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ABSTRACT
Background: Single-cell annotation plays a crucial role in the analysis of single-cell
genomics data. Despite the existence of numerous single-cell annotation algorithms,
a comprehensive tool for integrating and comparing these algorithms is also lacking.
Methods: This study meticulously investigated a plethora of widely adopted
single-cell annotation algorithms. Ten single-cell annotation algorithms were
selected based on the classification of either reference dataset-dependent or marker
gene-dependent approaches. These algorithms included SingleR, Seurat, sciBet,
scmap, CHETAH, scSorter, sc.type, cellID, scCATCH, and SCINA. Building upon
these algorithms, we developed an R package named scAnnoX for the integration and
comparative analysis of single-cell annotation algorithms.
Results: The development of the scAnnoX software package provides a cohesive
framework for annotating cells in scRNA-seq data, enabling researchers to more
efficiently perform comparative analyses among the cell type annotations contained
in scRNA-seq datasets. The integrated environment of scAnnoX streamlines the
testing, evaluation, and comparison processes among various algorithms. Among the
ten annotation tools evaluated, SingleR, Seurat, sciBet, and scSorter emerged as
top-performing algorithms in terms of prediction accuracy, with SingleR and sciBet
demonstrating particularly superior performance, offering guidance for users.
Interested parties can access the scAnnoX package at https://github.com/XQ-hub/
scAnnoX.

Subjects Bioinformatics, Cell Biology
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INTRODUCTION
Single-cell sequencing data provide a high-resolution gene expression perspective within
individual cells (Wen et al., 2023), revealing functional and phenotypic differences among
individual cells (Balzer et al., 2021; Kolodziejczyk et al., 2015; Rossin, Sobrin & Kim, 2021;
Slovin et al., 2021) and thereby revealing the diversity and heterogeneity within cell
populations (Bod et al., 2023; Chen et al., 2023; Fu et al., 2021; Hickey et al., 2023; Wang
et al., 2022). However, when analyzing single-cell data, identifying cell identities is essential
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and particularly critical (Brendel et al., 2022; Cheng et al., 2023; Kim et al., 2021). Currently,
two main strategies are available for single-cell identity annotation: manual annotation and
automatic annotation. Manual annotation consumes a significant amount of time, while
automatic annotation is more convenient and rapid than manual annotation and is
currently trending (Abdelaal et al., 2019; Huang & Zhang, 2021).

As researchers have increasingly focused on single-cell identity annotation tasks,
numerous automatic annotation algorithms have emerged. One type of method involves
auto annotation based on the marker genes associated with cell types and scoring the
presence of these marker genes in cell clusters (Pasquini et al., 2021), referred as
marker-based annotation. Examples illustrating this principle include algorithms such as
scCATCH (Shao et al., 2020), sc.type (Ianevski, Giri & Aittokallio, 2022) and SCINA
(Zhang et al., 2019). The second type of method requires a reference dataset containing cell
type information for calculating the similarity between the expression profiles of query
genes and the reference dataset and referred reference-based annotation. Prominent
examples of this style of method include SingleR (Aran et al., 2019) and sciBet (Li et al.,
2020).

Generally, annotation algorithms exhibit unique applicability and constraints.
Reference-based tools like SingleR and scmap (Kiselev, Yiu & Hemberg, 2018) rely on
statistical metrics, while CHETAH (de Kanter et al., 2019) employs a hierarchical
classification approach. Marker-based tools like cellID (Cortal et al., 2021) leverage
multivariate statistical methods, whereas SCINA utilizes bimodal distribution fitting for
marker genes, and scCATCH relies on cellular heterogeneity within clusters. However,
the autonomy of each annotation result presents difficulties in effectively studying,
comparing, filtering, and optimizing the combined annotation results from different
methods. Consequently, selecting the most appropriate algorithm for specific research
objectives entails preprocessing data to adhere to the algorithm’s specifications, conducting
model tuning, and gaining a thorough understanding of the intricacies associated with
each algorithm. This decision-making process often necessitates substantial time and effort
investments.

