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Abstract 
Motivation: Accurately predicting molecular metabolic stability is of great significance to drug research and development, ensuring 
drug safety and effectiveness. Existing deep learning methods, especially graph neural networks, can reveal the molecular structure of 
drugs and thus efficiently predict the metabolic stability of molecules. However, most of these methods focus on the message passing 
between adjacent atoms in the molecular graph, ignoring the relationship between bonds. This makes it difficult for these methods 
to estimate accurate molecular representations, thereby being limited in molecular metabolic stability prediction tasks. Results: We 
propose the MS-BACL model based on bond graph augmentation technology and contrastive learning strategy, which can efficiently 
and reliably predict the metabolic stability of molecules. To our knowledge, this is the first time that bond-to-bond relationships in 
molecular graph structures have been considered in the task of metabolic stability prediction. We build a bond graph based on ‘atom-
bond-atom’, and the model can simultaneously capture the information of atoms and bonds during the message propagation process. 
This enhances the model’s ability to reveal the internal structure of the molecule, thereby improving the structural representation of 
the molecule. Furthermore, we perform contrastive learning training based on the molecular graph and its bond graph to learn the final 
molecular representation. Multiple sets of experimental results on public datasets show that the proposed MS-BACL model outperforms 
the state-of-the-art model. Availability and Implementation: The code and data are publicly available at https://github.com/taowang11/ 
MS. 
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INTRODUCTION 
Metabolic stability refers to the speed and degree of metabolism 
of compounds in organisms, and is an important observation 
indicator in drug discovery and clinical testing stages [1, 2]. The 
metabolic stability of a molecule largely determines its con-
centration and efficacy in the body, and profoundly affects the 
pharmacokinetic process [3, 4]. While certain molecules demon-
strate potential as drug candidates, their poor metabolic stability 
in the body renders them unsuitable for current clinical use 
[5]. Accurately predicting the metabolic stability of molecules 
can provide a deep understanding of drug behavior in the body, 
thereby optimizing therapeutic dosage and ensuring efficacy [6] 

while controlling potential toxicity and risks resulting from drug 
interactions [7]. In the past few decades, human beings’ urgent 
needs for health have urgently required the development of a 
large number of symptomatic drugs. However, developing new 
drugs is often expensive and time-consuming, so efficient screen-
ing of candidate compounds from a large target space is critical 
[8]. Fortunately, predicting the metabolic stability of molecules 
can assist in screening the most promising compounds at an early 
stage, saving time and resources [9]. 

Traditionally, studying the metabolic stability of molecules has 
relied mainly on in vitro observations and assessments [10]. A 
common practice is to construct an in vitro model to simulate
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the metabolic environment in the body, and collect and evalu-
ate observation data to provide guidance for subsequent in vivo 
research [11]. For example, in studies to determine the metabolic 
stability of candidate compounds, liver microsomes extracted 
from liver cells, including cytochrome P450 enzymes (a key class 
of drug-metabolizing enzymes), are used to assist in simulating 
the in vivo metabolic environment. Candidate compounds are 
then incubated with liver microsomes to observe and evalu-
ate their metabolic rate [12]. However, observing and evaluating 
molecular metabolic stability in the laboratory relies on expensive 
experimental equipment, complex experimental design and a 
large amount of time. This has promoted the development of 
computational methods to predict molecular metabolic stability 
conveniently, quickly and accurately [13]. 

Recently, several relevant machine learning-based models 
have emerged to predict the metabolic stability of molecules. 
For instance, Perryman et al. [14] gathered data on mouse liver 
microsomal half-life in PubChem and proposed a model based 
on Bayesian theory to predict the metabolic stability of small 
molecules [15]. Rafael et al. created a tool to assess molecular 
metabolic stability, incorporating several machine learning 
algorithms such as random forests, support vector machines and 
naive Bayes [16]. Ryu et al. collected data on compounds in human 
liver microsomes and predicted the metabolic stability of these 
compounds based on a random forest model. In addition, Ryu 
et al. also evaluated the performance of various machine learning 
methods such as artificial neural networks, K-nearest neighbor 
algorithm and linear regression on the liver microsomal metabolic 
stability dataset. Machine learning methods can quickly predict 
the metabolic stability of molecules, but their performance is 
usually poor. The main reason is that the impact of the molecular 
structure of the compound on the metabolic stability is ignored. 

