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Abstract

In this work, we study the transfer learning problem under highdimensional generalized linear 

models (GLMs), which aim to improve the fit on target data by borrowing information from 

useful source data. Given which sources to transfer, we propose a transfer learning algorithm 

on GLM, and derive its ℓ1 / ℓ2-estimation error bounds as well as a bound for a prediction error 

measure. The theoretical analysis shows that when the target and source are sufficiently close 

to each other, these bounds could be improved over those of the classical penalized estimator 

using only target data under mild conditions. When we don’t know which sources to transfer, an 

algorithm-free transferable source detection approach is introduced to detect informative sources. 

The detection consistency is proved under the high-dimensional GLM transfer learning setting. We 

also propose an algorithm to construct confidence intervals of each coefficient component, and the 

corresponding theories are provided. Extensive simulations and a real-data experiment verify the 

effectiveness of our algorithms. We implement the proposed GLM transfer learning algorithms in 

a new R package glmtrans, which is available on CRAN.
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1. Introduction

Nowadays, a great deal of machine learning algorithms has been successfully applied in 

our daily life. Many of these algorithms require sufficient training data to perform well, 

which sometimes can be limited. For example, from an online merchant ‘s view, it could 

be difficult to collect enough personal purchase data for predicting the customers’ purchase 

behavior and recommending corresponding items. However, in many cases, some related 

datasets may be available in addition to the limited data for the original task. In the 

merchant-customer example, we may also have the customers’ clicking data in hand, which 

is not exactly the same as but shares similarities with the purchase data. How to use these 
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additional data to help with the original target task motivates a well-known concept in 

computer science: transfer learning (Torrey and Shavlik, 2010; Weiss et al., 2016). As its 

name indicates, in a transfer learning problem, we aim to transfer some useful information 

from similar tasks (sources) to the original task (target), in order to boost the performance 

on the target. To date, transfer learning has been widely applied in a number of machine 

learning applications, including the customer review classification (Pan and Yang, 2009), 

medical diagnosis (Hajiramezanali and Zamani, 2018), and ride dispatching in ride-sharing 

platforms (Wang et al., 2018), etc. Compared with the rapidly growing applications, there 

has been little discussion about the theoretical guarantee of transfer learning. Besides, 

although transfer learning has been prevailing in computer science community for decades, 

far less attention has been paid to it among statisticians. More specifically, transfer learning 

can be promising in the high-dimensional data analysis, where the sample size is much 

less than the dimension with some sparsity structure in the data (Tibshirani, 1996). The 

impact of transfer learning in high-dimensional generalized linear models (GLMs) with 

sparsity structure is not quite clear up to now. In this paper, we are trying to fill the gap 

by developing transfer learning tools in high-dimensional GLM inference problem, and 

providing corresponding theoretical guarantees.

Prior to our paper, there are a few pioneering works exploring transfer learning under the 

high-dimensional setting. Bastani (2021) studied the single-source case when the target data 

comes from a high-dimensional GLM with limited sample size while the source data size is 

sufficiently large than the dimension. A two-step transfer learning algorithm was developed, 

and the estimation error bound was derived when the contrast between target and source 

coefficients is ℓ0-sparse. Li et al. (2021) further explored the multi-source high-dimensional 

linear regression problem where both target and source samples are high-dimensional. The 

ℓ2-estimation error bound under ℓq-regularization (q ∈ [0, 1]) was derived and proved to be 

minimax optimal under some conditions. In Li et al. (2020), the analysis was extended to 

the Gaussian graphical models with false discovery rate control. Other related research on 

transfer learning with theoretical guarantee includes the non-parametric classification model 

(Cai and Wei, 2021; Reeve et al., 2021) and the analysis under general functional classes 

via transfer exponents (Hanneke and Kpotufe, 2020a,b), etc. In addition, during the past few 

years, there have been some related works studying parameter sharing under the regression 

setting. For instance, Chen et al. (2015) and Zheng et al. (2019) developed the so-called 

“data enriched model” for linear and logistic regression under a single-source setting, where 

the properties of the oracle tuned estimator with a quadratic penalty were studied. Gross and 

Tibshirani (2016) and Ollier and Viallon (2017) explored the so-called “data shared Lasso” 

under the multi-task learning setting, where ℓ1 penalties of all contrasts are considered.

