
Sequence analysis

Icarust, a real-time simulator for Oxford Nanopore
adaptive sampling
Rory Munro 1, Satrio Wibowo 1, Alexander Payne 1, Matthew Loose 1,�

1School of Life Sciences, Medical School, Queens Medical Centre, University of Nottingham, Nottingham NG72RD, United Kingdom
�Corresponding author. School of Life Sciences, Medical School, Queens Medical Centre, University of Nottingham, NG7 2UH, United Kingdom.
E-mail: matthew.loose@nottingham.ac.uk (M.L.)
Associate Editor: Can Alkan

Abstract
Motivation: Oxford Nanopore Technologies (ONT) sequencers enable real-time generation of sequence data, which allows for concurrent
analysis during a run. Adaptive sampling leverages this real-time capability in extremis, rejecting or accepting reads for sequencing based on as
sessment of the sequence from the start of each read. This functionality is provided by ONT’s software, MinKNOW (Oxford Nanopore
Technologies). Designing and developing software to take advantage of adaptive sampling can be costly in terms of sequencing consumables,
using precious samples and preparing sequencing libraries. MinKNOW addresses this in part by allowing the replay of previously sequenced
runs for testing. However, as we show, the sequencing output only partially changes in response to adaptive sampling instructions. Here we
present Icarust, a tool enabling more accurate approximations of sequencing runs. Icarust recreates all the required endpoints of MinKNOW to
perform adaptive sampling and writes output compatible with current base-callers and analysis pipelines. Icarust serves nanopore signal simu
lating a MinION or PromethION flow cell experiment from any reference genome using either R9 or R10 pore models. We show that simulating
sequencing runs with Icarust provides a realistic testing and development environment for software exploiting the real-time nature of
Nanopore sequencing.
Availability and implementation: All code is open source and freely available here—https://github.com/LooseLab/Icarust. Icarust is imple
mented in Rust, with a docker container also available. The data underlying this article will be shared on reasonable request to the corresponding
author.

1 Introduction
Nanopore sequencing, as developed by Oxford Nanopore
Technologies (ONT), is unique as read data are available for
analysis as soon as individual molecules complete passing
through the nanopore (Hook and Timp 2023). It is even possi
ble to observe and analyse molecules as they are being se
quenced (Loose et al. 2016). These properties enable methods
such as adaptive sampling whereby individual molecules can be
chosen for sequencing from a library (Loose et al. 2016, Payne
et al. 2021). Molecules which are on target are left to finish
passing through the pore, whereas off target molecules are
rejected from the pore, in a process known as unblocking. This
frees up the pore to sequence more molecules. Real-time analy
sis of sequence data is possible, but tools utilizing these
approaches can be complex and costly to develop. Additionally,
any tool changing the output of a sequencer could, unintention
ally, negatively impact sequencing performance. Therefore thor
ough testing of tools is required ideally without incurring
significant cost.

ONT provides a piece of software, MinKNOW, to control
nanopore sequencing. All interactions with the sequencer are
conducted via MinKNOW through an open Application
Programming Interface (API) (https://github.com/nanopore
tech/minknow_api). MinKNOW can be configured to play
back prerecorded sequencing data, which enables some

simulation options, providing a route to develop tools and
analysis methods without significant expense. However, these
simulations are limited as reads rejected from a pore are not
actually removed from the simulation—instead the original
read is fragmented at the point the read would have been
unblocked. This results in single original long reads being di
vided into smaller fragments if they are sent an unblock com
mand. This approach also requires a pre-recorded bulk file
for a given sample and experiment (Payne et al. 2021). Other
simulation tools have been developed to address similar prob
lems. Uncalled, software to implement adaptive sampling
functionality, included a simulator that can be driven from
pre-existing sequence fast5 files (Kovaka et al. 2021).
However, to our knowledge this simulator does not remove
the need for pre-existing data sets nor can any generic imple
mentation of adaptive sampling be developed to use it. Other
ONT signal simulators exist including Squigulator and
DeepSignal 1.5 (Li et al. 2020, Gamaarachchi et al. 2023), al
though these approaches do not enable real-time simulation
for serving squiggle chunks for adaptive sampling.

