
Monitoring oxygenation status during general anesthesia is essential for respiratory 
management. Most anesthesiologists use noninvasive pulse oximetry to monitor percuta-
neous oxygen saturation (SpO2) to detect hypoxemia and adjust the inspired oxygen con-
centration without invasive tests such as arterial blood gas analysis [1]. However, in cases 
where the actual oxygen partial pressure is excessively high or low, the SpO2 reading can 
still appear close to 100%. Once the SpO2 reading begins to decrease, it indicates a signifi-
cant drop in the oxygen partial pressure, and the rate of decrease in SpO2 accelerates rap-
idly, increasing the risk of hypoxemia [2,3]. The oxygen reserve index (ORi) (Masimo 
Corp.) is a time indicator of oxygen reserves. It not only displays oxygen saturation, but 
also indicates the oxygen reserve status on a scale of 0.00 (no reserve) to 1.00 (much re-
serve) that is different from noninvasive pulse oximetry [4]. 

We report a case of successful management of subglottic stenosis using balloon bron-
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Background: Monitoring the oxygenation status is crucial during general anesthesia to 
ensure patient safety. Although noninvasive pulse oximetry is commonly used to monitor 
percutaneous oxygen saturation (SpO2), it may not accurately reflect changes in oxygen 
partial pressure when the latter is excessively high or low. The oxygen reserve index (ORi) 
provides real-time information about the oxygen reserve status. 
Case: We present a case of successful management of subglottic stenosis using balloon 
bronchoscopy in an infant with a left ventricular assist device implantation under ORi 
monitoring to predict hypoxemia during the surgical procedure.
Conclusions: Utilizing ORi monitoring during anesthesia for procedures involving apnea 
in critically ill infants can help predict impending desaturation before a drop in SpO2 oc-
curs, allowing anesthesiologists to effectively anticipate and manage the apnea period. 
Continuous ORi monitoring offers valuable insights during surgical procedures, especially 
in infants with compromised respiratory and cardiovascular functions. 
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choscopy in an infant with left ventricular assist device (LVAD) 
implantation under ORi monitoring to predict hypoxemia during 
the surgical procedure.  

Case Report 

This study was approved by the Institutional Review Board of 
Pusan National University Yangsan Hospital (IRB No. 05-2022-
215), and written informed consent for publication was obtained 
from the parents as the patient was a minor. A male infant was di-
agnosed with dilated cardiomyopathy at two months of age and 
underwent implantation of a LVAD (Berlin EXCOR®, 10 ml; Ber-
lin Heart AG). Following extubation at three months of age, the 
patient developed mild hoarseness and later presented with nasal 
flaring, chest retraction, and stridor. Reintubation was performed 
using an uncuffed endotracheal tube (ETT) with an internal di-
ameter (ID) of 3.5 mm for two days. Beta-agonist inhalation ther-
apy was initiated; however, the patient’s condition progressed to 
grade 3 stenosis (Fig. 1). Tracheostomy was considered, but the 
parents objected. Alternatively, bronchoscopic balloon dilation 
was planned. 

At the time of admission to the operating room, the patient was 
five months old, with a length of 57 cm and weight of 5.9 kg. SpO2 
was maintained at 100% with 1 L/min of oxygen via a nasal can-
nula. The blood pressure was 119/63 mmHg and the heart rate 
was 172 beats/min. To monitor the risk of rapid desaturation 
during surgery, a sensor (rainbow® sensor, R2–25, Revision L, 
Masimo Corp.) for measuring ORi was attached to the patient’s 
right big toe. ORi was monitored using the own system (Root® 
with Radical-7® system; Masimo Corp.). During anesthesia in-
duction, oxygen was continuously supplied at a rate of 5 L/min 

through a nasal cannula, and an additional 5 L/min was adminis-
tered using a mask. An intravenous injection with 8 mg of ket-
amine, 4 mg of rocuronium, and 10 μg of fentanyl was adminis-
tered. The procedure was anticipated to be difficult because of in-
voluntary movement caused by surgical stimulation; therefore, a 
neuromuscular blocker was administered despite predicting the 
occurrence of apnea. Subsequently, a laryngeal mask airway 
(LMA) #1 (i-gel®; Intersurgical Ltd.) was inserted. Anesthesia was 
maintained with an infusion of 4–12 mg/kg/h of 1% propofol, and 
the bispectral index was maintained at 33–37. 

