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FinaleMe:PredictingDNAmethylationby the
fragmentation patterns of plasma cell-
free DNA

Yaping Liu 1,2,3,4,5,6,7,8,9 , Sarah C. Reed8,10, Christopher Lo8,
Atish D. Choudhury 8,11, Heather A. Parsons 11, Daniel G. Stover 11,
Gavin Ha 8, Gregory Gydush8, Justin Rhoades8, Denisse Rotem8,
Samuel Freeman 8, David W. Katz 1,2,3, Ravi Bandaru 1,2,3, Haizi Zheng 3,
Hailu Fu 1,2,3, Viktor A. Adalsteinsson 8 & Manolis Kellis 8,9

Analysis of DNA methylation in cell-free DNA reveals clinically relevant bio-
markers but requires specialized protocols such as whole-genome bisulfite
sequencing.Meanwhile,millions of cell-freeDNA samples are beingprofiled by
whole-genome sequencing. Here, we develop FinaleMe, a non-homogeneous
Hidden Markov Model, to predict DNA methylation of cell-free DNA and,
therefore, tissues-of-origin, directly from plasma whole-genome sequencing.
We validate the performance with 80 pairs of deep and shallow-coverage
whole-genome sequencing and whole-genome bisulfite sequencing data.

DNA methylation plays an instrumental role in gene regulation during
disease progression and embryonic development1,2. Genome-wide
DNA methylation level in cell-free DNA (cfDNA) has been extensively
studied for disease diagnosis and prognosis3–7. The current gold
standard to measure DNA methylation from cfDNA molecules is
bisulfite sequencing8. However, sodium bisulfite treatment causes
non-uniform sequence-dependent degradation of most DNA
fragments9,10. The substantial loss of input DNA during the bisulfite
treatment limits the sensitivity of diagnostic tests and analyses11.
Recent advances in enzymatic conversion and long-read sequencing
approaches have partly mitigated these issues but require specialized
protocols12–16.

Unlike genomic DNA (gDNA), cfDNA is not randomly fragmented
and its fragmentation pattern is highly associated with the local epi-
genetic background17,18. Several recent studies have identified sig-
nificantly different DNA fragmentation patterns between methylated
and unmethylated cfDNA molecules7,19,20. These findings suggest the

possibility of computationally inferring DNA methylation levels from
cfDNA fragmentation patterns. One recent study provided a proof-of-
concept solution to predict the binary status of DNA methylation in
high-coverage whole-genome bisulfite sequencing (WGBS) through a
deep-learning model19. However, the ability to predict methylation
status from cfDNA whole-genome sequencing (WGS) remains unex-
plored. The 2020 American College of Obstetricians and Gynecolo-
gists (ACOG) guidelines recommend non-invasive prenatal testing
(NIPT) for all pregnancies regardless of risk, which will eventually
result inmillions of shallow-coverage (~0.1X-1X) cfDNAWGSevery year
in the US. In addition, hundreds of thousands of cfDNA WGS samples
have already been sequenced for cancer early detection and other
purposes worldwide by academic communities and commercial
entities21.

Here, to leverage cfDNA WGS datasets and advance under-
standing of gene regulation and human health22, we develop a com-
putational method, named FinaleMe (FragmentatIoN AnaLysis of cEll-
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free DNAMethylation), to predict the DNA methylation status in each
CpG at each cfDNA fragment and obtain the continuous DNA methy-
lation level at CpG sites, mostly accurate in CpG rich regions. We fur-
ther predict the associated tissues-of-origin status from the inferred
methylation patterns. We validate the predictions of bothmethylation
level and tissues-of-origin status using paired WGS and WGBS of
plasma cfDNA from the same tube of blood across different physio-
logical conditions at deep (~16-39X) and shallow (~0.1X) WGS.

Results
Since DNA methylation has been tightly correlated with nucleosome
occupancy23,24, we hypothesized that if the boundaries of cfDNA frag-
ments are biased by their association with nucleosomes, then the
fragmentation pattern observed in each cfDNA molecule should indi-
cate its associated DNA methylation pattern and thus its tissue-of-
origin. To evaluate this hypothesis, we first studied the correlation
between fragment size and mean methylation level of DNA fragments
from publicly available WGBS of cfDNA and gDNA of buffy coat sam-
ples from two healthy individuals7 (Fig. 1). Replicate samples of cfDNA
showed waved methylation patterns at mono-nucleosomal lengths
that were not present in the gDNA samples. This observation sup-
ported the hypothesis that the fragmentation pattern of cfDNA can
provide information related to the DNA methylation level.