In this work, we contribute to transfer learning under a high-dimensional context from 

three perspectives. First, we extend the results of Bastani (2021) and Li et al. (2021), by 

proposing multi-source transfer learning algorithms on generalized linear models (GLMs) 

and we assume both target and source data to be high-dimensional. We assume the contrast 

between target and source coefficients to be ℓ1-sparse, which differs from the ℓ0-sparsity 

considered in Bastani (2021). The theoretical analysis shows that when the target and source 

are sufficiently close to each other, the estimation error bound of target coefficients could 

be improved over that of the classical penalized estimator using only target data under 
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mild conditions. Moreover, the error rate is shown to be minimax optimal under certain 

conditions. To the best of our knowledge, this is the first study of the multi-source transfer 

learning framework under the high-dimensional GLM setting. Second, as we mentioned, 

transferring sources that are close to the target can bring benefits. However, some sources 

might be far away from the target, and transferring them can be harmful. This phenomenon 

is often called negative transfer in literature (Torrey and Shavlik, 2010). We will show the 

impact of negative transfer in simulation studies in Section 4.1. To avoid this issue, we 

develop an algorithm-free transferable source detection algorithm, which can help identify 

informative sources. And with certain conditions satisfied, the algorithm is shown to be 

able to distinguish useful sources from useless ones. Third, all aforementioned works 

of transfer learning on high-dimensional regression only focus on the point estimate of 

the coefficient, which is not sufficient for statistical inference. How transfer learning can 

benefit the confidence interval construction remains unclear. We propose an algorithm on 

the basis of our two-step transfer learning procedure and nodewise regression (Van de 

Geer et al., 2014), to construct the confidence interval for each coefficient component. The 

corresponding asymptotic theories are established.

The rest of this paper is organized as follows. Section 2 first introduces GLM basics and 

transfer learning settings under high-dimensional GLM, then presents a general algorithm 

(where we know which sources are useful) and the transferable source detection algorithm 

(where useful sources are automatically detected). At the end of Section 2, we develop an 

algorithm to construct confidence intervals. Section 3 provides the theoretical analysis on the 

algorithms, including ℓ1 and ℓ2-estimation error bounds of the general algorithm, detection 

consistency property of the transferable source detection algorithm, and asymptotic theories 

for the confidence interval construction. We conduct extensive simulations and a real-data 

study in Section 4, and the results demonstrate the effectiveness of our GLM transfer 

learning algorithms. In Section 5, we review our contributions and shed light on some 

interesting future research directions. Additional simulation results and theoretical analysis, 

as well as all the proofs, are relegated to supplementary materials.

2. Methodology

We first introduce some notations to be used throughout the paper. We use bold 

capitalized letters (e.g. X, A) to denote matrices, and use bold little letters (e.g. x, 

y) to denote vectors. For a p-dimensional vector x = (x1, …, xp)T we denote its 

ℓq-norm as ‖ x ‖ = (∑i = 1
p ∣ xi ∣q )1 ∕ q (q ∈ (0, 2]), and ℓ0-“norm” ∥ x ∥0 = #{j : xj ≠ 0}. 

For a matrix Ap × q = [aij]p × q, its 1-norm, 2-norm, ∞-norm and max-norm are 

defined as ‖ A ‖1 = sup
j

∑i = 1
p ∣ aij ∣ , ‖ A ‖2 = maxx:‖x‖2 = 1‖ Ax ‖2 , ‖ A ‖∞ = sup

i
∑j = 1

q ∣ aij ∣ and 

‖ A ‖max = sup
i, j

∣ aij ∣, respectively. For two non-zero real sequences { an }n = 1
∞  and { bn }n = 1

∞ , we 

use an ≪ bn, bn ≫ an or an =  (bn) to represent ∣ an / bn ∣→ 0 as n → ∞. And an ≲ bn 

or an =  (bn) means sup
n

∣ an ∕ bn ∣ < ∞. Expression an ≍ bn means that an / bn converges 

to some positive constant. For two random variable sequences { xn }n = 1
∞  and { yn }n = 1

∞ , notation 

xn ≲ pyn or xn =  p(yn) means that for any ϵ > 0, there exists a positive constant M such 
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that sup
n

ℙ ( ∣ xn ∕ yn ∣ > M ) ≤ ∊. And for two real numbers a and b, we use a ∨ b and a ∧ b 

to represent max(a, b) and min(a, b), respectively. Without specific notes, the expectation E, 

variance Var, and covariance Cov are calculated based on all randomness.

2.1 Generalized linear models (GLMs)

Given the predictors x ∈ ℝp, if the response yfollows the generalized linear models 

(GLMs), then its conditional distribution takes the form

y ∣ x ∼ ℙ(y ∣ x) = ρ(y) exp {yxTw − ψ (xTw)},

where w ∈ ℝp is the coefficient, ρ and ψ are some known univariate functions. 