Graph neural network (GNN) technology can efficiently 
understand structural and relational data, making it shine 
in topologically related biological research [17, 18]. This also 
includes inferring metabolic stability based on the topological 
structure of the molecule. For example, Renn et al. constructed 
a topological structure graph of molecules based on molecule 
smiles and used graph convolution network (GCN) technology 
to extract global features and local features. Subsequently, 
these two features are integrated to obtain the final molecular 
representation and thereby predict metabolic stability [19]. Du 
et al. constructed two views based on the molecular structure 
and used a graph contrastive learning strategy to train their 
topological features. In parallel, gated recurrent unit (GRU) and 
attention mechanisms are used to extract Smile-based features, 
which are integrated with topological features into the final 
molecular representation to predict the metabolic stability of the 
molecule [20]. 

Existing GNN models can efficiently predict the metabolic 
stability of molecules, but their performance is still limited by 
some inherent flaws. These GNN-based models focus more on the 
message propagation between nodes in the molecular graph while 
ignoring the relationship between bonds. As an important compo-
nent of molecular graphs, bonds often play a key role in molecular 
properties such as metabolic stability. As a result, these models 
do not fully understand the structure of molecules, making it 
difficult to learn robust molecular representations. To this end, 
we propose a model named MS-BACL based on the bond graph 
augmentation and contrastive learning strategy, aiming to predict 
the metabolic stability of molecules efficiently and accurately. We 
construct a molecular graph based on molecular smiles, and con-
struct a bond graph of the molecule based on ‘atom-bond-atom’ 

to reveal the structure of the molecule. In addition, we adopt a 
contrastive learning strategy to train molecular graphs and bond 
graphs to learn robust molecular representations. Multiple sets of 
experimental results on public datasets also prove that the pro-
posed MS-BACL model can reliably predict molecular metabolic 
stability. In summary, our contributions are listed below: 

1. We design the MS-BACL model based on the bond graph 
and contrastive learning strategy, which can reliably predict 
molecular metabolic stability. 

2. This is the first time that the relationship between bonds 
in molecular graphs has been integrated into the molecular 
metabolic stability prediction task. The bond graphs are con-
structed based on ‘atom-bond-atom’, which supplements 
the topological structure information of the molecules. This 
enables the model to absorb both atomic and bond informa-
tion during message propagation. 

3. We use a contrastive learning strategy to train two views, 
molecular graph and bond graph, to learn robust molecular 
representations. 

4. We construct multiple sets of experiments on public datasets 
to verify the effectiveness of the proposed MS-BACL model 
and key modules. 

METHOD 
In this section, we propose the MS-BACL model based on bond 
graph augmentation technology and contrastive learning strategy 
to efficiently predict the metabolic stability of molecules. The MS-
BACL model mainly includes the following modules, as shown in 
Figure 1. (A) First, we input the molecular SMILES into RDKit’s 
(https://pypi.org/project/rdkit/) conversion function to construct 
the molecular graph, thereby extracting features of atoms (nodes) 
and bonds (edges). (B) Then, we form a new node in the shape of 
‘atom-bond-atom’ from the bond in the molecular graph and its 
two connected atoms, and build the bond graph of the molecule. 
In a bond graph, the model can take in both atom and bond 
information when performing aggregation and update operations. 
(C) Subsequently, we use graph isomorphism network (GIN) [21] to  
extract features of molecular graphs and molecular bond graphs, 
respectively. Following that, we perform global maximum and 
average pooling operations simultaneously on both graph repre-
sentations before conducting a splicing operation to improve the 
node representation. (D) Finally, we calculate the classification 
loss on both the molecular graph and the molecular bond graph 
in parallel, incorporating the graph contrastive learning loss from 
both to learn the final molecular representation. Crucially, our 
predictions regarding the metabolic stability of molecules rely on 
the ultimate representation obtained from the bond graph. Next, 
we will introduce related technologies and principles in detail. 

Molecular bond graph 
In graph theory, the edges in the original graph are regarded 
as nodes, and line graphs can be constructed accordingly [22]. 
The advantage of line graphs is that in the process of message 
passing, more consideration is given to the information on the 
edges and the relationship between the edges. In the molecular 
graphs, atoms and bonds are directly involved in the structure 
of the molecule, thus affecting the metabolic stability of the 
molecule. Inspired by the line graph, we will also consider the 
relationship between bonds and define new nodes in the shape 
of ‘atom-bond-atom’ to construct a bond graph. It is hoped that 
in the message passing, the information of atoms and bonds
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Figure 1. Architecture of MS-BACL model, which mainly contains four modules. (A) Constructing a molecular graph based on molecular smiles. (B) 
Define new nodes in the shape of ‘atom-bond-atom’ and build a bond graph. (C) Use GIN to extract features of molecular graphs and bond graphs. (D) 
Contrastive learning is used to train the model and predict the metabolic stability of molecules. 

can be absorbed at the same time to enhance the molecular 
representation. 