To address these challenges, we developed Icarust which
mimics the functions of MinKNOW. Icarust generates signal
data (“squiggle”) derived from the output of “Scrappie”
(https://github.com/nanoporetech/scrappie) and serves this
signal in real-time using an identical API to the one imple
mented in MinKNOW itself. Icarust can also generate R10.4

Received: 19 June 2023; Revised: 21 December 2023; Editorial Decision: 14 February 2024; Accepted: 11 March 2024
The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2024, 40(4), btae141
https://doi.org/10.1093/bioinformatics/btae141
Advance Access Publication Date: 13 March 2024
Applications Note

https://orcid.org/0000-0003-3158-0303
https://orcid.org/0000-0002-8892-3808
https://orcid.org/0000-0002-1962-3019
https://orcid.org/0000-0002-5264-0929
https://github.com/LooseLab/Icarust
https://github.com/nanoporetech/minknow_api
https://github.com/nanoporetech/minknow_api
https://github.com/nanoporetech/scrappie

pore squiggle data, and RNA02 squiggle data using models
provided by ONT (https://github.com/nanoporetech/kmer_
models/). Icarust can simulate any genome, incorporate barc
odes and respond to requests to reject reads via the same
adaptive sampling API as MinKNOW. Icarust can also simu
late amplicon based sequencing experiments. Data from
Icarust are written to files (FAST5 or POD5) which are com
patible with Oxford Nanopore base-callers. Importantly, this
tool is not intended to be used to explore base-calling itself.
None of the signal methods employed will capture any of the
nuance of real signal, rather they are simply signals that can
be meaningfully interpreted by base-callers. This tool enables
cheap testing and development of software designed to ex
ploit adaptive sampling and real-time analysis of nanopore
sequence data.

2 Software implementation
Icarust is implemented in Rust (https://www.rust-lang.org/), us
ing the tonic package (https://github.com/hyperium/tonic/tree/
master) to provide gRPC Remote Procedural Call (gRPC)
support. Rust was chosen as it was the fastest gRPC implemen
tation (https://github.com/LesnyRumcajs/grpc_bench/wiki/
2022-01-11-bench-results), and is naturally asynchronous. An
overview of the architecture is shown in Supplementary Fig. S1.
All MinKNOW API endpoints required by ReadFish (Payne
et al. 2021) are implemented.

2.1 Squiggle generation
In order to serve signal data (squiggle), we employ one of two
methods. For R9 data, we utilize the ONT base-caller Scrappie
to convert the reference to an array of squiggle values. These
have to be pre-computed as the conversion is slower than se
quence data are generated. Icarust then randomly selects a read
length and starting location from the pre-computed array for
each channel, and serves chunks of this selection, at approxi
mately 4 kHz. This approach is useful as the signal is generated
by reversing the base-caller network, but is limited by the large
file size of the pre-computed squiggle and the lack of support
for later pore types in Scrappie.

The second method utilizes pore models provided by ONT
for research purposes (https://github.com/nanoporetech/kmer_
models/). We again select a random start point and read length
from the reference sequence and convert to signal according to
the pore model. The pore models are z-score normalized so
must be denormalized for base-calling as in Equation (1).

Z � score value� Signal Std: devþ Signal mean (1)

Parameter values are chosen sufficient to obtain signal that
can be aligned, see the Supplementary repository for note
books detailing Z-score denormalization. Denormalization is
sufficiently fast that is possible to directly convert sequence at
the start of the simulation, and so no pre-computation is re
quired. The signal obtained is only sufficient for testing the
real-time feedback properties of sequencing, it is not designed
to simulate signal perfectly. See Supplementary Fig. S4 for
identities of simulated reads.

2.2 Barcoding
In order to simulate multiplexed samples, the sequences for
the NB12 barcoding kit (ONT) were converted to squiggle.
The correct complements are then added to the start and end

of the squiggle for a read, and are padded with some
“adaptor” signal. The ratio of barcodes in a sample can be al
tered by providing weights to each barcode in a simulation
profile TOML.

2.3 Flow cell health modelling
To more accurately recreate the decline of flow cell health
across a sequencing run and capture the effects of applying
adaptive sampling, we assign each simulated “channel” a
probability to become saturated and so unavailable for fur
ther sequencing. When simulation begins, some channels are
labelled as saturated immediately (default 15%). After a read
ends, either naturally or as a result of an unblock, we deter
mine if the channel can produce another read. The probabil
ity of this is determined by the base chance (described in
Equation (2)) multiplied by the length of the read, divided by
10 000. This takes into account the fact that longer reads are
more likely to block a channel than shorter reads.

1:0
ðTarget yield=Mean read length=Number starting channelsÞ

(2)

These parameters provide a near realistic decay in sequencing
performance that mimics the overall total yield of a genuine
sequencing experiment. All parameters can be defined by the
user (see below).