ψ ′( xTw ) = E ( y ∣ x ) is called the inverse link function (McCullagh and Nelder, 1989). 

Another important property is that Var(y ∣ x) = ψ″(xT w), which follows from the fact that 

the distribution belongs to the exponential family. It is ψ that characterizes different GLMs. 

For example, in linear model with Gaussian noise, we have a continuous response y and 

ψ ( u ) = 1
2u2; in the logistic regression model, y is binary and ψ(u) = log(1 + eu); and in 

Poisson regression model, y is a nonnegative integer and ψ(u) = eu. For most GLMs, ψ is 

strictly convex and infinitely differentiable.

2.2 Target data, source data, and transferring level

In this paper, we consider the following multi-source transfer learning problem. Suppose we 

have the target data set (X(0), y(0)) and K source data sets with the k-th source denoted as 

(X(k), y(k)), where X(k) ∈ ℝnk × p , y(k) ∈ ℝnk for k = 0, …, K. The i-th row of X(k) and the 

i-th element of y(k) are denoted as xi
(k) and yi

(k), respectively. The goal is to transfer useful 

information from source data to obtain a better model for the target data. We assume the 

responses in the target and source data all follow the generalized linear model:

y(k) ∣ x ∼ ℙ(y ∣ x) = ρ(y) exp {yxTw(k) − ψ (xTw(k))},

(1)

for k = 0, …, K, with possibly different coefficient w(k) ∈ ℝp, the predictor x ∈ ℝp, and 

some known univariate functions ρ and ψ. Denote the target parameter as β = w(0). Suppose 

the target model is ℓ0-sparse, which satisfies ∥ β ∥0 = s ≪ p. This means that only s of the 

p variables contribute to the target response. Intuitively, if w(k) is close to β, the k-th source 

could be useful for transfer learning.

Define the k-th contrast δ(k) = β − w(k) and we say ∥ δ(k) ∥1 is the transferring level of 

source k. And we define the level-h transferring set h = {k :∥ δ(k) ∥1 ≤ h} as the set of 

sources which has transferring level lower than h. Note that in general, h can be any positive 

values and different h values define different h set. However, in our regime of interest, 

h shall be reasonably small to guarantee that transferring sources in h beneficial. Denote 

nAℎ = ∑k ∈Aℎ nk , αk = nk
nAℎ + n0

 for k ∈ {0} ∪ h and K h = ∣ h ∣.
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Note that in (1), we assume GLMs of the target and all sources share the same inverse link 

function ψ. After a careful examination of our proofs for theoretical properties in Section 

3, we find that these theoretical results still hold even when the target and each source have 

their own function ψ, as long as these GLMs satisfy Assumptions 1 and 3 (to be presented 

in Section 3.1). It means that transferring information across different GLM families is 

possible. For simplicity, in the following discussion, we assume all these GLMs belong to 

the same family and hence have the same function ψ

2.3 Two-step GLM transfer learning

We first introduce a general transfer learning algorithm on GLMs, which can be applied 

to transfer all sources in a given index set . The algorithm is motivated by the ideas in 

Bastani (2021) and Li et al. (2021), which we call a two-step transfer learning algorithm. 

The main strategy is to first transfer the information from those sources by pooling all the 

data to obtain a rough estimator, then correct the bias in the second step using the target data. 

More specifically, we fit a GLM with ℓ1-penalty by pooled samples first, then fit the contrast 

in the second step using only the target by another ℓ1-regularization. The detailed algorithm 

( -Trans-GLM) is presented in Algorithm 1. The transferring step could be understood as 

to solve the following equation w.r.t. w ∈ ℝp:

∑
k ∈ {0} ∪ A

(X(k))T y(k) − ∑
i = 1

nk
ψ′((w)T xi

(k))xi
(k) = 0p,

which converges to the solution of its population version under certain conditions

∑
k ∈ {0} ∪ A

αkE [ψ′((wA)T x(k)) − ψ′((w(k))T x(k))]x(k) = 0p,

(2)

where αk = nk
nA + n0

. Notice that in the linear case, w  can be explicitly expressed as 

a linear transformation of the true parameter w(k), i.e. wA = Σ−1∑k ∈ {0} ∪AαkΣ(k)w(k), 

where Σ(k) = E [ x(k)( x(k))T ] and Σ = ∑k ∈ {0} ∪Aαk E [ x(k)( x(k) )T ] (Li et al., 2021).