Next, webuilt a non-homogeneousHiddenMarkovModel (HMM),
named FinaleMe, to predict themethylation status in cfDNA (details in
Methods and Supplementary Methods, Fig. 2). Since CpGs are not
evenly distributed in thehumangenome,we incorporated thedistance
between CpG sites into the model and utilized the following three
features: fragment length, normalized coverage, and the distance of
each CpG to the center of the DNA fragment (Fig. 1b). We first

evaluated the model using high-coverage WGBS of cfDNA (from non-
pregnant healthy individuals), masking the methylation status, and
then benchmarked the model performance using the ground truth
DNA methylation states at each CpG in each DNA fragment. After
sampling an equal number of themethylated and unmethylated CpGs,
we observed high performance in predicting the methylation status at
each single CpG from each DNA fragment based on the area under the
receiver operating characteristic curve (auROC) within CpG-rich
regions (auROC=0.91, for CpGs at fragments with ≥5 CpGs, Fig. 1c).

To further benchmark the model performance in cfDNAWGS, we
generated our ownmatched high-coverage WGS (~16–39X) andWGBS
(~10–15X) data from plasma cfDNA samples within the same tube of
blood in healthy individuals and a prostate cancer patient (Fig. 3a,
Supplementary Data 1–3).Without using cfDNAWGBS data,we trained
the HMM model and predicted the methylation level from the same
cfDNA WGS dataset. By comparing the results with the methylation
level at CpG sites in the reference genome from matched WGBS, we
achieved a high correlation at single-CpGs and 1 kb windows in CpG-
rich regions (CpG island and CpG island shore regions, Fig. 3b, c). At
differentiallymethylated regions (DMRs) detected in the cfDNAWGBS
between cancer and healthy individuals at CpG-rich regions, we also
observed consistentmethylation changes in the predictedmethylation
levels from matched cfDNA WGS (Fig. 3d). To check the potential
overfitting problem of the model, we further trained and decoded the
model for gDNAWGS fromcancer and normal blood cells, inwhich the
fragments are sonicated and do not have a correlation with the epi-
genetics status. The predicted results for gDNAWGS did not show any
methylation differences between cancer and normal cells in the DMRs
detected at the matched gDNA WGBS datasets (Supplementary
Fig. 1a). This result suggested that the differential methylation we
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Fig. 1 | Inferring DNAmethylation from high-coverage whole-genome bisulfite
sequencing. a The correlation between mean DNA methylation and fragment
lengths in cfDNA and gDNAWGBS in healthy individuals. bDiagram of the features
utilized for the inference of DNA methylation level. Unmethy: unmethylated CpG.
Methy: methylated CpG. c Receiver operating characteristic curve (ROC) for the

model performance at deep WGBS in fragments with different numbers of CpGs.
AUC: Area under the ROC Curve. Red line represents the ROC for fragments with
equal ormore than5CpGs. Yellow line represents theROC for fragmentswith equal
or more than 3 CpGs. Blue line represents the ROC for fragments with equal or
more than 1 CpG. Source data are provided as a Source Data file.
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predicted in cfDNA WGS was not driven by the methylation prior we
usedbut indeed the fragmentation features. However, wenoticed that,
in the CpG-poor regions, FinaleMe did not work as well as in CpG-rich
regions (Supplementary Fig. 1b). We further assessed the methylation
level at important regulatory elements, such as CpG island (CGI) pro-
moters (Fig. 3e), 5’exon boundaries, and CTCF motifs (Supplementary
Fig. 2). These results showed a high correlation between the ground
truth (WGBS) and the prediction (WGS) in cfDNA from both healthy
individuals and the cancer patient (Fig. 3e, Supplementary Figs. 2, 3),
but not in gDNA dataset (Supplementary Fig. 4).

Since DNA methylation in CGI and CGI shore regions are often
cell-type-specific,we further estimated the tissue-of-origin in cfDNAby
using DNA methylation levels that were measured or predicted using
WGBS andWGS, respectively.We found similar tissue-of-origin profiles
between predicted and measured methylation levels for each of the
individuals in both cancer and healthy conditions (Fig. 3f), which was
also largely consistent with other previous tissues-of-origin studies by
cfDNA WGBS3,6.