In this context, the present study developed an R package known as scAnnoX, which
amalgamates 10 distinct single-cell sequencing data-based cell identity recognition
algorithms into a unified framework, facilitating a comparative analysis. The overarching
goal is to assist researchers in efficiently analyzing scRNA-seq data, offering targeted
guidance for making judicious decisions regarding the intricate selection of single-cell
identity recognition algorithms and simplifying the processes of testing, evaluating, and
comparing various algorithms within an integrated environment.

MATERIALS AND METHODS
This research endeavored to construct an R package, denoted scAnnoX, designed to
comprehensively amalgamate ten distinct algorithms for single-cell RNA sequencing
data-based cell identity recognition. These algorithms include SingleR (version 1.8.1)
(Aran et al., 2019), Seurat (version 4.3.0.1) (Hao et al., 2023), sciBet (version 0.1.0) (Li
et al., 2020), scmap (version 1.9.3) (Kiselev, Yiu & Hemberg, 2018), CHETAH (version
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1.14.0) (de Kanter et al., 2019), scSorter (version 0.0.2) (Guo & Li, 2021), sc.type (version
NA) (Ianevski, Giri & Aittokallio, 2022), cellID (version 1.2.1) (Cortal et al., 2021),
scCATCH (version 3.2.2) (Shao et al., 2020) and SCINA (version 1.2.0) (Zhang et al.,
2019). In each instance, source code packages were diligently installed, or scripts were
meticulously sourced from GitHub repositories. Evaluating the performance of ten
single-cell identity recognition algorithms is a multifaceted endeavor that necessitates the
establishment of clearly defined methodologies and the implementation of a rigorous set of
standardized experimental procedures.

Data preprocessing
In the initial stage, the primary tasks for users involved acquiring the processing single-cell
sequencing data into Seurat objects. If the data had not been initialized, normalization
could be performed using the “NormalizeData” function with the “LogNormalize”
parameter (accessible through the “Seurat” package). Alternatively, principal component
analysis (PCA)-based (Lever, Krzywinski & Altman, 2017) dimensionality reduction could
be applied to the data using the “RunPCA” function. Data preprocessing could also be
carried out using the “commonClustering” function of the scAnnoX package. This process
facilitated a deeper understanding of the similarities and differences between individual
cells.

Reference profile acquisition and marker gene selection
When invoking tools based on reference datasets, users are required to provide
corresponding reference expression profiles based on specific research organizations or
particular cell types. The use of marker gene-based tools enables the identification of
marker genes from the reference expression profiles. This can be achieved using the
“FindAllMarkers” function within the “Seurat” package. It is worth noting that if the users
have already provided a list of marker genes, the marker gene identification step is not
executed.

Algorithm selection
After conducting an in-depth exploration of various single-cell annotation algorithms, we
selected ten widely used and publicly available algorithms based on their different methods
and functionalities (Table 1). These algorithms can be categorized into two main classes.
One class of tools, including scSorter, sc.type, cellID, scCATCH, and SCINA, relies on
marker genes associated with specific cell types. The other class of tools, including SingleR,
Seurat, sciBet, scmap, and CHETAH, utilizes information from reference cell type datasets.

Integration of annotations
This task involved integrating and optimizing ten different single-cell RNA sequencing
data-based cell identity recognition algorithms. Each of these algorithms has unique
strengths and applications; therefore, cleverly combining them will provide researchers
with a broader range of choices and more powerful tools. This effort aimed to enhance the
diversity of data processing, thereby improving the feasibility of research. To optimize the
algorithm integration process, we needed to delve into the performance and characteristics

Huang et al. (2024), PeerJ, DOI 10.7717/peerj.17184 3/19

http://dx.doi.org/10.7717/peerj.17184
https://peerj.com/


of these different algorithms and find the best way to integrate them to ensure that they
could work together while considering the quality and characteristics of data.