To help readers better understand the algorithm, we draw a schematic in Section S.1.1 of 

supplements. We refer interested readers who want to get more intuitions to that.
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Algorithm 1:  -Trans-GLM

Input: target data (X(0), y(0)) , source data {(X(k), y(k))}k = 1K , penalty parameters λw and
λδ , transferring set A
Output: the estimated coefficient vector β
1 Transferring step:Compute

wA arg minw
1

nA + n0
∑

k ∈ {0} ∪A
−(y(k))T X(k)w + ∑

i = 1

nk
ψ(wT xi

(k)) + λw ‖ w ‖1

2 Debiasing step:Compute

δA arg minδ − 1
n0

( y(0))T X(0)( wA + δ) + 1
n0

∑
i = 1

n0
ψ ((wA + δ)T xi

(0)) + λδ ‖δ ‖1

3 Let β wA + δA

4 Output β

2.4 Transferable source detection

As we described, Algorithm 1 can be applied only if we are certain about which sources 

to transfer, which in practice may not be known as a priori. Transferring certain sources 

may not improve the performance of the fitted model based on only target, and can even 

lead to worse performance. In transfer learning, we say negative transfer happens when 

the source data leads to an inferior performance on the target task (Pan and Yang, 2009; 

Torrey and Shavlik, 2010; Weiss et al., 2016). How to avoid negative transfer has become an 

increasingly popular research topic.

Here we propose a simple, algorithm-free, and data-driven method to determine an 

informative transferring set . We call this approach a transferable source detection 
algorithm and refer to it as Trans-GLM.

We sketch this detection algorithm as follows. First, divide the target data into three folds, 

that is, {(X(0)[r] , y(0)[r])}r = 1

3
. Note that we choose three folds only for convenience. We 

also explored other fold number choices in the simulation. See Section S.1.3.3 in the 

supplementary materials. Second, run the transferring step on each source data and every 

two folds of target data. Then, for a given loss function, we calculate its value on the left-out 

fold of target data and compute the average cross-validation loss L0
(k)

 for each source. As 

a benchmark, we also fit Lasso on every choice of two folds of target data and calculate 

the loss on the remaining fold. The average cross-validation loss L0
(0)

 is viewed as the 

loss of target. Finally, the difference between L0
(k)

 and L0
(0)

 is calculated and compared with 

some threshold, and sources with a difference less than the threshold will be recruited 

into . Under the GLM setting, a natural loss function is the negative log-likelihood. For 

convenience, suppose n0 is divisible by 3. According to (1), for any coefficient estimate w. 

the average of negative log-likelihood on the r-th fold of target data (X(0)[r], y(0)[r]) is
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L0
[r](w) = − 1

n0 ∕ 3 ∑
i = 1

n0 ∕ 3
log ρ(yi

(0)[r]) − 1
n0 ∕ 3( y(0)[r])TX(0)w + 1

n0 ∕ 3 ∑
i = 1

n0 ∕ 3
ψ(wTxi

(0)[r]) .

(3)

The detailed algorithm is presented as Algorithm 2.

Algorithm 2: Trans-GLM

Input: target data (X(0), y(0)) , all source data {(X(k), y(k))}k = 1
K , a constant C0 > 0 ,

penalty parameters {{λ(k)[r]}k = 0
K }r = 1

3

Output: the estimated coefficient vector β , and the determind transferring set A

1 Transferable source detection:Randomly divide (X(0), y(0)) into three sets of equal

size as {(X(0)[i], y(0)[i])}i = 1
3

2 for r = 1 to 3 do

3 β(0)[r] fit the Lasso on {(X(0)[i], y(0)[i])}i = 1
3 ∖ (X(0)[r], y(0)[r]) with penalty parameter

λ(0)[r]

4 β(k)[r] run step 1 in Algorithm 1 with

({(X(0)[i], y(0)[i])}i = 1
3 ∖ (X(0)[r], y(0)[r])) ∪ (X(k), y(k)) and penalty parameter λ(k)[r] for all

k ≠ 0

5 Calculate the loss function L0
[r](β(k)[r]) on (X(0)[r], y(0)[r]) for k = 1, …, K

6 end

7 L0
(k) ∑

r = 1

3
L0

[r](β(k)[r]) ∕ 3 , L0
(0) ∑

r = 1

3
L0

[r](β(0)[r]) ∕ 3 , σ = ∑
r = 1

3
(L0

[r](β(0)[r]) − L0
(0))2 ∕ 2

8 A {k ≠ 0 :L0
(k) − L0

(0) ≤ C0(σ ∨ 0.01)}

9 A − Trans − GLM: β run Algorithm 1 using {(X(k), y(k))}k ∈ {0} ∪A
10 Output β and A

It’s important to point out that Algorithm 2 does not require the input of h. We will show 

that  = h for some specific h if certain conditions hold, in Section 3.2. Furthermore, 

under these conditions, transferring with  will lead to a faster convergence rate compared 

to Lasso fitted on only the target data, when target sample size n0 falls into some regime. 