Deep coverage WGBS and WGS remain costly for routine clinical
application. Many publicly available cfDNA WGS datasets are
sequenced with shallow coverage (0.1–1X). We sought to determine
whether we could predict DNAmethylation levels using ultra-low-pass
whole-genome sequencing (~0.1X, ULP-WGS). We generated matched
ULP-WGS and ultra-low-pass WGBS (~0.1X, ULP-WGBS) of cfDNA from
77 individuals, including healthy donors, breast, and prostate cancer
patients (SupplementaryData 1–3).Weexamined themethylation level
globally and at important regulatory elements, such as CGI promoters,
and observed similar average methylation profiles in predicted and

measured methylation levels from ULP-WGS and WGBS, respectively
(Fig. 4a, b). We also observed the differential methylation level in ULP-
WGS at differentially methylated regions detected in ULP-WGBS
(Supplementary Fig. 5). Next, we assessed whether methylation
levels from ultra-low-pass sequencing could be utilized for the esti-
mation of tissues-of-origin. We downsampled the deep coverage
sequencing results and found largely consistent tissue-of-origin esti-
mates with ultra-low-pass sequencing (Supplementary Fig. 6). Finally,
we estimated the tissue-of-origin in both ULP-WGS andULP-WGBS.We
found consistent results between the two assays. The fractions of
prostate or breast-originated cell types are low in healthy individuals
and showed a high correlation with tumor fraction as estimated by
copy number variations (ichorCNA) across all samples in both assays
(Fig. 4c). These results suggested that the application of FinaleMe to
ULP-WGS is consistent with ULP-WGBS for both DNAmethylation and
tissues-of-origin predictions.

Discussion
Our study demonstrates the ability to infer cfDNA methylation level
and tissues-of-origin status directly from deep and shallow-coverage
cfDNAWGS. This overcomes a major hurdle associated with bisulfite
conversion of limited amounts of cfDNA and, more importantly,
enables the usage of a large number of existing, publicly available
cfDNA genomic datasets for epigenetic analysis. Our predictions are
most accurate in CpG-rich regions of the genome but not in CpG-
poor regions. Further work is required to improve the predictions in
CpG-poor regions for the detection of other disease-related methy-
lation features, such as the partially methylated domains in cancers.
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Moreover, the Bayesian prior we utilized from genomic DNA
methylomemay cause overfitting problems and the false positive call
of DMRs in cancer WGS. Previous studies have suggested that ana-
lysis of tissue-of-origin is possible based on analysis of nucleosome
spacing in WGS of cfDNA17. However, only the relative rank of
most related cell types is estimated in deep WGS. The tissues-of-
origin estimation from inferred DNA methylation here can provide

the estimation of absolute fractions in each cell type and utilize
the rich reference methylome resources. Although we do not expect
to replace bisulfite sequencing for direct measurement of methyla-
tion levels, we provide a generalizable method that could
enable the methylation analysis of cfDNA samples with limited
material or samples that would otherwise only undergo genomic
profiling.
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Methods
Ethics approval and consent to participate
This research study was approved by the Broad Institute Institutional
Review Board in accordance with the Declaration of Helsinki. De-
identified plasma sample collection was approved by the Dana-Farber
Cancer Institute and Broad Institute Institutional Review Boards. All
participants provided written informed consent to participate.

Clinical samples
Cancer patient blood samples were obtained from appropriately
consented patients as described in Adalsteinsson et al.25. Healthy
donor blood samples were obtained from appropriately consented
individuals from Research Blood Components (http://
researchbloodcomponents.com/services.html). Samples were col-
lected and fractionated as described in Adalsteinsson et al.25.

Whole-genome bisulfite sequencing of cfDNA
Library constructionwasperformedon25 ngof cfDNAusing theHyper
PrepKit (KapaBiosystems)withNEXTFlex Bisulfite-SeqBarcodes (Bioo
Scientific) and methylated adapters (IDT) along with HiFi Uracil+
polymerase (Kapa Biosystems) for library amplification. NEXTFlex
Bisulfite-Seq Barcodes were used at a final concentration of 7.5 μMand
the EZ-96 DNA Methylation-Lightning MagPrep kit (Zymo Research)
was used for bisulfite conversion of the adapter-ligated cfDNA prior to
library amplification. Libraries were sequenced using paired-end
100bp in the platform of HiSeq2500 (Illumina) with a 20% spike
of PhiX.

