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There is widespread overlap across major psychiatric disorders, and this is the case at different levels of observations, from genetic
variants to brain structures and function and to symptoms. However, it remains unknown to what extent these commonalities at
different levels of observation map onto each other. Here, we systematically review and compare the degree of similarity between
psychiatric disorders at all available levels of observation. We searched PubMed and EMBASE between January 1, 2009 and
September 8, 2022. We included original studies comparing at least four of the following five diagnostic groups: Schizophrenia,
Bipolar Disorder, Major Depressive Disorder, Autism Spectrum Disorder, and Attention Deficit Hyperactivity Disorder, with measures
of similarities between all disorder pairs. Data extraction and synthesis were performed by two independent researchers, following
the PRISMA guidelines. As main outcome measure, we assessed the Pearson correlation measuring the degree of similarity across
disorders pairs between studies and biological levels of observation. We identified 2975 studies, of which 28 were eligible for
analysis, featuring similarity measures based on single-nucleotide polymorphisms, gene-based analyses, gene expression, structural
and functional connectivity neuroimaging measures. The majority of correlations (88.6%) across disorders between studies, within
and between levels of observation, were positive. To identify a consensus ranking of similarities between disorders, we performed a
principal component analysis. Its first dimension explained 51.4% (95% Cl: 43.2, 65.4) of the variance in disorder similarities across
studies and levels of observation. Based on levels of genetic correlation, we estimated the probability of another psychiatric
diagnosis in first-degree relatives and showed that they were systematically lower than those observed in population studies. Our
findings highlight that genetic and brain factors may underlie a large proportion, but not all of the diagnostic overlaps observed in

the clinic.
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INTRODUCTION

Psychiatric disorders such as schizophrenia (SCZ), bipolar disorder
(BD), major depressive disorder (MDD), autism spectrum disorder
(ASD), and attention deficit hyperactivity disorder (ADHD) are
highly heritable, with genetic variance explaining from 34% to
77% of phenotypic variance [1]. Genome-wide association studies
(GWAS) have successfully identified genetic variants accounting
for part of this heritability, yet an important finding is that nearly
75% of significant genetic loci are shared by at least two disorders
[2]. The term “pleiotropy” refers to this finding, i.e, the same
genetic locus or variant contributes to more than one phenotype
or diagnostic group [3]. Statistical methods to estimate heritability
have been extended to measure genetic correlations (rg) which
represent the average effect of pleiotropy across all contributing
genomic variants.

A similar scenario has played out in neuroimaging across
psychiatric disorders. Initial brain-wide association studies have
sought to identify neuroimaging alterations linked to specific
diagnostic categories. However, brain differences that are specific
to a diagnostic category are yet to be identified. Instead, the field

has progressed in characterizing neural substrates shared across
disorders. Studies have suggested that neuropsychiatric disorders
may be related to similar hubs of vulnerability. Latent dimensions
across disorders have been identified at the structural [4] and
functional MRI levels [5]. Similar to genetic correlation (rg),
commonalities in brain structural and functional connectivity
have been replicated in several studies. Several studies have
queried the origins of these MRI correlations across psychiatric
disorders by comparing them to correlations observed at other
levels of observation, such as levels of gene transcription in the
brain [6] and common genetic variants [7-9].

Quantifying the similarities between psychiatric disorders is also
relevant to clinical practice. Pleiotropy manifests clinically by the
familial aggregation of mental disorders that transcends diag-
nostic boundaries [10, 11], as well as the widespread co-
occurrence of diagnoses in the same individuals or comorbidity
[12]. A diagnosis of any mental disorder increases the risk of
receiving a second distinct diagnosis [13, 14]. Moreover, co-
occurring disorders (not the primary diagnosis) may account for
11-83% of disability observed in patients [15]. The process of
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differential diagnosis and triage to specialized clinics requires
substantial resources delaying access to appropriate care [16],
even though there is increasing evidence that many therapeutic
interventions are effective across different diagnoses [17].
Especially, the efficacy of early-intervention programs is not
specific to initial diagnosis [18].