First, the smiles of the compound is taken as input and con-
verted into a directed graph G = (X, E, C). X represents the set of 
all atom vectors in G, and the i-th atom vector is represented as 
Xi ∈ X. The atom vector includes the extracted atom symbol, total 
number of bonds, formal charge, number of bonded hydrogens, 
hybridization state, whether it is an aromatic system and the 
atomic mass. E represents the set of all chemical bond vectors, and 
Eij ∈ E represents the bond vector from atom i to j. The bond vector 
includes information such as the extracted bond type, whether 
it is conjugated and whether it is within a ring. C represents the 
adjacency matrix of the molecular graph G, and  Cij ∈ C represents 
whether there is a bond between atoms i and j. 

Then, we consider the relationship between chemical bonds, 
take ‘atom-bond-atom’ as a new node and construct a bond graph 
G′ = (X′, C′). In the bond graph G′, X′ represents all node vectors, 
and node X′

ij absorbs the eigenvectors of atoms Xi, Xj ∈ X, and  
bonds Eij ∈ E. C′ represents the adjacency matrix of the bond graph 
G′ and C′

ik ∈ C′ represents that the bonds Eij, Ejk ∈ E exist at the 
same time and are adjacent to the atom Xj. Formally, X′ and C′ can 
be calculated by 

X′ =
{
X′

ij = Xi‖Eij‖Xj, Xi, Xj ∈ Xand Eij ∈ E
}

, (1)  

C′ = {
C′

ik = 1, Cij, Cjk ∈ C
}

, (2)  

where ‖ represents the concatenate operation. Finally, according 
to the above strategy, the molecular graph G = (X, E, C) and the 
bond graph G′ = (X′, C′) are constructed based on molecular 
smiles. 

Molecular graph encoder 
In the proposed MS-BACL model, we adopt the GIN model to 
extract the features of the molecular graph and bond graph. 
Molecular metabolic stability prediction can be considered as a 
graph classification task. Extracting local and global features of 
molecular graphs is very critical, and GIN is just qualified for this 
task. For the molecular graph G = (X, E, C) and its corresponding 
molecular bond graph G′ = (X′, C′), the GIN encoder performs 
message aggregation and node updating based on node neighbor-
hoods: 

hk 
i = MLP 

⎛ 

⎝(
1 + εk

)
· hk−1 

i +
∑

j∈N(i) 

hk−1 
j 

⎞ 

⎠ , (3)  

where hk 
i represents the embedding of node i in the k-th GIN 

layer, ε represents the weight parameter and N(i) represents the 
neighbors of node i. Assuming the number of iterations is K, hK 

i 
can effectively capture K-hop neighborhood information. Finally, 
global maximum and average pooling operations are performed 
on hk 

i , respectively, and the two vectors after the pooling operation 
are concatenated: 

zk 
i = CONCAT(maxpool(hk 

i ), meanpool(hk 
i )). (4)  

Global max pooling emphasizes crucial features in molecular 
graphs. Global average pooling reduces noise impact on model 
performance and enhances its generalization capability. Integrat-
ing these two pooling strategies into the MS-BACL model seeks to 
optimize the emphasis on key features while enhancing general-
ization capacity.
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Graph contrastive learning strategy 
Graph contrastive learning is an unsupervised learning strategy 
for graph data that aims to enhance the similarity between differ-
ent views of graph data, thereby improving node representation. 
In the proposed MS-BACL model, we try to construct different 
views of the molecule (molecular graph and bond graph). The 
similarity score between two views of the same molecule is then 
increased to bring them closer to each other, thus providing com-
plementary information. At the same time, the similarity scores 
between views of different molecules are reduced to distance 
them from each other, thereby discovering their differences. 

Assuming that the total number of molecules in the training 
set is M, the molecular graph and bond graph are constructed 
based on smiles of each molecule. For a molecule m, zm and z′

m 
represent the extracted vectors of the molecular graph and its 
corresponding bond graph, respectively. And the InfoNCE function 
[23] is used to calculate the loss for contrastive learning training: 

LCL = − 1 
M 

M∑
m=1 

log 
ezm ·z′

m/τ

∑M 
m′=1 ezm ·z′

m/τ 
, (5)  

where τ represents the temperature parameter, which was set 
to 0.5 in the experiment. In addition, if all molecules participate 
in contrastive learning training, it will consume a lot of time 
and space. Therefore, the contrastive learning process is usually 
completed within the sampling batch. 