Whole-genome sequencing of cfDNA
Library construction was performed on 5–20ng of cfDNA using the
Hyper Prep Kit (Kapa Biosystems) and custom sequencing adapters
(IDT) on a Hamilton STAR-line liquid handling system. Libraries were
sequenced using paired-end 100bp in the platform of the HiSeq2500
(Illumina).

Model development and training
Data preprocessing. For WGS data, reads were aligned to the human
genome (GRCh37) using BWA-MEM 0.7.1526 with default parameters.
Each fragment containing CpGs in the autosomal chromosomes
reference genomewas used for the analysis. Fragment lengths ofmore
than 500 bp or less than 30 bp were discarded. Regions with coverage
more than 250× or ENCODE blacklist regions (merged wgEncodeDu-
keMapabilityRegionsExcludable and wgEncodeDacMapabil-
ityConsensusExcludable) were also discarded. Only high-quality reads
were considered in the following analysis (high quality: uniquely
mapped, no PCR duplicates, both of ends are mapped with mapping
qualities more than 30 and properly paired). To calculate the methy-
lation status for each CpG in each fragment, only bases with a base
quality of more than 5 were used.

For cfDNA WGBS data, a recent study demonstrated that the
existence of the jagged-end at the end of cfDNA fragment will affect
the estimation accuracy of DNA methylation27. We first generated the

M-bias plot by using Bismark28 tomap the readswithout trimming (see
Supplementary Fig. 7). To avoid the artifact potentially brought by the
jagged end for Fig. 1a, we trimmed the 40bp from the 5′ end and 10 bp
from 3′ end at the R2 reads. The 3′ end of R1 reads seems to be not
affected by the jagged-end problem. However, in CpG islands (often
open chromatin regions), cfDNA fragments are usually very small. To
avoid the potential bias at these small fragments, we also trimmed
40bp from 3′ end at the R1 reads, and the results were still largely the
same. After trimming, reads were aligned to the human genome
(GRCh37) using Bismark (v0.22.3) with bowtie2 (v2.3.5)29. The methy-
lation status of CpGs was counted from the first converted cytosine in
each of the fragments as described in Bis-SNP30. Fragment coverage at
each CpG site was first normalized by dividing the total number of
high-quality reads in the bamfile. Further, the three features (fragment
length, normalized coverage, and distance to the center of the frag-
ment) were transformed into Z-score by the mean and standard
deviation of the features within the same bam file as the input for the
HMM model (Fig. 2). All details are implemented in CpgMultiMetrics-
Stats.java (with parameters -stringentPaired for only high-quality
fragments and with parameters -wgsMode for WGS data). The
methylation level from WGBS was called by Bis-SNP v0.9030.

Non-homogeneous HiddenMarkovModel. The initiationmatrix was
summarized based on the methylation states of the first CpG in each
DNA fragment separately (Fig. 2). A nonparametric model was used to
calculate the initiation and transition matrix by considering the dis-
tance with adjacent CpG sites. A gaussian mixture model was applied
to model the emission likelihood of each of the three fragmentation
features (fragment length, coverage, and distance to the center of the
fragment). A weighted DNA methylation prior, estimated from
methylation level at genomic DNA (buffy coat) in healthy individuals,
was utilized to calculate the posterior emission probability of hidden
status only in the decoding (i.e., prediction) step, which models the
base DNA methylation differences in different genomic contexts. For
example, the probability of observing methylated event em given that
located at the CpG site with methylation prior k is:

Pr em
� �

=
Pr em jk� �

PrðkÞ
Pr em jk� �

Pr kð Þ+ Pr eu j1� k
� �ð1� PrðkÞÞ ð1Þ

Two states Hidden Markov Model (HMM) is implemented as
described in Rabiner31 at Jahmm framework with some adaptations to
our problem. Baum-Welch algorithm was used to estimate the para-
meters with a maximum of 50 iterations. The model was trained by all
the cfDNA fragments with at least 7 CpGs within the same fragments.
The number of CpGs was not limited at the decoding step. In low-
coverage data, we utilized an HMM model trained in high-coverage
samples (HD_45, a healthy individual) to estimate the model para-
meters and applied it directly to each ULP-WGS dataset for the
decoding. All details are implemented in FinaleMe.java (with para-
meters: -miniDataPoints 7 -gmm -covOutlier 3, for the training step and
parameters -decodeModeOnly for the decoding step).