The scAnnoX package includes a function called “autoAnnoResult”, which was used to
aggregate and summarize the predictions of the 10 algorithms. After aggregation, following
the principle of the voting algorithm, the frequency (denoted as NCell type.) of each
prediction outcome produced for the same sample was computed and expressed as a ratio
to the total number of methods, thereby yielding the frequency of each prediction.
The result of the “autoAnnoResult” function was the prediction with the highest frequency
and was determined by the following formula:

argmaxCell type p ¼ NCell type

NTools

� �
:

This result serves as the final prediction in the scAnnoX package, which effectively
integrates multiple algorithms. With this approach, researchers can analyze and interpret
single-cell RNA sequencing data, providing them with more powerful tools and a wider
range of choices for more effectively conducting scientific research.

Experimental validation
Datasets originating from diverse organizational sources and various data platforms were
partitioned into test and reference sets at a 6:4 ratio. The test set was used for an
algorithmic performance evaluation, while the reference set was employed for model
training or served as a performance benchmark. Leveraging the scAnnoX package, we
conducted data annotation and validation, leveraging a suite of functions for assessing the
precision and consistency of single-cell RNA sequencing data. We scrutinized the
alignment between the predictions produced by each method on the test set and the
ground-truth labels within the reference set. Two different performance metrics, the
prediction accuracy and the root mean square error (RMSE), were used to measure the
accuracy and reliability of each algorithm, which facilitated the selection of the most

Table 1 Publicly available annotation tools for single cells.

AnnoTool Author Version Method Depend Reference or
marker-based

Publication

SingleR Aran D et al. 1.8.1 Correlation to training set R RB 2019

Seurat Hao Y et al. 4.3.0.1 Built-in functions R(>= 4.0.0) RB 2023

sciBet Li C et al. 0.1.0 Multinomial model R RB 2020

scmap Kiselev VY et al. 1.9.3 Nearest median classifier R(>= 3.4) RB 2018

CHETAH de Kanter JK et al. 1.14.0 Correlation to training set R(>= 4.0) RB 2019

scSorter Guo H et al. 0.0.2 Marker genes R(>= 3.6.0) MB 2021

sc.type Ianevski A et al. NA Specificity of marker genes R MB 2022

cellID Cortal A et al. 1.2.1 Multivariate statistical methods R(>= 4.1) MB 2021

scCATCH Shao X et al. 3.2.2 Cell heterogeneity in the clusters R(>= 4.0.0) MB 2020

SCINA Zhang Z et al. 1.2.0 Bimodal distribution fitting
for marker genes

R(>= 2.15.0) MB 2019
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appropriate algorithm for satisfying research needs. This approach helped to determine
which algorithms performed well in terms of validating multisource data.

Performance assessment
Accuracy

Performance metrics serve as measurement standards for appraising the efficacy of
models, algorithms, or systems within the context of specific tasks. In this context, we
present a pivotal performance metric: accuracy. Accuracy is a ubiquitous metric that is
utilized to assess the effectiveness of classification models or algorithms. This metric gauge
the ratio of samples correctly predicted by the model to the number of overall samples.
The formula for calculating accuracy is succinctly expressed as follows:

Accuracy ¼ Npred¼Publiction

N

where Npred¼Publiction signifies the number of samples for which the predictions of the
utilized model or algorithm align with the authentic labels, and N denotes the aggregate
number of samples.

Root mean square error of prediction performance
The root mean square error is a statistical metric that quantifies the disparity between
predicted and actual values (Kim et al., 2021). It is calculated as the square root of the mean
of the squared differences between the predicted and actual values divided by the total
number of observations. The RMSE is particularly sensitive to atypical data points, which
are often referred to as outliers, making it a valuable tool for assessing the overall accuracy
and robustness of predictive models. The formula for the RMSE is defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Xn
i¼1

truei � predið Þ2
s

:

In this equation, N denotes the total number of experiments conducted, n signifies the
number of predicted samples, truei represents the true value for the sample, and predi is
indicative of the predicted value for the same sample.