Metabolic stability predictor 
The optimization goal of the proposed MS-BACL model is to 
minimize both the classification and contrastive learning losses. 
We derived molecular representations from both molecular and 
bond graphs, utilizing each to predict the final metabolic stability 
score. The classification loss is computed using the BCE function: 

L1 = −  
M∑

m=1 

ym · logσ(  ŷm) + (1 − ym) · logσ(1 − ŷm); (6)  

L2 = −  
M∑

m=1 

ym · logσ(  ŷm
′
) + (1 − ym) · logσ(1 − ŷm

′
), (7)  

where L1 represents the classification loss based on the molecular 
graph, L2 represents the classification loss based on the bond 
graph, M represents the number of molecules and σ represents 
the sigmoid function. For the m-th molecule, where ŷm represents 
the predicted score of metabolic stability based on the molecular 
graph, ŷm

′ represents the predicted score of metabolic stability 
based on the bond graph, and ym represents its true label. Inte-
grating classification loss and contrastive learning loss: 

L = L1 + L2 + λLCL, (8)  

where λ is an adjustable weight parameter. 
During inference, metabolic stability is predicted using the 

representation derived from the extracted molecular bond graph. 
This differs subtly from the training procedure. 

EXPERIMENT RESULTS 
Datasets 
In order to evaluate the performance of the proposed MS-
BACL model, three datasets of molecular metabolic stability are 
mainly collected in the experiment. The first dataset, called HLM, 
concerns the metabolic stability of compounds on human liver 
microsomes and originated from Li et al.’s work [24]. There are 
currently no fixed and universally applicable unified criteria 

Figure 2. Distribution of HLM and external datasets. 

for defining metabolic stability. Referring to the study of Shah 
et al. [  25], if the half-life of a molecule is greater than 30 min, it 
can be considered stable; otherwise, it is considered unstable. 
Accordingly, there are a total of 5876 molecules in the HLM 
dataset, including 3782 stable compounds and 2094 unstable 
compounds. The second is an external dataset [25], which 
includes 82 stable compounds and 29 unstable compounds. The 
third is a cross-species dataset, which is the rat microsome-
related compounds we collected from the ChEMBL biological 
activity database (ID: 613694) [26], recorded as RLM. The RLM 
dataset contains a total of 499 molecules, including 208 stable 
compounds and 291 unstable compounds. 

To validate the model’s generalization capability, it was trained 
on the HLM dataset and subsequently assessed using an inde-
pendent external dataset. To maintain experimental integrity 
and scientific rigor, we minimized the molecular structural sim-
ilarity between the HLM dataset’s training set and the external 
dataset. Utilizing extended connectivity fingerprints and calculat-
ing the Tanimoto coefficient allowed for an efficient evaluation of 
structural similarity across numerous molecules. Figure 2 depicts 
the similarity distribution, with blue indicating the relationship 
between the training and test sets within the HLM dataset. The 
majority of similarity scores exceed 0.600, with an average of 
0.766. Orange illustrates the similarity distribution between the 
external dataset and the HLM dataset’s training set, predomi-
nantly below 0.500 with an average of 0.456. Clearly, the similarity 
between the external dataset and the HLM dataset’s training set 
is markedly lower than that within the HLM dataset’s training and 
test sets. This confirms the reliability of the model’s performance 
evaluation on external datasets. 

Experimental setup 
The proposed MS-BACL model is implemented based on Pytorch 
and PYG libraries. In the experiment, the number of layers of the 
GIN encoder is set to 2, the batchsize is 256, the number of training 
times is 300, the learning rate is 0.0005 and the optimizer is ADAM. 
In the predictor, the input layer has dimension 512, the hidden 
layer has dimension 256, the output layer has dimension 1 and the 
contrastive learning loss weight λ is set to 0.3. In order to reduce 
the bias caused by the division of the dataset, we conduct a 10-
fold cross-validation experiment, and the average value is used 
as the final result. In addition, we select four common indicators: 
AUC, ACC, F1 − Score and MCC to evaluate the performance of the 
model. 

Performance comparison with other models 
In this section, we compare the performance of the MS-BACL 
model and eight typical models. In experiments, we perform 10-
fold cross-validation on each model to eliminate bias caused 
by randomness. To clarify the differences between the proposed
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Table 1: Performance of all models on HLM dataset 

Models AUC ACC F1-Score MCC 

GBDT 0.815 ±0.017 0.773±0.013 0.830±0.015 0.503±0.025 
XGBoost 0.844±0.013 0.793±0.022 0.846±0.010 0.548±0.026 
D-MPNN 0.842±0.017 0.792±0.012 0.841±0.013 0.541±0.030 
GAT 0.858±0.016 0.782±0.021 0.842±0.015 0.533±0.052 
PredMS 0.854±0.012 0.785±0.021 0.843±0.021 0.552±0.104 
MGCN 0.852±0.019 0.784±0.013 0.825±0.018 0.544±0.033 
AttentiveFP 0.853±0.015 0.793±0.015 0.840±0.013 0.564±0.032 
CMMS-GCL 0.865±0.016 0.811±0.015 0.856±0.013 0.566±0.040 
MS-BACL 0.873±0.019 0.820±0.023 0.863±0.018 0.601±0.053 

