0
ðTarget yield=Mean read length=Number starting channelsÞ

(2) 

These parameters provide a near realistic decay in sequencing 
performance that mimics the overall total yield of a genuine 
sequencing experiment. All parameters can be defined by the 
user (see below).

2.4 Configuration
Icarust is configured by a combination of two files. A config
uration INI file provides Icarust software specific configura
tion, such as where TLS certificates can be found for securing 
the gRPC connection between the MinKNOW API and 
Icarust, and what ports Icarust listens on. It also provides se
quencer specific configuration, such as the number of chan
nels being simulated.

A second configuration TOML file holds the settings about 
the specific simulation taking place. This “Simulation 
profile” contains tables that can alter variables about the run, 
such as the proportions of the species being sequenced, the 
average read length of the sample, which barcodes are present 
on each sample. A full list of settings is detailed in the source 
code README (https://github.com/LooseLab/Icarust/blob/ 
master/README.md).

2.5 Output
As with a typical nanopore sequencing run, when 4000 reads 
have finished sequencing, a FAST5 or POD5 file (by user re
quest) containing the read squiggle and metadata is written 
out. The directory structure for both the FAST5 and POD5 
files mimic the same structure employed by MinKNOW. The 
availability of these files allows for downstream post run 
analysis of the simulation.

3 Results and discussion
3.1 Example use case
In order to test the utility of our tool, we compared running 
adaptive sampling using playback and Icarust with both the 
R9.4 pore Scrappie model and the R10 model we derived 
from ONTs pore model values. We performed the simple ex
periment recommended by ReadFish, targeting Chromosome 
20 and 21 on the human genome, on 512 channels (see 
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Supplementary methods). This resulted in 6 runs including 
controls for playback, Icarust R9 and R10, and then adaptive 
sampling runs using playback, Icarust R9 and R10. As shown 

in Fig. 1A, adaptive sampling gave the expected results for 
each run simulation method, with median read lengths re
duced for off target chromosomes. The median read lengths 

Figure 1. Comparison of an adaptive sampling experiment, targeting Chromosomes 20 and 21 on the human genome, between two simulated runs. The 
left column visualizes data generated using MinKNOWs playback, the middle column data generated using Icarust with R9 data, the right column data 
generated using Icarust with R10 data. The two run conditions, Control (orange) or Adaptive sampling (blue) are shown. (A). The median read length of 
the two runs for each condition. (B). The total yield in bases of the two runs for each condition. (C). The difference between the yield in the Adaptive and 
Control conditions as the fold change for each run. (D, E) Coverage plots showing the same adaptive sampling target (Chr 11, 12,666,921–12,952,237) 
from a real human sequencing run, and a replication run, simulated using Icarust R9 data. The top section of the plots shows the whole coverage over 
Chr 11. Coverage is split between Sequenced (Blue) and Unblocked reads (Orange). Charts plotted by MinoTour.
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for the on target chromosomes (20 and 21) remained close 
to, or the same as, the control for both simulation methods.

However the effect adaptive sampling has on the experi
mental outcome varies by simulation method Fig. 1B and C. 
The yield (Fig. 1B) for playback runs is lowered when adap
tive sampling is applied, likely a consequence of unblocking 
reads without the ability to replace them with new molecules. 
As a consequence, there is no enrichment in yield. In contrast, 
Icarust generated experiments, where reads can be replaced 
with new molecules, demonstrate clear enrichment of the tar
get chromosomes. Fig. 1C, shows the ratio of the yields be
tween the Control and Adaptive conditions and clearly shows 
enrichment with Icarust simulations. In the R9 Icarust simu
lation on target yield is enriched approximately 15� com
pared to the control, whereas the MinKNOW simulated run 
has a lower yield around 0.7� the control. In the R10 Icarust 
simulation, enrichment is similar, if slightly lower. We specu
late this reduction is due to the shorter reads in this simula
tion (20kb compared with 28kb), and an increase in read 
noise due to our self derived models.

We recreated a human adaptive sampling sequencing run 
using Icarust, applying the same target set and using 
ReadFish to perform adaptive sampling. We then uploaded 
the run to MinoTour (Munro et al. 2022) in real-time to 
monitor enrichment. We could recreate the performance of 
this run as shown in Fig. 1D and 1E.

4 Conclusion
Icarust allows users to quickly and cheaply test adaptive sam
pling experiments and develop new software for ONT adap
tive sampling workflows. Icarust can simulate barcoded 
(Supplementary Fig. S3) and non-barcoded sequencing runs 
from any provided reference sequence, sequencing runs using 
amplicon based libraries (Munro et al. 2023), and can simu
late both MinION or PromethION scale flow cells with either 
DNA R9, R10 or RNA02 signal.

Implemented in Rust, Icarust is fast, reliable, memory safe 
and energy efficient. Icarust is not intended to be a perfect recre
ation of real squiggle data, instead it is a close enough facsimile 
to allow software development and testing of experimental set
ups. The software is freely available, with a maintained docker 
image allowing easy adoption by the Nanopore Community.
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