Although there have been several anecdotal reports comparing
the degree of overlap between psychiatric disorders at two levels
of observation [6, 8, 9, 19, 20], a systematic investigation across all
studies and levels of observation has not been carried out. We
hypothesize that overlap at the molecular scale (i.e, genetic and
transcriptomic) between disorders and traits may lead to similar
overlaps at the macroscopic scale, such as large-scale functional
networks. This study aims at assessing the degree of similarity
between disorders at all levels of organization. To do so, we
performed a systematic review of genetic and phenotypic
correlations assessed across five psychiatric disorders.

METHODS

Search strategy and selection criteria

This systematic review adhered to the PRISMA guidelines. We
searched PubMed and EMBASE for studies published between
January 1, 2009, and September 8, 2022. Keywords and index
terms referred to “cross-disorder”, “pleiotropy”, “major psychiatric
disorders”, or at least four among five prespecified diagnostic
groups (full search strategy in Supplement 1). The prespecified
diagnoses were SCZ, BD, MDD, ASD, and ADHD, which we selected
for the availability of data since the first cross-disorder genetic
study [2].

Abstracts were screened by congruent independent decision or
joint discussion and consensus of two reviewers (VRB, CPoulain,
CProulx). We included original observational studies, including
meta-analyses, written in English, including at least four out of the
five prespecified diagnostic groups, with or without controls as
relevant, and presenting any measure of pairwise genetic or
phenotypic similarity or overlap measures for all group pairs.

Full-text articles were screened by one reviewer (VRB), and all
decisions were confirmed by a second reviewer (CPoulain,
CProulx). Any conflicts were resolved with the senior author (SJ).
Three exclusion criteria were added at the full-text review step:
papers presenting similarity measures only valid in one direction
from one diagnosis to another, similarity measures directly
dependent on sample size (e.g., count of shared genome-wide
significant loci), and absence of effect-size metric (only p-values).
The systematic review process was performed using the
Covidence web-based platform.

Data analysis

Two reviewers (VRB and CPoulain or CProulx) independently
extracted effect sizes for pairwise similarity measures regarding
the five pre-specified diagnoses, as well as for other DSM-defined
diagnoses represented in a landmark genetic study [2]. We
contacted authors when the data was not accessible in the
publication. One reviewer (VRB) extracted the number of cases,
cohort size, and case definition.

The quality of included case-control studies was assessed using
the Newcastle-Ottawa quality assessment scale for case-control
studies [21] by discussion and consensus rating of two reviewers
(VRB and CPoulain or CProulx).

We compared the pattern of similarity between all study pairs,
with the Pearson correlation coefficient across disorder pairs as
the primary outcome. This method was previously applied to
compare patterns of similarity among psychiatric disorders
[6, 8, 19, 20, 22]. We used complete pairwise observations for all
comparisons with data available for at least five disorder pairs and
adjusted for multiple comparisons with the Benjamini and
Hochberg false-discovery rate method. To evaluate the impact
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of methodological choices of excluding some diagnostic groups,
we conducted a sensitivity analysis by including all disorders that
were only investigated in a subset of studies (Anorexia nervosa,
Anxiety disorders, OCD, Tourette syndrome, PTSD, and Alzheimer’s
disease).

We summarized the correlation matrix using principal compo-
nent analysis, treating disorder pairs as variables, and considering
each study as an observation of the extent of overlap between
disorders. Imputation for missing data was done with R package
missMDA [23] and principal component analysis with FactoMineR
[24]. We presented the projections of disorder pairs on dimension
1, the proportion of variance explained, and the contributions
(cos?) of each study. We obtained confidence intervals by
bootstrap methods [25]. We evaluated the impact of having
excluded some studies with partly overlapping data by recomput-
ing the PCA while also including those studies.