MS-BACL model and the eight comparative models, we briefly 
introduce these models. Li et al. extracted molecular features 
based on GBDT and XGBoost integrated learning models, D-MPNN 
and GAT and other deep learning models to predict the metabolic 
stability of molecules [ 24]. The PredMS model uses random for-
est technology to extract important molecular descriptor fea-
tures [14]. The MGCN model first constructs a molecular graph 
based on molecular smiles, and then uses GCN technology to 
learn molecular representation [19]. The AttentiveFP model uses 
GRU technology and graph attention mechanism to extract the 
representation of molecules, thereby accurately predicting the 
metabolic stability of molecules [27]. On this basis, the CMMS-
GCL model further learned the molecular graph representation 
using a graph contrastive learning strategy, and finally integrated 
sequence representation and molecular graph representation to 
predict molecular metabolic stability [20]. 

We evaluate the performance of the MS-BACL model and eight 
other models on the HLM dataset. The results of 10-fold cross-
validation are shown in Table 1. In general, methods based on 
deep GNN technology outperform methods based on ensemble 
learning strategies. PredMS is a model that uses an ensemble 
learning strategy, but it also relies on the chemical structure of the 
molecule to extract molecular representations. This illustrates 
that the chemical structure of the molecule plays a more critical 
role than the sequence when predicting the metabolic stability 
of the molecule. In addition, the proposed MS-BACL model is 
significantly better than all other models, and its AUC, ACC, F1 − 
Score and MCC indicators are ahead of the suboptimal CMMS-
GCL model 0.8%, 0.9%, 0.7% and 3.5%, respectively. This may be 
because the proposed MS-BACL model absorbs atom and bond 
information at the same time during message propagation, deeply 
revealing the mystery of the chemical structure of the molecules, 
and thereby more accurately predicting the metabolic stability. 
Unlike the CMMS-GCL model, which employs a graph contrastive 
learning strategy to improve molecular representation, it omits 
bond information during the message propagation process. Addi-
tionally, the AttentiveFP model utilizes a graph attention mech-
anism for extracting molecular representations, aiding in drug 
discovery efforts. While this model effectively captures complex 
atomic relationships, its performance lags behind MS-BACL due 
to a lack of consideration for bond interactions. 

Evaluation on external dataset 
To verify the generalization ability of the proposed MS-BACL 
model, we evaluate the model trained in the HLM dataset on 
an external dataset, as shown in Table 2. The results show that 
the MS-BACL model outperforms existing leading models across 
all evaluated metrics. Notably, in terms of the MCC metric, the 

MS-BACL model significantly surpasses the suboptimal CMMS-
GCL model. This evidence underscores the MS-BACL model’s reli-
ability in predictions and its adaptability to novel data. 

Ablation experiment 
The proposed MS-BACL model mainly includes a contrastive 
learning module, a bond graph encoding module and a metabolic 
stability prediction module. In the experiments, we mainly 
explore the impact of the bond graph encoding module and the 
contrastive learning module on model performance. In addition, 
according to the analysis in Section 3.3, the metabolic stability of 
a molecule is greatly affected by the structure of the compound. 
Therefore, we study the impact of hydrogen atoms on model 
performance in order to reveal the key role of hydrogen atoms 
in the structure of compounds. In this study, ‘hydrogen atoms’ 
actually refer to non-framework hydrogen atoms. 

Table 3 shows the results of the ablation experiments. In 
Table 3, ‘w/o GCL’ indicates removal of the graph contrastive 
learning module, followed by elimination of the original graph 
encoding module, leaving only the bond graph encoding module 
for molecular stability prediction. The ‘w/o BG’ setting implies 
that predictions of molecular metabolic stability are made using 
the original molecular graph, not the bond graph, while retaining 
both the graph contrastive learning and bond graph encoding 
modules throughout training. And ‘w/o H’ means that H atoms are 
deleted when constructing molecular and bond graphs, ‘w/o GCL 
& BG’ means that both the bond graph encoding and contrastive 
learning modules are removed and ‘w/o ALL’ means H atoms 
are deleted based on ‘w/o GCL & BG’. The results show that 
the performance of the model decreases after removing the 
contrastive learning or bond graph encoding module. At the 
same time, the contrastive learning and bond graph encoding 
modules are deleted, and only the GIN encoder was used to 
process molecular graphs, resulting in the worst performance 
of the model. In addition, we find that the performance of ‘w/o 
GCL & BG’ and ‘w/o H’ is almost the same, indicating that when 
the compound lacks key topological information, the use of bond 
graph encoding and contrastive learning modules can make up for 
it. This fully demonstrates the importance of bond graph encoding 
and contrastive learning modules to model performance. 