This is the reason that this algorithm is called the transferable source detection algorithm.

2.5 Confidence intervals

In previous sections, we’ve discussed how to obtain a point estimator of the target 

coefficient vector β from the two-step transfer learning approach. In this section, we would 

like to construct the asymptotic confidence interval (CI) for each component of β based on 

that point estimate.

As described in the introduction, there have been quite a few works on high-dimensional 

GLM inference in the literature. In the following, we will propose a transfer learning 
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procedure to construct CI based on the desparsified Lasso (Van de Geer et al., 2014). 

Recall that desparsified Lasso contains two main steps. The first step is to learn the inverse 

Fisher information matrix of GLM by nodewise regression (Meinshausen and Bühlmann, 

2006). The second step is to “debias” the initial point estimator and then construct the 

asymptotic CI. Here, the estimator β from Algorithm 1 can be used as an initial point 

estimator. Intuitively, if the predictors from target and source data are similar and satisfy 

some sparsity conditions, it might be possible to use Algorithm 1 for learning the inverse 

Fisher information matrix of target data, which effectively combines the information from 

target and source data.

Before formalizing the procedure to construct the CI, let’s first define several 

additional notations. For any w ∈ ℝn, denote W w
(k) = diag ψ″(( x1

(k))Tw), … , ψ″(( xnk
(k))Tw) , 

Xw
(k) = W w

(k)X(k), Σw
(k) = E[ x(k)( x(k) )T ψ″(( x(k) )Tw)] and Σw

(k) = nk
−1 ( Xw

(k) )T Xw
(k). Xw, j

(k)  represents 

the j-th column of Xw
(k) and Xw, − j

(k)  represents the matrix Xw
(k) without the j-th column. Σw, j, − j

(k)

represents the j-th row of Σw
(k) without the diagonal (j, j) element, and Σw, j, j

(k)  is the diagonal (j, 

j) element of Σw
(k).

Next, we explain the details of the CI construction procedure in Algorithm 3. In step 1, we 

obtain a point estimator β from  -Trans-GLM (Algorithm 1), given a specific transferring 

set . Then in steps 2-4, we estimate the target inverse Fisher information matrix (Σβ
(0))−1 as

Θ = diag(τ 1
−2, …, τ p

−2)

1 −γ 1, 2
(0) ⋯ −γ 1, p

(0)

−γ 2, 1
(0) 1 ⋯ −γ 2, p

(0)

⋮ ⋮ ⋱ ⋮
−γ p, 1

(0) −γ p, 2
(0) ⋯ 1

(4)

.

Finally in step 5, we “debias” β using the target data to get a new point estimator b which is 

asymptotically unbiased as

b + β + 1
n0

Θ ( X(0))T [Y (0) − ψ′( X(0)β)],

(5)

where ψ′( X(0)β ) ≔ (ψ′(( x1
(0) )T β), … , ψ′(( xn0

(0) )T β ))T ∈ ℝn0.

It’s necessary to emphasize that the confidence level (1 − α) is for every single CI rather 

than for all p CIs simultaneously. As discussed in Sections 2.2 and 2.3 of Van de Geer et 

al. (2014), it is possible to get simultaneous CIs for different coefficient components and 

do multiple hypothesis tests when the design is fixed. In other cases, e.g., random design in 

different replications (which we focus on in this paper), multiple hypothesis testing might be 

more challenging.

Tian and Feng Page 8

J Am Stat Assoc. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Algorithm 3: Confidence interval construction via nodewise regression

Input: target data (X(0), y(0)) , source data {(X(k), y(k))}k = 1
K , penalty parameters {λj}j = 1

p

and {λ j}j = 1
p , transferring set A , confidence level (1 − α)

Output:Level‐ (1 − α) confidence interval Ij for βj with j = 1, …, p
1 Compute β via Algorithm 1

2 Computeγ j
A arg minγ − 1

2 (nA + n0) ∑k ∈ {0} ∪A ‖ Xβ, j
(k) − Xβ, − j

(k) γ ‖2
2 + λj ‖ γ ‖1 for j = 1, … , p

3 Compute ϱ j arg minϱ − 1
2 n0

‖ Xβ, j
(0) − Xβ, − j

(0) (γ j
A + ϱ ) ‖2 + λ j ‖ ϱ ‖1

4 Compute γ j
(0) γ j

A + ϱj, Σβ ∑
k ∈ {0} ∪A

nk
nA + n0

Σβ
(k) , τ j

2 = Σβ, j, j − Σβ, j, − jγ j and calculate

Θ via (6), where γ j
(0) = (γ j, 1

(0) , … , γ j, j − 1
(0) , γ j, j + 1

(0) , … , γ j, p
(0) )T .