RESULTS
R package development for single-cell RNA sequencing data
annotation
Utilizing the R programming language, we have successfully engineered an R package
called scAnnoX. This meticulously crafted package integrates a comprehensive suite of 10
distinct annotation algorithms, as previously elucidated. Each of these algorithms exhibits
unique applicability and inherent limitations. To help users conduct their research more
efficiently using the scAnnoX package, we meticulously crafted a comprehensive user
guide for scAnnoX. These user-friendly instructions ensure the effortless accessibility and
operation of all the integrated annotation algorithms.
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The scAnnoX software package employs distinct strategies based on algorithmic
classification. For algorithms relying on a reference dataset, both a reference dataset and a
test dataset are required as inputs. Conversely, for algorithms centered on marker genes, a
reference dataset and marker genes serve as the inputs. The ultimate output of the
scAnnoX software package integrates the annotation results acquired from both types of
algorithmic approaches. Furthermore, we meticulously fine-tuned and optimized this R
package, ensuring not only its stability but also its efficiency, thus guaranteeing its
long-term maintainability and scalability. The specific architecture of the scAnnoX
package is illustrated in Fig. 1.

Use of the scAnnoX package
The input data for the scAnnoX software package must adhere to the requirements of the
Seurat data format, ensuring that the columns of the dataset include gene expression values
and cell identity information. Subsequently, preprocessing steps, such as normalization
and dimensionality reduction, are applied to the data. If necessary, annotated algorithmic
functions can be invoked using the “listToolMethods” function of the R package. The test
dataset is subsequently annotated using the “autoAnnoTools” function provided in the
package. “autoAnnoTools” relies primarily on two fundamental parameters, “method” and
“strategy”, with optional parameters, including the reference dataset, reference cell types,
and marker gene information, defaulted to NULL. The “method” parameter refers to the
name of the single-cell annotation tool, while the “strategy” parameter indicates the
categorization of the single-cell annotation tool (see the Materials and Methods section for
details).

The necessity of these optional parameters depends on the value of the underlying
method. If the method is a marker-based algorithm, marker gene information must be
provided. If the method is a reference-based approach, both the reference dataset and
reference cell types need to be provided.

The output of the “autoAnnoTools” function contains the annotation results produced
by the chosen single-cell identity recognition algorithm for the samples within the testing
dataset. These annotation results assist in determining the single-cell identity of each
sample. Usage examples of the scAnnoX package can be found at https://github.com/XQ-
hub/scAnnoX/tree/main/vignettes. R, with the code and output results provided therein.
These examples serve as a valuable reference for understanding the practical
implementation of the package employed in your research.

Annotation for assessing the accuracy of internal datasets
To substantiate and compare the precision levels of the ten annotation tools, datasets
emanating from diverse tissue origins and distinct data acquisition platforms were
partitioned into experimental test sets and reference sets, maintaining a 6:4 ratio.
Comprehensive scrutiny was utilized to rigorously assess the efficacy of these
computational algorithms within the confines of the given datasets. In this study, we
conducted a comprehensive algorithmic performance evaluation using the scAnnoX
software package on four distinct single-cell omics datasets. Specifically, our analysis
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centered on the human islet cell dataset published by Xin et al. (2016), where the scSorter
and SCINA algorithms exhibited exceptional capabilities, achieving an outstanding
classification accuracy of 99.69% (Fig. 2A). Furthermore, we extended our assessment to
include the human liver tissue dataset presented by Camp et al. (2017) and the human
brain transcriptome dataset developed by Darmanis et al. (2015), where the sciBet
algorithm demonstrated remarkable performance, with classification accuracies of 98.43%
and 87.83%, respectively (Figs. 2B, 2C). In the case involving the human liver tissue
dataset, the sc.type algorithm also achieved a classification accuracy comparable to that of
sciBet. Of particular significance was the performance of the SingleR algorithm, which
achieved an impressive accuracy of 88.89% in terms of classifying the cell types within the
human brain transcriptome dataset and an exceptional accuracy of 96.17% on the adult
mouse cortical cell dataset produced by Tasic et al. (2016) (Fig. 2D). In contrast, the
performance of the cellID method was comparatively inferior, demonstrating an accuracy
of 61.78% on the human liver tissue dataset and a mere 12.91% accuracy on the human
pancreatic islet cell tissue dataset. Furthermore, it is noteworthy that the performances of
scmap and scCATCH, while competitive in certain contexts, exhibited considerable
variability and susceptibility to the characteristics of diverse datasets.