In previous studies, when extracting the feature of the molecu-
lar structure or constructing a molecular graph, only heavy atoms 
were absorbed and the H atoms with the smallest molecular 
weight were ignored. We focused on exploring the impact of 
H atoms in the molecular structure on the metabolic stability 
of the model predicted molecules. The results of the ablation 
experiment show that the model performance decreases after 
deleting H atoms. This also proves that H atoms are very
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Table 2: Performance of all models on external dataset 

Models AUC ACC F1-Score MCC 

GBDT 0.644±0.046 0.740±0.024 0.825±0.013 0.155±0.062 
XGBoost 0.678±0.018 0.732±0.014 0.830±0.011 0.150±0.044 
D-MPNN 0.766±0.019 0.741±0.013 0.852±0.015 0.218±0.038 
GAT 0.814±0.025 0.755±0.052 0.825±0.049 0.414±0.081 
PredMS 0.766±0.014 0.756±0.011 0.856±0.006 0.231±0.045 
MGCN 0.830±0.032 0.774±0.033 0.845±0.033 0.447±0.064 
AttentiveFP 0.816±0.044 0.754±0.034 0.814±0.045 0.415±0.067 
CMMS-GCL 0.885±0.015 0.836±0.024 0.889±0.017 0.569±0.055 
MS-BACL 0.897±0.017 0.842±0.022 0.895±0.016 0.588±0.038 

Table 3: Results of ablation experiment 

Models AUC ACC F1-Score MCC 

w/o ALL 0.857±0.023 0.795±0.030 0.845±0.018 0.552±0.058 
w/o H 0.864±0.022 0.800±0.030 0.848±0.026 0.569±0.052 
w/o GCL & BG 0.860±0.022 0.802±0.027 0.850±0.021 0.551±0.055 
w/o BG 0.866±0.021 0.807±0.025 0.852±0.016 0.579±0.048 
w/o GCL 0.869±0.022 0.811±0.028 0.855±0.023 0.586±0.045 
MS-BACL 0.873±0.019 0.820±0.023 0.863±0.018 0.601±0.053 

important in the molecular structure, enhancing the model to 
predict metabolic stability. 

Parameter analysis 
In Equation 8, parameter λ balances the classification loss with 
graph comparison learning loss. To identify the optimal λ value, 
we designed experiments with λ ranging from 0.1 to 0.9. Specifi-
cally, we split the HLM dataset into training and test sets at a 9:1 
ratio, randomly designating one portion for testing and the rest for 
training. For each parameter experiment, we ensured consistency 
in the training and test sets, along with other parameters. Results 
depicted in Figure 4 reveal a stable performance of the model 
across λ values [0.1, 0.9], with a slight decrease noted between [0.3, 
0.9]. This indicates minimal impact of variations on model per-
formance, facilitating the determination of λ values for unknown 
datasets. 

Theoretically, an optimal number of layers enhances the GIN 
model’s ability to extract complex features, but excessive layers 
lead to an ‘over-smoothing’ issue. To assess the effect of the GIN 
model’s layer count on the MS-BACL model’s performance, we 
conducted parameter experiments to inform the optimal layer 
configuration. The experimental setup mirrors that of the exper-
iment on parameter λ. Results presented in Figure 4 indicate 
that setting the GIN layers to 2 optimizes the model’s AUC, 
ACC, F1 − Score and MCC metrics. Performance declines when 
exceeding two layers, demonstrating a negative correlation with 
the increase in GIN layers. This trend may lead the model toward 
‘over-smoothing’. Thus, limiting the GIN model to fewer layers can 
circumvent this issue. 

Prediction of metabolic stability across species 
In the early stages of drug development, the safety and efficacy of 
candidate compounds are often verified and evaluated on mul-
tiple biological models. In experiments, we collected metabolic 
stability data of compounds related to human liver microsomes 
and rat liver microsomes. We try to use the model trained based 
on the HLM dataset to evaluate the performance of the model 

on the RLM dataset. This is expected to help understand the 
similarities and differences in drug metabolism between humans 
and rats, thereby providing some new insights into the study of 
drug metabolism mechanisms. 