Fig. 3 | Inferring DNA methylation from high-coverage whole-genome
sequencing. a Workflow to benchmark the model performance. Created with
BioRender.com. b Pearson and Spearman correlation of DNAmethylation at single
CpGs with different coverages at CpG island and CpG island shore regions between
matched cfDNA WGBS and WGS. Blue bars represent the Pearson correlation
coefficient. Orange bars represent the Spearman correlation coefficient.
c Scatterplot of DNAmethylation level within 1 kb non-overlapped bins (n = 116,133)
at CpG island and CpG island shore regions between matched cfDNA WGBS and
WGS. The correlation coefficient and p-value is calculated by two sided Pearson
correlation test in cor.test function in R. dHeatmap of measured (left panel, cfDNA
WGBS, purple) and predicted (right panel, matched cfDNA WGS, black) DNA
methylation level at hypermethylated differentially methylated windows (1 kb)

characterized in CGI and CGI shore regions (n = 2822). The row orders in both
WGBS andWGS datasets were based on the clustering of DNAmethylation levels in
WGBSonly. eAverage ground truth (WGBS) and predicted (WGS)DNAmethylation
level at CpG island promoter regions (n = 17,880) from cancer and healthy indivi-
duals. Orange line represents the ground truth from WGBS in the cancer patient.
Red line represents the predicted value fromWGS in the cancer patient. Green line
represents the ground truth from WGBS in the healthy individual. Blue line repre-
sents the predicted value fromWGS in the healthy individual. f The fraction of cell
types that contributed to cfDNA was estimated by matched WGS and WGBS. Red:
Neutrophil. Orange: B cell. Yellow: T cell. Blue: Macrophage. Cyan: Erythroblast.
Purple: Endothelia vein. Brown: Liver. Gray: Mammary epithelia. Black: Prostate
gland. Source data are provided as a Source Data file.
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GaussianMixture Model (GMM) initialization for HMMmodel. GMM
algorithm was utilized to estimate the initiation state of each CpG in
each fragmentby three fragmentation feature vectorswith amaximum
of 10,000 iterations. After GMM initialization, in WGBS, the methy-
lated and unmethylated states were identified by the mean methyla-
tion level of each state. InWGS data, the state with a higher distance to
the center was defined as the methylated state. Then the initiation

parameters of HMM model were estimated based on the GMM
initialization.

Initiation and transition probability. The initiation probability of each
state with the same offset from the start of the fragment was averaged
by the states of the first CpGswith the sameoffset range at all the high-
quality fragments. The transition probability matrix between states

Distance to TSS (bp) Distance to TSS (bp)
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was also calculated separately for each of the possible distance ranges
to the previous CpG.

Emission distributions. Three features were modeled by Multivariate
Mixture Gaussian distribution. Two components mixture of Gaussian
distribution was used to model each of the features separately.

Pr em jk� �
= 1� πð Þ×N μi,σ

2
i

� �
+π×N μj,σ

2
j

� �
ð2Þ

In the Viterbi decoding step, methylation prior estimated from
genomic DNA in buffy coat samples from healthy individuals7 was only
used to calculate the emission probability for each CpG.

KL divergence. Kullback-Leibler distance was used to estimate the
divergence of new HMM during Baum-Welch re-estimation. Since
methylation prior was used for the decoding step and is different at
different CpG site, 10,000 random fragments with a minimum of 5
CpGs is selected to calculate the Kullback-Leibler distance. If the dis-
tance between new and old HMM was less than 1e−4 or the changes of
distance were less than 1%, the model was considered converged.

Summary of themodel. In cfDNAWGS (Fig. 2), our HMMmodel infers
the model parameters directly from WGS data without using cfDNA
WGBSdata. Theprinciple of themodel is:we assume that there are two
binary states (u or m) in each CpG at each cfDNA fragment. These two
states are not observable in WGS (thus hidden). We assume that the
states are affected by three fragmentation features. At each CpG in
each fragment in the bam file (CpG point), we can obtain three fea-
tures: the fragment’s length, the CpG’s distance to the center of that
fragment, and the fragment coverage at that particular CpGposition in
the reference genome. We also assume the status of each CpG in each
fragment is a Multivariate Gaussian distribution of these three
features.

Step 1, we utilized aGaussianmixturemodel to classify all the CpG
points inWGS into two groups (u orm) to initiate theHMMmodel (the
initial parameters). Given the hypothesis in Fig. 1B, we always assume
“m” group has a larger average distance to the center of fragments.