Based on these evaluations, we utilized the integrated results obtained through the
built-in functionalities of the autoAnnoTools function within the scAnnoX software
package. As exemplified by the human islet cell and human liver tissue datasets, we
produced two-dimensional visualizations of the original cell types, the scAnnoX

Figure 1 The integration process architecture used for the scAnnoX package. Full-size DOI: 10.7717/peerj.17184/fig-1
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Figure 2 Performance evaluation outcomes of ten algorithms and integrated results obtained on
four independent datasets. (A) Accuracy assessment results obtained on the pancreatic tissue dataset.
(B) Accuracy assessment results obtained on the liver tissue dataset. (C) Accuracy assessment results
obtained on the brain tissue dataset. (D) Accuracy assessment results obtained on the mouse cortical cell
tissue dataset. (E) Cellular type visualization results obtained on the pancreatic tissue dataset: the real cell
types, scAnnoX-predicted results, and Seurat-predicted results. (F) Cellular type visualization results
obtained on the liver tissue dataset: the real cell types, scAnnoX-predicted results, and scmap-predicted
results. Full-size DOI: 10.7717/peerj.17184/fig-2
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package-predicted cell types, and those predicted by one of the algorithms (Figs. 2E, 2F).
The uniform manifold approximation and projection (UMAP) visualization approach
demonstrated remarkable stability and robust performance within the integrated results.

Precision assessment of cross-platform datasets
The diversity of scRNA-seq techniques offers a valuable opportunity for validating
cross-platform datasets derived from the same biological tissue. To substantiate this
assertion, we conducted a precision assessment experiment on cross-platform datasets
using two independent and well-sequenced datasets originating from different sequencing
platforms. The primary objective of this study was to comprehensively and systematically
evaluate the performance of the scAnnoX package. Two distinct datasets were subjected to
validations in this experiment: one sourced from pancreatic tissue, as reported by Xin et al.
(2016) and Lawlor et al. (2017), and another derived from thymic tissue, as reported by
Yasumizu et al. (2022) and Park et al. (2020). Random subsampling was applied to each
dataset set obtained from the different platforms; one dataset was used as the reference
dataset, and the other was used as the test dataset. We compared the annotation accuracies
of the ten annotation algorithms embedded within the scAnnoX package and subsequently
derived an integrated annotation accuracy metric.

In the context of the cross-platform pancreatic tissue dataset, we employed the dataset
curated by Xin et al. (2016) as a reference training set and utilized the dataset curated by
Lawlor et al. (2017) as a test set. Our primary focus was on assessing the predictive
performance of various algorithms and the use of the scAnnoX software package for
identifying shared cell types between the two datasets (Figs. 3A, 3B). The results of this
validation exercise unequivocally highlight the robustness of the majority of the examined
tools in terms of accurately characterizing and annotating the test dataset. Specifically,
SingleR, sciBet, scSorter, and SCINA exhibited remarkable predictive accuracies of 99%,
while Seurat achieved an accuracy of 96.59%. Notably, cellID misclassified a significant
number of beta cells as alpha cells (Fig. 3A). SingleR demonstrated suboptimal
performance with respect to identifying pancreatic polypeptide-secreting cells (PPs) and
delta cell types, whereas Seurat exhibited deficiencies in terms of recognizing delta cell
types (Fig. 3C). A closer examination revealed that the challenges in distinguishing these
cell types could be attributed to their relatively low cell counts, especially the scarcity of
pancreatic polypeptide-secreting cells within the islet dataset (Fig. 3A). Remarkably,
scAnnoX, which leverages integrated annotations, was the top-performing approach, with
an impressive accuracy of 99.69%. This exceptional performance was particularly striking
because of its perfect prediction accuracy of 100% for alpha, beta, and delta cell types,
surpassing the performance of the other algorithms (Fig. 3C).