After achieving SpO2 of 100% and ORi of 1, LMA was removed 
and a suspension laryngoscope was inserted into the glottis by the 
surgeon. Bronchoscopic balloon dilation was started when ORi 
reached 1, and continued for approximately 30 s, even after ORi 
reached 0. Apneic oxygenation was performed using oxygen sup-
plied at a rate of 5 L/min through the nasal cannula during the 
procedure. Mechanical ventilation via ETTs with IDs of 5.0 and 
6.0 mm was also attempted, but resulted in near apnea. The total 
time for the first procedural attempt was approximately 3–4 min, 
with 3 min from ORi 1 to 0 and 30 s from ORi 0 to SpO2 80% 
(Fig. 2A). The apnea period was extended to ensure sufficient 
procedural time, even after the ORi reached 0. As a result, despite 
initiating ventilation with 100% oxygen when SpO2 was 80%, 
there was a temporary drop in SpO2 by 40% to 60% after approxi-
mately 30 s. Fortunately, there was no hemodynamic instability, 
such as bradycardia or hypotension. When the ORi reached 0, the 
LMA was reinserted and rescue ventilation was performed with 
100% oxygen. It took approximately 1 min to reach SpO2 above 
97% and approximately 3 min for ORi to change from 0 to 1. The 
procedure was performed four times, with each trial lasting for 1 
min 30 s at pressures of 760, 1140, 1520, and 1900 mmHg, respec-

Fig. 1. Bronchoscopic view of subglottic lesion. (A) Preoperative diagnosis is grade 3 subglottic stenosis. (B, C) The lesion improves to grade 1 
subglottic stenosis after bronchoscopic balloon dilation.
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tively. Each trial also had a temporary drop in SpO2 by 40% to 
60% similar to the first attempt (Fig. 2B) although there was no 
hemodynamic instability. 

The lesion improved to grade 1 subglottic stenosis (Fig. 1), and 
the procedure was successfully completed. The infusion of propo-
fol was discontinued, and sugammadex (Bridion®; MSD) 20 mg 
was administered to reverse the neuromuscular block because the 
“train of four” count was 0 after the end of the surgery, and about 
4 mg/kg of sugammadex was considered reasonable. It was con-
firmed that the “train of four” ratio was >  90%. LMA was subse-
quently removed after smooth, spontaneous breathing was con-
firmed. The patient was shifted to the ward under the supervision 
of an attending pediatrician.    

Discussion 

In anesthesia for procedures that cause apnea, the ability to pre-
dict impending desaturation before a drop in oxygen saturation 
occurs is crucial for ensuring patient safety, especially in vulnera-
ble populations such as neonates and infants with poor respirato-
ry and cardiovascular function. Such patients have limited physi-
ological reserves and are susceptible to oxygenation issues. 

Neonates and infants have distinct characteristics in their respi-
ratory and cardiovascular systems that make them vulnerable to 
oxygenation problems; their airways are anatomically different, 
with a narrow upper airway and relatively large epiglottis. Addi-
tionally, their laryngeal cartilages are not fully developed, leading 
to frequent obstructions during inspiration. Newborns and in-
fants have narrower airways than adults, making them more 
prone to ventilation and diffusion impairments. Moreover, they 
have a lower functional residual capacity, low oxygen reserve, 
poor tolerance to apnea, and susceptibility toward hypoxemia and 
atelectasis. Furthermore, apnea in these populations, especially in 
children with reduced cardiopulmonary function, can rapidly 
lead to desaturation and systemic circulatory crises [5]. 

Once the partial pressure of arterial oxygen (PaO2) reaches 80 
mmHg or higher, SpO2 tends to remain close to 100%. Beyond 
this point, further increases in PaO2 do not result in an increase in 
SpO2, as the hemoglobin is already fully saturated with oxygen. 
Consequently, SpO2 cannot reliably predict PaO2 or reflect the ox-
ygen reserves after complete oxygenation of hemoglobin [6]. 
When SpO2 starts to decrease, it indicates that PaO2 has under-
gone a steep decline in the oxygen–hemoglobin dissociation 
curve. Therefore, even if immediate actions are taken to improve 