5 Compute Ij [b j − Θj
T ΣβΘjqα ∕ 2 ∕ n0 , b j + Θj

T Σβ Θjqα ∕ 2 ∕ n0] for j = 1, … , p , where

b j is the j−th component of b in (7), and qα ∕ 2 is theα ∕ 2 − left tail quantile of N (0, 1)

6 Output { Ij}j = 1
p

3 Theory

In this section, we will establish theoretical guarantees on the three proposed algorithms. 

Section 3.1 provides a detailed analysis of Algorithm 1 with transferring set h, which we 

denote as h-Trans-GLM. Section 3.2 introduces certain conditions, under which we show 

that the transferring set  detected by Algorithm 2 (Trans-GLM) is equal to h for some h 
with high probability. Section 3.3 presents the analysis of Algorithm 3 with transferring set 

h, where we prove a central limit theorem. For the proofs and some additional theoretical 

results, refer to supplementary materials.

3.1 Theory on h-Trans-GLM

We first impose some common assumptions about GLM.

Assumption 1. ψ is infinitely differentiable and strictly convex. We call a second-order 
differentiable function ψ strictly convex ifψ′′ (x) > 0.

Assumption 2. For any a ∈ ℝp, aTxi
(k), s are i.i.d. κu ‖ a ‖2

2-subGaussian variables with zero 

mean for all k = 0, … , K, where ku is a positive constant. Denote the covariance matrix of 

x(k) as Σ(k), with inf
k

λmin( Σ(k) ) ≥ κl > 0, where κl is a positive constant.

Assumption 3. At least one of the following assumptions hold: (M ψ, U andU are some 
positive constants)

i. ∥ψ′′∥∞ ≤ Mψ < ∞ a.s.;

ii. sup
k

‖ x(k) ‖∞ ≤ U < ∞ a.s., sup
k

sup
∣ z ∣ ≤ U

ψ″(( x(k) )T w(k) + z ) ≤ Mψ < ∞ a.s.
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Assumption 1 imposes the strict convexity and differentiability of ψ, which is satisfied by 

many popular distribution families, such as Gaussian, binomial, and Poisson distributions. 

Note that we do not require ψ to be strongly convex (that is, ∃C > 0, such that ψ′′(x) > 

C), which relaxes Assumption 4 in Bastani (2021). It is easy to verify that ψ in logistic 

regression is in general not strongly convex with unbounded predictors. Assumption 2 

requires the predictors in each source to be subGaussian with a well-behaved correlation 

structure. Assumption 3 is motivated by Assumption (GLM 2) in the full-length version 

of Negahban et al. (2009), which is imposed to restrict ψ′′ in a bounded region in some 

sense. Note that linear regression and logistic regression satisfy condition (i), while Poisson 

regression with coordinate-wise bounded predictors and ℓ1-bounded coefficients satisfies 

condition (ii).

Besides these common conditions on GLM, as discussed in Section 2.3, to guarantee the 

success of h-Trans-GLM, we have to make sure that the estimator from the transferring 

step is close enough to β. Therefore we introduce the following assumption, which 

guarantees w h defined in (2) with  = h is close to β.

Assumption 4. Denote 

Σℎ = ∑k ∈ {0} ∪Aℎ αk E ∫0
1ψ″(( x(k))Tβ + t( x(k))T ( wAℎ − β ))d t ⋅ x(k)( x(k))T  and 

Σℎ
(k) = E ∫0

1ψ″(( x(k))Tβ + t( x(k))T ( w(k) − β ))d t ⋅ x(k)( x(k))T . It holds that 

sup
k ∈ {0} ∪Aℎ

‖ Σℎ
−1Σℎ

(k) ‖1 < ∞.

Remark 1. A sufficient condition for Assumption 4 to hold is ( ΣwAℎ, β
(k) )−1 Σw(k′), β

(k′)  has 

positive diagonal elements and is diagonally dominant, for any k ≠ k′ in h, where 

Σw, β
(k) ≔ E ∫0

1ψ″(( x(k))Tβ + t( x(k))T ( w − β ))d t ⋅ x(k)( x(k))T  for any w ∈ ℝp.