2.4 Configuration
Icarust is configured by a combination of two files. A config
uration INI file provides Icarust software specific configura
tion, such as where TLS certificates can be found for securing
the gRPC connection between the MinKNOW API and
Icarust, and what ports Icarust listens on. It also provides se
quencer specific configuration, such as the number of chan
nels being simulated.

A second configuration TOML file holds the settings about
the specific simulation taking place. This “Simulation
profile” contains tables that can alter variables about the run,
such as the proportions of the species being sequenced, the
average read length of the sample, which barcodes are present
on each sample. A full list of settings is detailed in the source
code README (https://github.com/LooseLab/Icarust/blob/
master/README.md).

2.5 Output
As with a typical nanopore sequencing run, when 4000 reads
have finished sequencing, a FAST5 or POD5 file (by user re
quest) containing the read squiggle and metadata is written
out. The directory structure for both the FAST5 and POD5
files mimic the same structure employed by MinKNOW. The
availability of these files allows for downstream post run
analysis of the simulation.

3 Results and discussion
3.1 Example use case
In order to test the utility of our tool, we compared running
adaptive sampling using playback and Icarust with both the
R9.4 pore Scrappie model and the R10 model we derived
from ONTs pore model values. We performed the simple ex
periment recommended by ReadFish, targeting Chromosome
20 and 21 on the human genome, on 512 channels (see

2 Munro et al.

https://github.com/nanoporetech/kmer_models/
https://github.com/nanoporetech/kmer_models/
https://www.rust-lang.org/
https://github.com/hyperium/tonic/tree/master
https://github.com/hyperium/tonic/tree/master
https://github.com/LesnyRumcajs/grpc_bench/wiki/2022-01-11-bench-results
https://github.com/LesnyRumcajs/grpc_bench/wiki/2022-01-11-bench-results
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae141#supplementary-data
https://github.com/nanoporetech/kmer_models/
https://github.com/nanoporetech/kmer_models/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae141#supplementary-data
https://github.com/LooseLab/Icarust/blob/master/README.md
https://github.com/LooseLab/Icarust/blob/master/README.md

Supplementary methods). This resulted in 6 runs including
controls for playback, Icarust R9 and R10, and then adaptive
sampling runs using playback, Icarust R9 and R10. As shown

in Fig. 1A, adaptive sampling gave the expected results for
each run simulation method, with median read lengths re
duced for off target chromosomes. The median read lengths

Figure 1. Comparison of an adaptive sampling experiment, targeting Chromosomes 20 and 21 on the human genome, between two simulated runs. The
left column visualizes data generated using MinKNOWs playback, the middle column data generated using Icarust with R9 data, the right column data
generated using Icarust with R10 data. The two run conditions, Control (orange) or Adaptive sampling (blue) are shown. (A). The median read length of
the two runs for each condition. (B). The total yield in bases of the two runs for each condition. (C). The difference between the yield in the Adaptive and
Control conditions as the fold change for each run. (D, E) Coverage plots showing the same adaptive sampling target (Chr 11, 12,666,921–12,952,237)
from a real human sequencing run, and a replication run, simulated using Icarust R9 data. The top section of the plots shows the whole coverage over
Chr 11. Coverage is split between Sequenced (Blue) and Unblocked reads (Orange). Charts plotted by MinoTour.

Icarust 3

for the on target chromosomes (20 and 21) remained close
to, or the same as, the control for both simulation methods.

However the effect adaptive sampling has on the experi
mental outcome varies by simulation method Fig. 1B and C.
The yield (Fig. 1B) for playback runs is lowered when adap
tive sampling is applied, likely a consequence of unblocking
reads without the ability to replace them with new molecules.
As a consequence, there is no enrichment in yield. In contrast,
Icarust generated experiments, where reads can be replaced
with new molecules, demonstrate clear enrichment of the tar
get chromosomes. Fig. 1C, shows the ratio of the yields be
tween the Control and Adaptive conditions and clearly shows
enrichment with Icarust simulations. In the R9 Icarust simu
lation on target yield is enriched approximately 15� com
pared to the control, whereas the MinKNOW simulated run
has a lower yield around 0.7� the control. In the R10 Icarust
simulation, enrichment is similar, if slightly lower. We specu
late this reduction is due to the shorter reads in this simula
tion (20kb compared with 28kb), and an increase in read
noise due to our self derived models.

We recreated a human adaptive sampling sequencing run
using Icarust, applying the same target set and using
ReadFish to perform adaptive sampling. We then uploaded
the run to MinoTour (Munro et al. 2022) in real-time to
monitor enrichment. We could recreate the performance of
this run as shown in Fig. 1D and 1E.