Step 2,weapplied the initiatedparameters to theHMMmodel and
built a Markov chain for each single cfDNA fragment. Due to the
Markovprocess, the status of eachCpGpoint is affectedby its adjacent
CpG in the same fragment. Then, the Baum-Welch algorithm was used
to estimate the maximum likelihood parameters in the WGS dataset.
Different from the traditional HMM model that assumes equal transi-
tion probability between CpGs, we utilized a non-homogenous model
to estimate different transition probability matrices given different
distances between CpGs. Kullback-Leibler distance was utilized to
estimate whether or not the model converged during the iteration.

Step 3, after the estimation of parameters in step 2 (training), we
utilize the Viterbi algorithm to estimate the best state (u or m) in each
CpG at each fragment. Different from the traditional HMM model, we
add methylation prior from WGBS in a healthy buffy coat to calculate
the posterior probability.

Step 4, after the prediction in step 3, we aggregated the methy-
lation status across fragments at each CpG site in the reference gen-
ome and calculated the continuous methylation level (0-100%).

Performance evaluation
Comparison of the binary methylation status of each CpG in each
fragment (WGBS). The equal number of methylated and unmethy-
lated CpGs was randomly sampled at the evaluation step. Prediction
results were compared with ground truth methylation binary states at
each CpG in each cfDNA fragment of WGBS. The threshold was varied
to identify methylated status at the Viterbi decoding step in order to
calculate the ROC curve.

Comparison of the continuous methylation level at each CpG or
windows in the reference genome (paired WGBS and WGS). Fina-
leMewas trained anddecoded atWGSdata only. Themethylation level
was calculated by aggregating the binary methylation status across
fragments at each CpG in the reference genome. Finally, the con-
tinuous methylation level at each CpG or window was compared with
the methylation level obtained from matched WGBS in the same
blood draw.

Comparison of methylation profiles at important regulatory ele-
ments (pairedWGBSandWGS). FinaleMewas trained anddecoded at
WGSdata. Thepredictedmethylation level was calculated asdescribed
in above (section of Non-homogeneous Hidden Markov Model). The
average methylation level around CpG island promoters, 5′ end of
exons, and CTCF motifs were calculated by Bis-Tools as described in
Lay & Liu et al.32. CpG island definition was downloaded from UCSC
genome browser33. CpG island shorewas defined by the regions within
2 kb regions around the CGI.

Benchmark of the speed. We downsampled the high-coverage cfDNA
WGS data and calculated the time cost with different numbers of
fragments in the bam files (Supplementary Fig. 8). Benchmark was
performed at a single CPU in the computational cluster (Intel(R)
Xeon(R) Gold 6338 CPU @ 2.0GHz).

Tissue-of-origin deconvolution. To infer tissue of origin from mea-
sured or inferred DNA methylation data, we modeled patient methy-
lation data as a linear combination of reference methylomes. We
constrain the weights to sum up to one so that the weights can be
interpreted as tissue contribution to cfDNA. Quadratic programming
was utilized to solve the constrained optimization problem. This
method and approach closely follow the tissue deconvolution algo-
rithmdescribed in Sunet al. PNAS6. To reduce thenoise,weutilized the
methylation density at 1 kb non-overlapped windows within the CpG
island and CpG island shore regions at autosomes and binarized the
methylation level (window with methylation density <0.1 was defined
as 0, otherwise 1) in both referencemethylomes and cfDNA data. Only
windows with at least 10 Cs or Ts across all the reference methylomes
were utilized for the analysis. Only windows that were highly variable
across reference methylomes (top 1% most variable regions in the
reference methylomes) were further utilized for the deconvolution.

Fig. 4 | Inferring DNAmethylation and tissues-of-origin from cfDNA ULP-WGS.
a Average ground truth (ULP-WGBS, left panel) and predicted (ULP-WGS, right
panel) DNA methylation level from cancer and healthy individuals at CpG island
promoter regions (n = 17,880). Orange lines represent the ground truths fromULP-
WGBS in the cancer patients. Green lines represent the ground truths from ULP-
WGBS in the healthy individuals. Red lines represent thepredicted values fromULP-
WGS in the cancer patients. Blue lines represent the predicted values from ULP-
WGS in the healthy individuals. b T-SNE plot by using the DNAmethylation level in
the 100kb non-overlapped window in autosomes but only summarized from CGI