Figure 3(a) presents the AUC performance of the proposed 
MS-BACL and the suboptimal CMMS-GCL model on the cross-
species metabolic stability dataset. The results show that the 
model trained on the HLM dataset has poor prediction perfor-
mance on the RLM dataset. This indicates that the metabolic 
stability of compounds in human liver microsomes and rat liver 
microsomes is quite different. This difference highlights the com-
plexity of predicting drug metabolism in different biological mod-
els and why multi-model drug testing is critical in the early 
stages of drug development. Therefore, cross-species prediction 
of metabolic stability helps to understand the behavior of drugs 
in different biological models and deeply explore and interpret the 
differences in metabolic mechanisms. Furthermore, the MS-BACL 
model trained on the HLM dataset performs better on the RLM 
dataset relative to the suboptimal CMMS-GCL model. This shows 
that the proposed MS-BACL model has better generalization abil-
ity and can explore the similarity of metabolic mechanisms in 
different species in cross-species metabolic stability prediction. 

The extrapolation from model organisms, like rats, to humans 
is pivotal in drug development and biomedical research. Eval-
uating on a dataset that encompasses both model organisms 
and human data enhance the accuracy of drug effect predic-
tions in humans and boost research productivity. Consequently, 
we integrated the HLM and RLM datasets to assess the model’s 
cross-species adaptability. The merged dataset encompasses both 
species, totaling 7332 samples with 4378 stable and 2954 unstable 
compounds. The training data comprised 1299 compounds from 
the RLM dataset and 5289 from the HLM dataset. The test set 
included 587 molecules from the HLM dataset and 157 from the 
RLM dataset. Figure 3(b) displays the AUC metrics for MS-BACL 
and CMMS-GCL on the combined dataset. The experimental find-
ings suggest that MS-BACL more precisely forecasts molecular 
metabolic stability across species datasets.
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Figure 3. The AUC performance of the MS-BACL and the suboptimal CMMS-GCL model on the cross-species metabolic stability dataset. 

Figure 4. The performance of the MS-BACL across various parameter configurations. 

Investigation of novel substructure 
We also evaluated the model’s performance in identifying novel 
molecular structures. ECFP fingerprinting was employed on 
the HLM dataset’s molecules, and the Tanimoto coefficient 
was calculated to ascertain molecular similarities. K-means 
clustering segregated the molecules into five distinct groups 
based on their structural attributes. Principal component 
analysis was utilized to reduce data dimensions for visual 
representation of the clustering outcomes. Five distinct clusters 
emerged, each with markedly different structures, as depicted in 
Figure 5. 

The ‘leave-one-out’ cross-validation approach involves seg-
menting the dataset into five clusters via K-means method, with 
one cluster designated as the test set in each iteration, and the 
other clusters serving as the training set. Rotating leave-one-out 
cross-validation across five clusters assessed each model’s capa-
bility to recognize novel structural molecules. Results, presented 
in Figure 6, reveal that the MS-BACL model’s AUC, ACC, F1 − score 
and MCC metrics significantly surpass those of contemporary 

Figure 5. Distribution of five chemical structures in the HLM dataset.



8 | Wang et al.

Figure 6. Performance of MS-BACL and suboptimal CMMS-GCL models in identifying novel and diverse chemical structures. 

leading models. This corroborates the MS-BACL model’s effective-
ness in identifying novel molecular structures and its adaptability 
to diverse structural variations. 

Figure 5 reveals that Cluster2 exhibits a relatively dispersed 
node distribution. This dispersion likely stems from the low struc-
tural similarity among the cluster’s compounds, leading to sig-
nificant property variances. Consequently, Figure 6 shows that 
both the MS-BACL and the CMMS-GCL models exhibit reduced 
predictive accuracy. In contrast to Cluster2, Cluster3 displays a 
tighter node distribution, indicating higher structural similarity 
among its compounds and minimal property differences. As a 
result, both the MS-BACL and CMMS-GCL models demonstrate 
enhanced predictive performance. Additionally, within Cluster2, 
the MS-BACL model slightly underperforms the CMMS-GCL model 
in AUC index, possibly due to the substantial chemical structure 
dissimilarity among samples, influenced by random factors. In 
Cluster3, the MS-BACL model falls marginally behind the CMMS-
GCL model in ACC and MCC metrics, a discrepancy that could be 
attributed to the limited sample size and random factors. Overall, 
the MS-BACL model outperforms the CMMS-GCL model in both 
Cluster2 and Cluster3. 

Effect of substructure on metabolic stability 
In this section, we reveal in depth the dependencies of model 
effectiveness and explore key atoms or substructures that 
influence metabolic stability. This not only improves the 
interpretability of model prediction results, but also provides 
valuable guidance for compound design and optimization. 
Molecular substructure analysis is performed on the testset of 
the HLM dataset, which included 383 positive samples and 202 

negative samples. We construct a bond graph from molecular 
SMILES and estimate the Shapley values of its nodes using a 
method akin to EdgeSHAPer [28]. These nodes encapsulate the 
properties of chemical bonds and adjacent atoms, ensuring that 
the derived Shapley values are imbued with extensive chemical 
information. Mapping these Shapley values to their respective 
locations within the molecule’s original structure allows for a 
more precise analysis of each functional group or chemical bond’s 
effect on the molecule’s predicted metabolic stability. Generally 
speaking, unstable functional groups have a greater impact on 
the metabolic stability of compounds. Therefore, we count the 
frequency of occurrence of functional groups or bonds that have 
a negative effect on the metabolic stability of compounds. 