4 Conclusion
Icarust allows users to quickly and cheaply test adaptive sam
pling experiments and develop new software for ONT adap
tive sampling workflows. Icarust can simulate barcoded
(Supplementary Fig. S3) and non-barcoded sequencing runs
from any provided reference sequence, sequencing runs using
amplicon based libraries (Munro et al. 2023), and can simu
late both MinION or PromethION scale flow cells with either
DNA R9, R10 or RNA02 signal.

Implemented in Rust, Icarust is fast, reliable, memory safe
and energy efficient. Icarust is not intended to be a perfect recre
ation of real squiggle data, instead it is a close enough facsimile
to allow software development and testing of experimental set
ups. The software is freely available, with a maintained docker
image allowing easy adoption by the Nanopore Community.

Acknowledgments
We would like to thank all of the team at Deepseq
Nottingham and in particular Nadine Holmes for library
preparation, and Lukas Weilguny and Lea Kaufmann for
helpful troubleshooting and discussions. We would like to ac
knowledge Stuart Reid from Oxford Nanopore Technologies
for help with deriving the R10 model.

Author contributions
M.L. and R.M. conceived the software, R.M wrote the initial
version, the manuscript and analyses. S.W contributed fea
tures to the software. A.P contributed code and guidance to
the code.

Supplementary data
Supplementary data are available at Bioinformatics online.

Conflict of interest
M.L. was a member of the MinION access program and has
received free flow cells and sequencing reagents in the past.
M.L. has received reimbursement for travel, accommodation
and conference fees to speak at events organized by Oxford
Nanopore Technologies.

Funding
R.M. and A.P. were supported by BBSRC iCASE student
ships. SW is supported by the LongTrec project.

References
Gamaarachchi H, Ferguson JM, Samarakoon H et al. Squigulator: sim

ulation of nanopore sequencing signal data with tunable noise
parameters. bioRxiv, https://doi.org/10.1101/2023.05.09.
539953, 2023.

Hook PW, Timp W. Beyond assembly: the increasing flexibility of
single-molecule sequencing technology. Nat Rev Genet 2023;24:
627–41. https://doi.org/10.1038/s41576-023-00600-1.

Kovaka S, Fan Y, Ni B et al. Targeted nanopore sequencing by real-time
mapping of raw electrical signal with UNCALLED. Nat Biotechnol
2021;39:431–41. https://doi.org/10.1038/s41587-020-0731-9.

Li Y, Wang S, Bi C et al. DeepSimulator1.5: a more powerful, quicker
and lighter simulator for nanopore sequencing. Bioinformatics
2020;36:2578–80. https://doi.org/10.1093/bioinformatics/btz963.

Loose M, Malla S, Stout M. Real-time selective sequencing using nano
pore technology. Nat Methods 2016;13:751–4. https://doi.org/10.
1038/nmeth.3930.

Munro R, Santos R, Payne A et al. Minotour, real-time monitoring and
analysis for nanopore sequencers. Bioinformatics 2022;38:1133–5.
https://doi.org/10.1093/bioinformatics/btab780.

Munro R, Holmes N, Moore C et al. A framework for real-time moni
toring, analysis and adaptive sampling of viral amplicon nanopore
sequencing. Front Genet 2023;14:1138582. https://doi.org/10.
3389/fgene.2023.1138582.

Payne A, Holmes N, Rakyan V et al. BulkVis: a graphical viewer for ox
ford nanopore bulk FAST5 files. Bioinformatics 2018;35:2193–8.
https://doi.org/10.1093/bioinformatics/bty841.

Payne A, Holmes N, Clarke T et al. Readfish enables targeted nanopore
sequencing of gigabase-sized genomes. Nat Biotechnol 2021;39:
442–50. https://doi.org/10.1038/s41587-020-00746-x.

4 Munro et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae141#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae141#supplementary-data
https://doi.org/10.1101/2023.05.09.539953
https://doi.org/10.1038/s41576-023-00600-1
https://doi.org/10.1038/s41587-020-0731-9
https://doi.org/10.1093/bioinformatics/btz963
https://doi.org/10.1038/nmeth.3930
https://doi.org/10.1038/nmeth.3930
https://doi.org/10.1093/bioinformatics/btab780
https://doi.org/10.3389/fgene.2023.1138582
https://doi.org/10.3389/fgene.2023.1138582
https://doi.org/10.1093/bioinformatics/bty841
https://doi.org/10.1038/s41587-020-00746-x

	Active Content List
	1 Introduction
	2 Software implementation
	3 Results and discussion
	4 Conclusion
	Acknowledgments
	Author contributions
	Supplementary data
	Conflict of interest
	Funding
	References