In the context of a multiplatform thymic tissue dataset, we assessed the reference dataset
produced by Park et al. (2020) using it as the baseline for a validation against the dataset
provided by Yasumizu et al. (2022). Given the high cell types heterogeneity and the limited
sample sizes within certain cell type categories, we comprehensively reclassified and
aggregated the cell types within the dataset. Specifically, we combined subtypes such as
mTEC(I), mTEC(II), mTEC(III), and mTEC(IV) into a unified category referred to as
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“mTEC”, while consolidating subtypes such as DC1, DC2, and aDC into a category
denoted as “DC”. Subsequently, we determined the predictive accuracy achieved for each
cell type (Fig. 4A). Following the data preprocessing steps, we proceeded to evaluate the
annotation performance of various computational algorithms. Due to the intricate nature
of the cell types and the potential confounding effects of batch processing, the validation
results were not satisfactory. The accuracies of most intrinsic methods tended to converge
within the range of 45% to 66% (Fig. 4B). Notably, after the integration process, scAnnoX
achieved an accuracy of 67.2%. However, it is worth mentioning that the misclassification
of cell types was predominantly centered on the fine-grained subtyping of B cells and T
cells (Figs. 4C, 4D).

This investigation underscores the complexities inherent in single-cell omics data
analysis tasks, particularly in the context of intricate cell type distinctions, and it highlights

Figure 3 Performance evaluation results obtained on independent cross-platform islet datasets. (A) Proportions of the four cell types in the test
dataset. (B) UMAP visualization of the cell types contained in the dataset of Lawlor et al. (2017) and the integrated cell types derived from the
scAnnoX software package. Each cluster represents a distinct cell type. (C) Prediction accuracy of SingleR, Seurat, and scAnnoX for the four cell
types. Full-size DOI: 10.7717/peerj.17184/fig-3
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Figure 4 Performance assessment results obtained on cross-platform thymic datasets. (A) Evaluation
of the predictive performance achieved for every cell type in the test dataset using the integrated results of
the scAnnoX package. (B) Comparative assessment of the predictive performance of ten algorithms and
the integrated results of the scAnnoX attained on the dataset of Yasumizu et al. (2022). (C) The original
cellular subtype distribution based on the dataset published by Yasumizu et al. (2022) Each cluster
represents distinct cellular subtypes. (D) UMAP visualization of the cell types predicted by scAnnoX and
SingleR. Full-size DOI: 10.7717/peerj.17184/fig-4
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the importance of algorithmic enhancements for increasing the accuracy of cell type
annotations.

Stability assessment of the annotations produced by scAnnoX
In the context of these experiments, we have successfully achieved a high predictive
accuracy for the integrated results. Furthermore, we conducted a comprehensive analysis
to assess the robustness and reliability of these integrated findings.

We comprehensively integrated and synthesized of all the experiments, generating
integrated predictions for each scenario. By leveraging the built-in functionalities of the
scAnnoX software package, we obtained integration results for each experiment.
In comparison with various algorithms, scAnnoX consistently exhibited outstanding
predictive performance, maintaining a consistently high level of accuracy, as depicted in
Figs. 5A and 5B. To further assess the robustness and flexibility of the scAnnoX-integrated
results, we calculated the root mean square error between the prediction results and the
actual cell types (Fig. 5C). This evaluation unequivocally demonstrated the stability and
resilience of the integration results provided by the scAnnoX software package.
Additionally, our study underscores the significant capability of integration results to
mitigate the adverse effects of data sparsity and batch effects relative to individual
algorithms. This enhanced robustness and the exceptional observed performance further
underscore the stability and reliability of our approach.