We interpreted the genetic correlations by converting them into
a clinically meaningful metric: the relative risk of a different
psychiatric diagnosis in first-degree relatives of individuals with a
“primary” diagnosis. To do so, we used the liability-threshold model
of complex traits using statistical methods that have been
previously published [26, 27]. The latter integrates information on
(1) the lifetime prevalence of the disorders [28], (2) their heritability,
twin-based [1] and family-based [10], and (3) genetic correlations
between disorders. For this analysis, we used the most recent
genetic correlation estimates from the PGC-CDG2 study [2]. We
then compared the predicted risk to the observed risk previously
reported in the literature for first-degree relatives [29-32].

To compare our results with the trends in research interests, as
represented by the number of publications on a topic, we
searched PubMed title or abstract fields on January 25, 2024, with
keywords referring to the five disorders of interest since DSM-IlI
(Supplement 10), and we computed the Jaccard index as a
measure of overlap, for each pair of disorders and each year.

For all analyses, the significance threshold was fixed at p < 0.05,
two-sided. The data was tabulated with Microsoft Excel version
16.54 and analyses were performed with R version 4.2.2.

RESULTS

After removing duplicates, we screened 2975 records for eligibility
(Fig. 1), and 28 studies met our inclusion criteria. Among these
(Table 1), 15 studies featured genetic correlations based on single-
nucleotide polymorphisms (SNPs) from case-control genome-wide
studies (GWAS). Three additional studies used similar SNP-level
data to infer gene-level associations and then assessed the
similarity of the resulting sets of genes. Two studies computed
genetic correlations based on familial aggregation of psychiatric
disorders. Two studies computed gene transcription correlations
between the differential gene expression profiles associated with
psychiatric disorders. Five studies computed correlations across
brain structural imaging measures, and one study computed
correlations across resting-state functional MRI measures.

The median sample size among studies was 114,982.5 (total of
the five diagnostic groups), minimum 390, and maximum 437,615.
Quality evaluation as per the Newcastle-Ottawa scale rated
studies between 4 and 7, with a median of 5 on a total of 9
points, although this scale was not designed for large meta-
analytic genetic association studies. Overall, only three studies
(Schork et al. [33]; Selzam et al. [34], Wang et al. [20]) achieved
case representativeness and a uniform selection procedure
between cases and controls.

GWAS meta-analyses have used datasets that have been
updated by incorporating new cohorts year after year. Therefore,
the most recent GWAS of psychiatric conditions includes all or
most of the previous datasets. For statistical analyses, we selected
18 studies, thus excluding 10 studies using partly overlapping
data, i.e, based on datasets that were also analyzed in more
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Identification of studies via databases and registers
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Fig. 1 Study selection.

recent and larger meta-GWAS, as detailed in Table 1 and
Supplement 2. The vast majority of correlation coefficients
between pairs of disorders were positive (Fig. 2) throughout all
6 levels of observation.

The pattern of similarities between disorders is consistent
from the genome to transcription and to brain
endophenotypes

We tested if the pattern of similarity between disorders (SCZ, BD,
MDD, ASD, and ADHD) was consistent across all 18 studies and

Translational Psychiatry (2024)14:171

Duplicate study (n = 8)
Outcome measure is
dependent on sample sizes
(n=4)

e Does notinclude at least 4
out of 5 pre-specified
diagnoses (n = 3)

e Outcome measure is only
valid in one direction from
one disorder to another
(n=2)

e No original research (n = 1)

e Not peer-reviewed (n = 1)

e Does not present effect-sizes
(n=4)

levels of observations. We observed that 89% (132/149) of
pairwise study comparisons displayed in Fig. 3 showed positive
associations as measured by the Pearson correlation coefficient, of
which 9 were significant after correction for multiple testing. This
suggests that the pattern of similarities between disorders was
conserved across different levels of observation (genetic, family,
transcriptomic, and brain) as well as across studies.