and CGI shore regions in the ground truth (ULP-WGBS, left panel) and predicted
(ULP-WGS, right panel) results from cancer (Orange: breast cancer, n = 22. Blue:
prostate cancer,n = 43) andhealthy individuals (Black,n = 12). c the concordanceof
prostate or breast-related cell-type fractions (Ground truth from ULP-WGBS: left
panel, Predicted from ULP-WGS: right panel) with tumor fraction estimated by
ichorCNA in both healthy (Black, n = 12) and cancers (Red: triple negative breast
cancer, n = 15. Orange: HER2+ breast cancer, n = 7. Blue: prostate cancer, n = 43).
The correlation coefficient and p-value are calculated by two.sided Pearson cor-
relation test in cor.test function in R. Source data are provided as a Source Data file.
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We incorporated WGBS from the major immune cell types (Neu-
trophil, B cell, T cell, Macrophage, Erythroblast cells), blood vessel
endothelial cells, and liver hepatocyte cells, as suggested byMoss 2018
Nature Communications3. We also incorporated methylomes from
mammary epithelial cells (HMEC) and prostate epithelial cells (PrEC)
since they are related to the cancer types we analyzed.

In the low pass data, we further relaxed our criteria about the
coverage to keepmore windows. The top 25% ofmost variable regions
in the reference methylomes were utilized for deconvolution. Win-
dows with less than 5 Cs or Ts in either referencemethylome or cfDNA
data weremarked as NA. Samples or windows with more than 80% NA
were filtered. We further imputed the missing data of the windows by
K-nearest neighbor (k = 5 and maxp = “p” in impute.knn function at
impute package, R 4.2.1) and finally binarized the methylation level
within the window as that in high-coverage data.

ichorCNA analysis. Estimation of tumor fractionwas performed using
ichorCNA as described previously in Adalsteinsson et al. Nature
Communications 201725. Specifically, we utilized readCounter with
parameters: --window 1000000 --quality 20 --chromosome
“1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,X,Y” to generate
the wig files. Then we utilized runIchorCNA.R with parameters: --nor-
mal “c(0.75)” --scStates “c(1,3)” --ploidy “c(2)” --maxCN 5 together with
gc_hg19_1000kb.wig, map_hg19_1000kb.wig, GRCh37.p13_centromer-
e_UCSC-gapTable.txt, and HD_ULP_PoN_1Mb_median_normAuto-
some_mapScoreFiltered_median.rds panel provided by ichorCNA to
calculate tumor fraction for each sample.

Differential methylation analysis. Differential methylation regions
(predefined non-overlapped 1 kb windows in autosomes) in high-
coverage WGBS were identified by metilene (v 0.2–8)34 with q value<
0.05. Data in ULP-WGBS are very sparse and noisy. Therefore, we utilized
two-sided Wilcoxon Rank Sum Tests to identify the windows that were
different between cancers andhealthy controlswith ap value cut-off 0.01.

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were randomized
to generate cfDNA sequencing libraries. The Investigators were not
blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Thepublicly available cfDNAWGBSdata used in this study are available
in the dbGaP database under accession code [https://www.ncbi.nlm.
nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000846.v1.p1]7.
The publicly available ULP-WGS data used in this study are available in
the dbGaP database under accession code [https://www.ncbi.nlm.nih.
gov/projects/gap/cgi-bin/study.cgi?study_id=phs001417.v1.p1]25. The
raw sequencing data for the deep WGS, WGBS. and ULP-WGBS data
generated in this study have been deposited in the Sequence Read
Archive with controlled access from dbGaP under accession code
phs003287.v1.p1 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs003287.v1.p1]. These data are available under
restricted access due to individual privacy concerns. Permanent
employees of an institution at a level equivalent to a tenure-track
professor or senior scientist with laboratory administration and over-
sight responsibilities may request access through dbGaP. The
requests, which aremanaged byNHGRI’s Data Access Committee, take
less than one month for approval, and access is permitted for 12
months. The processed and de-identified data are available in zeno-
do.org (https://doi.org/10.5281/zenodo.7779198)35. The remaining

data are available within the Article, Supplementary Information, and
Source Data file. Source data are provided with this paper.

Code availability
Code for FinaleMe and associated scripts are publicly available on
GitHubunder theMIT license for academic researchers: https://github.
com/epifluidlab/FinaleMe.git36. The zipped code is also available in
zenodo.org (https://doi.org/10.5281/zenodo.7779198)35.
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