Comparative computational runtime analysis
Building upon the experiments validating our in-house dataset, our study undertook a
comprehensive analysis that unveiled profound disparities among the 10 distinct
single-cell identity recognition algorithms concerning their computational execution
times. This investigation underscores the significance of our work by shedding light on the
temporal dynamics of these algorithms, which is a crucial dimension in the ever-evolving
landscape of single-cell omics research.

In the pancreatic islet cell dataset, we grappled with an extensive volume of data,
encompassing 38,008 genes and 1,809 samples. Notably, the sc.type and the SCINA
methods exhibited exceptional efficiency in this scenario, completing the analysis within
0.30 and 0.55 seconds, respectively (Fig. 6A). In fact, they boasted the shortest processing
times among the ten algorithms we evaluated, an achievement that merits strong emphasis.
Conversely, scSorter and cellID required longer durations to complete the task. On the
liver and brain tissue datasets, which feature 465 and 466 samples, respectively, and
approximately twenty thousand genes, sc.type and SCINA continued to exhibit
outstanding performance, with execution times remaining under 0.6 s and even dipping to
0.3 s in the case of the hepatic tissue dataset (Figs. 6B, 6C). On the mouse cortical cell
dataset, which included 1,600 and 1,809 samples, and harbored complex cell types, sc.type
still managed to provide predictions within 0.5 s, while scCATCH required 221.75 s
(Fig. 6D). Taken together, the results of these experiments indicate that sc.type and SCINA
consistently exhibited highly favorable performance, whereas scSorter and cellID required
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longer durations to complete their tasks. scCATCH demonstrated an increase in runtime
when faced with datasets featuring complex cell types.

The experimental analysis results regarding the running times of various algorithms
across different datasets reveal a noteworthy trend: a substantial increase in the sample size
or data complexity level corresponds to an increase in time consumption. To be more
specific about the runtime implications, certain algorithms exhibited substantial variations,
while others remained relatively stable.

Initially, our observations demonstrated significant increases in the running times of the
CellID, sciBet, scmap, Seurat, and SingleR algorithms in response to enlarged sample sizes.
This phenomenon is attributed to the necessity of processing an increased number of data
points and performing more computationally demanding tasks. In contrast, the scCATCH
algorithm displayed atypical behavior as the sample size increased. According to the

Figure 5 Comprehensive comparative analysis of the predictive performance of different algorithms. (A) Predictive performance comparison
among all algorithms across all prediction experiments. (B) Evaluation of the prediction accuracy achieved for all algorithms and the integrated
scAnnoX method across all experiments. (C) Assessment of the root mean square errors induced by all algorithms and the integrated scAnnoX
method across all experiments. Full-size DOI: 10.7717/peerj.17184/fig-5
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comparative analysis between the human islet cell tissue dataset and the human liver tissue
dataset, the running time of scCATCH decreased with increasing sample size. In contrast,
certain algorithms, such as sc.type and SCINA, appear to have been less influenced by
sample size variations. This observation underscores the superior stability and efficiency of
these algorithms in handling extensive datasets.

In summary, these findings illuminate the varying performances of distinct algorithms
when confronted with different sample sizes. Researchers should be mindful of the
influence of their sample size when choosing an algorithm, ensuring that the selected
algorithm aligns with their research requirements and can execute the analysis within a
reasonable timeframe.