We conducted sensitivity analyses to evaluate the influence of
the selection of some diagnostic categories over others on our
results. We included all disorders that were only investigated in a
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Fig.2 Degree of similarity between disorders, measured at different levels of observation. Each point represents the estimate of similarity
(coefficient of correlation, r) between two disorders, which was measured in different studies and at different levels of observation. Descriptive
statistics across studies for each level of observation are represented as boxplots; the box indicates the median, 25th, and 75th percentiles.
The numbers linked to the points refer to the different studies: 1. Lee et al. [54], 2. Anttila et al. [2], 3. Lee et al. [55], 4. Schork et al. [33], 5.
Grotzinger et al. [56], 6. Gerring et al. [58], 7. Li et al. [57], 8. Selzam et al. [34], 9. Wang et al. [20], 10. Gandal et al. [6], 11. Sadeghi et al. [59], 12.
Kaufmann et al. [60], 13. Opel et al. [7], 14. Patel et al. [8], 15. Radonjic et al. [22], 16. Patel et al. [61], 17. Moreau et al. [5]. One study (Sey et al.
[19]) that presented metrics of similarity on a scale not comparable to that of correlation coefficients was excluded from this figure.

subset of studies (Anorexia nervosa, Anxiety disorders, OCD,
Tourette syndrome, PTSD, and Alzheimer's disease), and the
resulting correlation matrix was 95.3% concordant (as per the
concordance correlation coefficient [35]) with the one (Fig. 3A)
restricted to five disorders.

To obtain a consensus ranking of similarities between pairs of
disorders across all studies and levels of observation, we used
principal component analysis (PCA) (Fig. 3B). The three first
dimensions explained 51.4% (95% Cl: 43.2, 65.4), 18.8% (95% Cl:
13.5, 28.6), and 9.7% (95% Cl: 6.8, 16.9) of the variance,
respectively. We thus interpreted the first dimension as represent-
ing the consensus of similarities across conditions and all other
dimensions representing noise. The pairs of disorders ranking the
highest on the first dimension (Fig. 3B) were those with the
highest level of similarity: SCZ-BD, followed by SCZ-MDD and BD-
MDD.

We asked if the levels of overlap between disorders increased
(convergence) or decreased (divergence) from genes to transcrip-
tion to brain endophenotypes. All levels of observation showed
similar loadings on dimension one (Fig. 3C). In other words, we
observed a pattern of similarities between disorders which was
conserved at all levels of observation.

We performed a sensitivity analysis by including all studies (i.e.,
those using partly overlapping data) reporting genetic correlations
studies in the PCA. This did not significantly change the ranking
obtained by PCA (Supplement 8).

Clinical relevance

To assess the clinical relevance of this biological overlap, we
estimated the probability of other psychiatric diagnoses in first-
degree relatives using a previously published method that uses
the degree of genetic correlation as input. We compared our

Translational Psychiatry (2024)14:171

estimates with previously published observations (Fig. 4) [29-32].
While some estimates were concordant with previously published
clinical observations overall, clinically observed risks in relatives
were systematically higher than those predicted on the basis of
the genetic correlation between disorders.

Research trends on cross-disorder versus single-disorder
studies

We investigated whether the amount of research conducted on
pairs of psychiatric disorders over time was congruent with the
level of similarity between the same pairs of disorders (Fig. 5). In
the last 10 years, we observed an increase in the proportion of
research records that investigate pairs of disorders over the total
including only one condition. In 2023, the proportion of
publications investigating pairs of psychiatric disorders was
correlated (r=0.84, p =0.0022) with the overall level of overlap
computed across all levels of observation. The overlaps of MDD
with ADHD, SCZ, and ASD were the strongest outlier disorder pairs
that were understudied relative to their biological correlation.