We focus on bonds with Shapley values less than -0.4, and 
screen out the top eight functional groups containing these 
bonds that have a greater impact on the model’s predicted 
metabolic instability, as shown in Figure 7.A. Figure 7.B and D 
shows the structure of the metabolically unstable compounds, 
and Figure 7.C and E shows the structure of the metabolically 
stable compounds. The blue part indicates a negative impact 
on metabolic stability, the red part indicates a positive impact on 
metabolic stability and the depth of the color indicates the degree 
of impact. In Figure 7.B, it can be found that the amide functional 
group and the ether bond connecting the benzene ring enhance 
the metabolic instability of the compound. Figure 7.D indicates 
that secondary amines contribute to the compound’s stability, 
while the sulfonyl functional group induces metabolic instability, 
resulting in the compound’s overall instability during metabolism. 
In Figure 7.C and E, there are no functional groups that 
significantly enhance metabolic instability. On the contrary, the 
secondary amine structure enhances the metabolic stability of
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Figure 7. The frequency of occurrence of functional groups or bonds that have a negative effect on the metabolic stability of compounds. 

the compound. The results show that the proposed MS-BACL 
model can identify specific structures to predict metabolic 
stability, and can reveal the impact of chemical structures on 
metabolic stability. This optimizes the drug design task at an early 
screening stage by avoiding the generation of potential structures 
that are unstable or prone to breakdown in vivo. 

CONCLUSION 
In this study, we first investigated related methods for predicting 
the metabolic stability of molecules and pointed out some limi-
tations of these methods. For example, machine learning-based 
methods only extract features such as molecular sequences, but 
do not consider the chemical structure of the molecules. Deep 
learning, especially GNN-related methods, can efficiently pre-
dict molecular stability relying on the chemical structure of the 
molecule, but only focus on the message propagation on atoms 
and ignore the information of chemical bonds. To this end, we 
propose the MS-BACL model based on bond graph augmentation 
and contrastive learning strategies, aiming to reliably predict 
the metabolic stability of compounds. The proposed MS-BACL 
model constructs a bond graph that captures the relationship 
between bonds. This enables the MS-BACL model to absorb both 
atomic and chemical bond information in message passing, thus 
enhancing the structural representation of molecules. In addition, 
we conduct contrastive training based on molecular graphs and 
their bond graphs to learn robust molecular representations and 
improve model performance. 

We construct multiple sets of comparison and ablation exper-
iments on HLM, and external datasets to verify the performance 
of the proposed MS-BACL model and the role of its key mod-
ules. Experiments on human and rat metabolism datasets can 
understand the similarities and differences in drug metabolism 
of different species to a certain extent. We count the frequency of 
functional groups that lead to a decrease in metabolic stability 
and analyzed the impact of key substructures of molecules on 
metabolic stability. In addition, we also explore the impact of 
small molecular weight H atoms on the chemical structure of 
the molecule. These results and analyses prove that the MS-
BACL model can indeed reliably predict the metabolic stability of 
molecules, and are also expected to provide valuable reference for 
drug design and optimization. 

The high efficiency of the proposed MS-BACL model partic-
ularly relies on the bond graph encoding module, which can 
simultaneously absorb atom and chemical bond information dur-
ing the message propagation process. This bond graph strat-
egy is pluggable and can be easily embedded into other GNN-
related models. It can be thus widely used to solve graph-related 
bioinformatics problems, especially to understand and reveal 

information about the chemical structure of molecules. Nonethe-
less, the model presents certain limitations. First, the model solely 
extracts features from molecular chemical structures, neglecting 
multi-source data like sequences, images and text descriptions. 
Secondly, training exclusively on a specific dataset hampers the 
acquisition of generalized molecular representation, leading to 
limited generalization capabilities. For future work, we intend to 
incorporate multi-source data to refine molecular representation 
and employ pre-training or large language models to learn general 
knowledge of moleculars and enhance the model’s generalization 
capacity. 

Key Points 
• The designed MS-BACL model demonstrates a reliable 

capability in predicting molecular metabolic stability. 
• A novel ‘atom-bond-atom’ based molecular bond graph 

enhances molecule topological data, facilitating atom 
and bond information absorption during model message 
propagation. 

• A contrastive learning strategy is adeptly utilized to train 
molecular and bond graphs, effectively honing robust 
molecular representations. 
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