DISCUSSION
With the advancement of single-cell RNA sequencing technologies, numerous single-cell
annotation algorithms have emerged. Given the diverse requirements of different
algorithms in terms of data preprocessing, input‒output data formats, and other
operations, researchers are faced with the daunting task of developing a profound

Figure 6 Runtime distributions produced for datasets acquired from various organizational sources and platforms. (A) Runtime distributions
yielded by the 10 annotation tools on the human islet cell tissue dataset. (B) Runtime distributions produced by the 10 annotation tools on the
human liver tissue dataset. (C) Runtime distribution yielded by the 10 annotation tools on the human brain transcriptome dataset. (D) Runtime
distribution produced by the 10 annotation tools on the adult mouse cortical cell dataset. Full-size DOI: 10.7717/peerj.17184/fig-6
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understanding of the algorithmic structures embedded in source codes, demanding
substantial time and effort investments. In this context, our study established a
comprehensive framework designed to accommodate ten prominent single-cell annotation
algorithms. Within this framework, we developed an R package named “scAnnoX.” This
software package provides standardized data input and output architectures for these
algorithms. Thus, researchers can streamline their workflows by engaging in a round of
data preprocessing according to the input format specified by this package. This approach
enhances the efficiency of the algorithm selection process and provides the single-cell
genomics research community with a simplified and reproducible platform for testing and
comparing various single-cell annotation tools.

Additionally, within scAnnoX, a function named “autoAnnoResult” was implemented.
This function is utilized to generate comprehensive predictions in scAnnoX, and a
subsequent validation conducted across various datasets demonstrated the commendable
robustness of the performance achieved by scAnnoX. Researchers can leverage the
scAnnoX package to flexibly select and validate one or multiple algorithms embedded
within the package, facilitating comparative analyses among diverse algorithms.
Researchers can also conduct extensive downstream analyses based on specific research
objectives.

Specifically, we validated and compared the performances of ten algorithms, revealing
temporal fluctuations in their performances across different datasets. Among these
approaches, SingleR, Seurat, sciBet, and scSorter exhibited higher prediction accuracy,
while SingleR, sciBet, sc.type and SCINA required the shortest annotation time,
demonstrating superior efficiency. Notably, SingleR and sciBet ensured high prediction
accuracy alongside greater efficiency. This empirical evidence aids in assessing the
differences in performance among algorithms.

The development of scAnnoX has enabled effective analyses of single-cell RNA
sequencing data, streamlining the processes of testing, evaluating, and comparing multiple
algorithms, thereby equipping researchers with the tools necessary to navigate the
complexity of algorithm selection. However, the annotation tools contained within
scAnnoX are currently limited and represent one of the forthcoming research directions.
Additionally, visualization modules tailored for single-cell RNA sequencing data can be
incorporated into scAnnoX to better assist researchers in downstream analyses.

CONCLUSIONS
Based on the field of single-cell transcriptomics, we developed an R package named
scAnnoX by integrating ten different single-cell RNA sequencing data annotation
algorithms. The development of the scAnnoX software package addresses the necessity of a
universal input mode that is applicable to all single-cell RNA sequencing data
identification algorithms, allowing for a deeper understanding of the intricacies of each
algorithm. Consequently, researchers can utilize the scAnnoX package to obtain
experimental results from these ten algorithms, further enhancing their prediction
accuracy through the “autoAnnoResult” function. Thus, scAnnoX reduces the time and
effort required for data preprocessing and model optimization. Employing the scAnnoX
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software package, we conducted comparative evaluations of the predictive performance
and execution times of the ten algorithms across different datasets, including internal
validation experiments and cross-platform validation experiments. The results of the study
underscore the critical role of scAnnoX in providing researchers with essential
decision-making tools, enabling them to make informed choices based on their research
objectives. These experimental findings not only validate the importance of comparing and
integrating algorithms but also offer robust support for researchers who want to cautiously
select algorithms in specific research scenarios. This approach provides a useful tool for
analyzing single-cell RNA sequencing data and holds the potential to drive significant
advancements in biomedical research.
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