DISCUSSION

In this first systematic investigation of similarities between
psychiatric disorders across different levels of observation, results
show that the patterns of similarities between disorders are
consistent, from molecular to higher levels of organization (i.e.,
large-scale brain networks). This pattern can be summarized by
one principal dimension, which accounts for more than half of the
variance across all studies. These results suggest that important
aspects of pathophysiology are shared across disorders and are
not circumscribed under the boundaries of the current diagnostic
classification. Interestingly, the rates of psychiatric diagnoses in

SPRINGER NATURE
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Fig. 3 Comparisons and consensus ranking of the pattern of disorder similarities across studies. A Pairwise comparison matrix between
18 studies (Table 1) reporting on six levels of biological observation. For each pair of studies, we use the Pearson correlation coefficient to
compare the pattern of similarities across disorder pairs. Significant correlations are marked as *unadjusted p < 0.05, **FDR < 0.05. Correlations
with less than five pairwise disorder comparisons are marked with a gray dashed line. B The correlation matrix in panel A is summarized at the
level of disorder pairs using principal component analysis (PCA), with a first dimension that accounts for 51.4% (95% Cl: 43.2, 65.4) of variance
among the 18 studies. Error bars represent 95% confidence intervals. A higher score on Dimension 1 implies that a pair of disorders has
consistently higher similarity across all studies and levels of observation. C Contributions of individual studies to the first dimension of PCA,

color-coded by the level of observation.

relatives reported by clinical studies were systematically higher
than what is predicted by genetic correlation.

The inquiry into whether the observed consistent biological
similarity across disorders is the substrate of shared symptoms
remains an open and pivotal question. Our systematic review,
while comprehensive across biological levels, did not retrieve
studies on symptom profiles or neurocognitive profile correlations
across pairs of psychiatric disorders that would correspond to
inclusion criteria. Nevertheless, evidence supporting the genetic
underpinnings of shared symptoms emerges from focused studies
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on specific traits within disorder pairs. Notably, common variants
associated with schizophrenia were linked to psychotic symptoms
in individuals with bipolar disorder, and conversely, variants linked
to bipolar disorder were associated with manic symptoms in
individuals with schizophrenia [36]. Another study found that both
schizophrenia and ASD-associated common variants impacted
social communication in the general population, with differing
effects in childhood and adolescence [37]. These shared symptom
profiles may contribute to the observed high rates of co-
occurrence between disorders, evident both concurrently [38]
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and sequentially [13, 14], as observed in community-based
samples.

The finding of higher rates of occurrences of disorders in
relatives [29-32] than anticipated based on genetic correlations
suggests that the latter, computed solely on common variants,
might be underestimated. In fact, genetic correlations are so far
restricted to common variants, although pleiotropy has repeatedly
been reported for rare variants with respect to neurodevelop-
mental and psychiatric conditions [39]. Whether rare variants
show higher levels of pleiotropy and/or genetic correlation than
common variants remains unknown. A recent study suggests that
function-based genetic correlations computed for recurrent copy-
number variants may be quite different from those observed for
common variants [40].

Various factors, extending beyond genetic correlations, may
contribute to the observed covariance among psychiatric
disorders. Environmental exposures, such as adverse childhood
experiences encompassing physical, sexual, or emotional abuse,
exert cross-disorder effects [41] and might be causal [42].
However, other cross-disorder associations were also found in
systematic phenome-wide investigations of genetic liability [43],
and it is crucial to acknowledge that the association between
environmental exposures and psychiatric disorders can also result
from confounding variables or from reverse causation, as
indicated by insights from mendelian randomization analyses
[44]. In that regard, several other factors underline an intricate
interplay between genetic and environmental factors in the
etiology of psychiatric disorders. Frequent “assortative mating” of
individuals with psychiatric conditions [45], within-family environ-
mental transmission (“genetic nurture”), and multi-generational
processes of social stratification (“dynastic effects”) [46] can
contribute to the shaping of environments that correlate with
various genetic variants and predispose individuals to psychiatric
conditions.