Fig. 2. Change of ORi, and SpO2 during bronchoscopic balloon dilation. (A) The total duration for the first procedural attempt is approximately 3–4 
min, with 3 min from ORi 1 to 0 and another 30 s from ORi 0% to 80% SpO2. (B) The procedure is performed four times, with each trial lasting 1 
min 30 s, at pressures of 760, 1140, 1520, and 1900 mmHg, respectively. It took approximately 3 min for ORi to change from 1 to 0. The apnea period 
has been extended to ensure sufficient procedural time, even after the ORi reached 0. As a result, despite initiating ventilation with 100% oxygen 
when the SpO2 was 80%, there is a temporary drop in SpO2 by 40% to 60% after approximately 30 s. LMA: laryngeal mask airway, O2: oxygen, ORi: 
oxygen reserve index, SpO2: percutaneous oxygen saturation.
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oxygenation when SpO2 begins to drop, rapid decrease in PaO2 
can lead to a sharp decline in SpO2 and hypoxemia [2]. Although 
arterial blood gas analysis provides an accurate measurement of 
PaO2, its invasive and intermittent nature limits its ability to mon-
itor sustained hypoxemia continuously [7]. 

ORi is a novel noninvasive parameter that reflects real-time ox-
ygen reserves. It is represented as a value between 0 and 1, where 
0 represents no oxygen reserve and 1 represents maximum oxy-
gen reserve. ORi reflects PaO2 values in the range of 100 to <  200 
mmHg [8,9]. Previous studies in adult and pediatric patients have 
shown that ORi decreases approximately 30 s before the onset of 
SpO2 decline, providing sufficient time for interventions to pre-
vent hypoxemia [6,10]. A study by Szmuk et al. [6] focused on 
changes in ORi and SpO2 in 25 relatively healthy pediatric patients 
after performing preoxygenation and endotracheal intubation, 
and disconnecting the anesthesia circuit from the ETT. This may 
not be directly applicable to vulnerable patients with compro-
mised respiratory and cardiovascular functions because relatively 
healthy pediatric patients maintained SpO2 levels during apnea 
periods. However, continuous monitoring of changes in ORi can 
help determine whether a patient has a full oxygen reserve. By ob-
serving the depletion of the oxygen reserve and the start of a de-
crease in SpO2, it is possible to predict hypoxia during the proce-
dure, and anesthesiologists can provide information on when to 
stop the procedure. ORi increases from 0.0 to 1.0 even after SpO2 
reaches 100%, indicating that the capacity of the oxygen reserve 
has reached its maximum value that can present the optimal tim-
ing for procedures such as balloon bronchoscopy to ensure pa-
tient safety. However, there was a time gap between balloon bron-
choscopy and the initiation of ventilation in the current case, 
prompting reoxygenation after ORi reached 0. This resulted in a 
temporary but significant decrease in SpO2 to levels as low as 45%. 
From this point of view, it was somewhat disappointing not to ap-
ply a transnasal humidified rapid-insufflation ventilatory ex-
change using a high-flow nasal cannula. 

ORi has a significant correlation with PaO2 values in the range 
of 100 to <  200 mmHg. When PaO2 is >  100 mmHg, the ORi 
value is ≥  0.24, and when PaO2 is >  150 mmHg, the ORi value is 
≥  0.55 [9]. If the balloon bronchoscopic procedure had been in-
terrupted and reoxygenation initiated when ORi fell between 0.24 
and 0.55, in addition to the ORi alarm of downward trends, it 
could have prevented the infant from experiencing further desat-
uration. 

In premature neonates, infants, and children, apnea induced by 
anesthesia or airway-related surgical procedures can lead to rapid 
desaturation because they have lower oxygen reserves and con-
sume more oxygen than adults [5]. In infants with poor respirato-

ry and cardiovascular functions, the severity of desaturation is 
even more pronounced and can potentially result in bradycardia 
and cardiac arrest [11,12]. By utilizing ORi, it is possible to predict 
expected desaturation during procedures involving apnea in criti-
cally ill infants, allowing anesthesiologists to anticipate and man-
age the apnea period effectively. This helps protect patients from 
severe hypoxemia. Additionally, real-time estimation of PaO2 can 
be achieved using ORi that is beneficial not only in cases of de-
creased PaO2 but also in critically ill neonates and infants to pre-
vent complications such as absorption atelectasis, pulmonary in-
jury, and retinal injury caused by excessively high PaO2 levels 
[13,14]. 
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