In the linear case, this assumption can be further simplified as a restriction on heterogeneity 

between target predictors and source predictors. More discussions can be found in Condition 

4 of Li et al. (2021). Now, we are ready to present the following main result for the 

h-Trans-GLM algorithm. Define the parameter space as

Ξ(s , ℎ) = β , {w(k)}k ∈ Aℎ:‖ β ‖0 ≤ s , sup
k ∈ Aℎ

‖ w(k) − β ‖1 ≤ ℎ .

Given s and h, we compress parameters β, {w (k)}k∈ h into a parameter set ξ for simplicity.

Theorem 1 (ℓ1/ℓ2-estimation error bound of h-Trans-GLM with Assumption 4).

Assume Assumptions 1, 2 and 4 hold. Suppose ℎ ≪ n0
log p , ℎ ≤ C s, n0 ≥ C log p and nAh 

≥ Cs log p, where C > 0 is a constant. Also assume Assumption 3.(i) holds or Assumption 

3.(ii) with ℎ ≤ C ′U−1U for some C′ > 0 holds. We take λw = Cw
log p

nAℎ + n0
 and λδ = Cδ

log p
n0

, 

where Cw and Cδ are sufficiently large positive constants. Then
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sup
ξ ∈ Ξ(s, ℎ)

ℙ ‖ β − β ‖2 ≲ s log p
nAℎ + n0

1 ∕ 2
+ log p

n0

1 ∕ 4
ℎ1 ∕ 2 ∧ ℎ ≥ 1 − n0

−1 ,

(6)

sup
ξ ∈ Ξ(s, ℎ)

ℙ ‖ β − β ‖1 ≲ s log p
nAℎ + n0

1 ∕ 2
+ ℎ ≥ 1 − n0

−1 .

(7)

Remark 2. When ℎ ≪ s log p
n0

, nAℎ ≫ n0, the upper bounds in (6) and (7) are better than the 

classical Lasso ℓ2-bound Op
s log p

n0
 and ℓ1-bound Op s log p

n0
 using only target data.

Similar to Theorem 2 in Li et al. (2021), we can show the following lower bound of 

ℓ1/ℓ2-estimation error in regime Ξ(s, h) in the minimax sense.

Theorem 2 (ℓ1/ℓ2-minimax estimation error bound). Assume Assumptions 1, 2 and 4 hold. 
Also assume Assumption 3.(i) holds or Assumption 3.(ii) with n0 ≳ s2 log p. Then

inf
β

sup
ξ ∈ Ξ(s, ℎ)

ℙ ‖ β − β ‖2 ≳ s log p
nAℎ + n0

1 ∕ 2
+ s log p

n0

1 ∕ 2
∧ log p

n0

1 ∕ 4
ℎ1 ∕ 2 ∧ ℎ ≥ 1

2,

inf
β

sup
ξ ∈ Ξ(s, ℎ)

ℙ ‖ β − β ‖1 ≳ s log p
nAℎ + n0

1 ∕ 2
+ s log p

n0

1 ∕ 2
∧ ℎ ≥ 1

2 .

Remark 3. Theorem 2 indicates that under conditions on h required by Theorem 1 
( ℎ ≲ s log p ∕ n0), h-Trans-GLM achieves the minimax optimal rate of ℓ1/ℓ2-estimation 

error bound.

Next, we present a similar upper bound, which is weaker than the bound above but holds 

without requiring Assumption 4.

Theorem 3 (ℓ1/ℓ2-estimation error bound of h-Trans-GLM without Assumption 4). Assume 

Assumptions 1 and 2 hold. Suppose ℎ ≪ n0
log p , ℎ ≤ C s−1 ∕ 2, n0 ≥ C log p and nAh ≥ Cs 

log p, where C > 0 is a constant. Also assume Assumption 3.(i) holds or Assumption 3.(ii) 

with ℎ ≤ C ′U−1U for some C′ > 0 holds. We take λw = Cw
log p

nAℎ + n0
+ ℎ  and λδ = Cδ

log p
n0

, 

where Cw and Cδ are sufficiently large positive constants. Then

sup
ξ ∈ Ξ(s, ℎ)

ℙ ‖ β − β ‖2 ≲ s log p
nAℎ + n0

1 ∕ 2
+ sℎ + log p

n0

1 ∕ 4
ℎ1 ∕ 2 ∧ ℎ ≥ 1 − n0

−1,

sup
ξ ∈ Ξ(s, ℎ)

ℙ ‖ β − β ‖1 ≲ s log p
nAℎ + n0

+ sℎ ≥ 1 − n0
−1 .
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Remark 4. When ℎ ≪ log p
n0

 and nAh ≫ n0, the upper bounds in (i) and (ii) are better than 

the classical Lasso bound Op
log p

n0
 with target data.