DSM-IV-TR
DSM-5
DSM-5-TR

—SCZ~ MDD
ADHD ~ BD

/SCZ ~ASD

SCZ ~ ADHD

BD ~ ASD

1980 1990 2000

2010 2020 2030

publication year

Fig. 5 Cross-disorder research trends. Proportion of studies referenced on PubMed that address two disorders at a time, for each pair of
disorders, as compared to the total number of studies for the same pair of disorders, as a function of publication year. Locally estimated
scatterplot smoothing (LOESS) regression lines indicate trends over time. Shaded background colors correspond to the Diagnostic and

Statistical Manual of Mental Disorders (DSM) editions.
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In evaluating the extent of similarity between disorders, it
becomes apparent that brain structures exhibit a more variable
degree compared to other biological levels (refer to Fig. 2). This
discrepancy suggests a critical reevaluation of a historical focal
point, brain structures. Alternative levels of observation, such as
brain transcripts (RNAs) or functional brain imaging (resting-state
fMRI), emerge as possibly more aligned with the shared genetic
underpinnings among psychiatric conditions. This could also be
interpreted in light of previous research, which noted that brain
imaging profiles linked to distinct genetic psychiatric risk variants
displayed only mild correlations, and yet that these same profiles
were found to be associated with highly correlated phenotypic
patterns [47, 48].

A controversy concerning cross-disorder similarity is that
research samples may be enriched or depleted in patients with
co-occurring disorders (based on inclusion and exclusion
criteria and sampling procedure) and that this biased sampling
could result in over- or underestimating the levels of similarity
[3]. Also, the sampling procedure of control participants can
bias the estimate of genetic correlations by favoring the
recruitment of “super-normal” controls [49], that is, individuals
who, in addition to not having the diagnosis of interest, do not
have a set of frequently co-occurring and genetically-related
conditions. Such biases in the recruitment of cases and controls
pose a potential challenge to the generalizability and the
applicability of findings in clinical settings. It is noteworthy,
however, that our systematic review also retrieved studies
employing representative sampling strategies. These studies,
conducted in both the general population (Schork et al. [33];
Selzam et al. [34]) and within a healthcare system (Wang et al.
[20]), revealed patterns of overlap across disorders that align
with findings from other studies.

Limitations

It is of significance that this study demonstrates consistent levels
of correlations both within and between levels of observation,
even though study samples were recruited in different settings
(clinical or research-based), different countries, and based on
criteria from different DSM and ICD editions. Such heterogeneity
has been previously associated with variable prevalence of these
conditions, as well as variable case-control differences [50].
Despite the potential for such heterogeneity to contribute to
noise or non-systematic bias when specifically assessing the
concordance between levels of observation, our findings indicate
a consistent covariance across levels of observation as measured
by different studies. This consistency suggests that the observed
pattern of covariance between psychiatric disorders remains
robust, even when confronted with variations in diagnostic and
inclusion criteria.

Insights from the present study could guide clinical practice and
health services organizations in prioritizing joint interventions for
disorders that are the most similar. The observed high degree of
overlap among schizophrenia, bipolar disorder, and major
depressive disorder aligns with current trends in restructuring
patient care based on transdiagnostic dimensions (e.g. age of
onset, episode recurrence, premorbid functioning) complementa-
rily to the primary diagnosis [51]. Moreover, the identification of a
lower but nevertheless prevalent overlap of these disorders with
earlier-onset neurodevelopmental conditions (autism and ADHD)
suggests the need for a comprehensive, lifespan approach to
mental health. This recognition becomes particularly crucial in
early-intervention settings, where the initial clinical presentations
of psychiatric disorders do not fit well under the traditional
diagnostic categories [18]. The broad level of overlap across
psychiatric disorders questions the way resources are spent on
evaluating differential diagnoses, as opposed to setting the
emphasis on assessing transdiagnostic dimensions. While cross-
disorder research is expanding, buoyed by initiatives such as RDoC
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[52] or HITOP [53], we show that still only a minority of studies
address more than one disorder.
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