Comparing the results in Theorems 1 and 3, we know that with Assumption 4, we could get 

sharper ℓ1/ℓ2-estimation error bounds.

3.2 Theory on the transferable source detection algorithm

In this section, we will show that under certain conditions, our transferable set detection 

algorithm (Trans-GLM) can recover the level-h transferring set h for some specific h, that 

is,  = h with high probability. Under these conditions, transferring with  will lead to a 

faster convergence rate compared to Lasso fitted on the target data, when the target sample 

size n0 falls into certain regime. But as we described in Section 2.4, Algorithm 2 does not 

require any explicit input of h.

The corresponding population version of L0
[r]( w ) defined in (3) is

L0(w) = − E[log ρ(y(0))] − E[y(0)wTx(0)] + E[ψ(wTx(0))]
= − E[log ρ(y(0))] − E[ψ′(wTx(0))wTx(0)] + E[ψ(wTx(0))] .

Based on Assumption 6, similar to (2), for {k}-Trans-GLM (Algorithm 1 with  = 

{k}) used in Algorithm 2, consider the following population version of estimators from 

the transferring step with respect to target data and the k-th source data, which is the 

solution β(k) of equation ∑j ∈ {0, k}αj
(k) E [ψ′(( β(k))Tx(k)) − ψ′(( w(k))Tx(k))]x(k) = 0, where 

α0
(k) = 2 n0 ∕ 3

2 n0 ∕ 3 + nk
 and αk

(k) = nk
2 n0 ∕ 3 + nk

. Define β(0) = β. Next, let’s impose a general 

assumption to ensure the identifiability of some h by Trans-GLM.

Assumption 5 (Identifiability of h). Denote Aℎ
c = {1, … , K} ∖ Aℎ. Suppose for some h, we 

have

ℙ sup
r

∣ L0
[r](β(k)[r]) − L0

[r](β(k)) ∣ > Y1
(k) + ζΓ1

(k) ≲ g1
(k)(ζ),

ℙ sup
r

∣ L0
[r](β(k)) − L0(β(k)) ∣ > ζΓ2

(k) ≲ g2
(k)(ζ),

where g1
(k)(ζ), g2

(k)(ζ) 0 as ζ → ∞. Assume 

inf
k ∈Aℎ

c
λmin(E[∫0

1ψ″((1 − t)( x(0))Tβ + t( x(0))Tβ(k))d t ⋅ x(0)( x(0))T ]) ≔ λ > 0, and

‖ β(k) − β ‖2 ≥ λ−1 ∕ 2 C1 Γ1
(0) ∨ Γ2

(0) ∨ 1 + 2 Y1
(k) , ∀ k ∈ Aℎ

c

(8)
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Y1
(k) + Γ1

(k) + Γ2
(k) + ℎ2 = O(1), ∀ k ∈ Aℎ; Γ1

(k) = O(1), Γ2
(k) = O(1), ∀ k ∈ Aℎ

c ,

(9)

where C1 > 0 is sufficiently large.

Remark 5. Here we use generic notations Y1
(k), Γ1

(k), Γ2
(k), g1

(k)(ζ) and g2
(k)(ζ). We show their 

explicit forms under linear, logistic, and Poisson regression models in Proposition 1 in 
Section S. 1.2.1 of supplements.

Remark 6. Condition (8) guarantees that for the sources not in h, there is a 
sufficiently large gap between the population-level coefficient from the transferring 
step and the true coefficient of target data. Condition (9) guarantees the variations of 

sup
r

∣ L0
[r]( β(k)[r]) − L0

[r]( β(k)) ∣ and sup
r

∣ L0
[r]( β(k)) − L0( β(k)) ∣ are shrinking as the sample 

sizes go to infinity.

Based on Assumption 5, we have the following detection consistency property.

Theorem 4 (Detection consistency of h). For Algorithm 2 (Trans-GLM), with Assumption 
5 satisfied for some h, for any δ > 0 there exist constants C′(δ) and N = N (δ) > 0 such that 

when C0 = C′(δ) and m in k∈{0}∪ h nk > N (δ), ℙ (A = Aℎ) ≥ 1 − δ.

Then Algorithm 2 has the same high-probability upper bounds of ℓ1/ℓ2-estimation error as 
those in Theorems 1 and 3 under the same conditions, respectively.

Remark 7. We would like to emphasize again that Algorithm 2 does not require the explicit 
input of h. Theorem 4 tells us that the transferring set  suggested by Trans-GLM will be 

h for some h, under certain conditions.

Next, we attempt to provide a sufficient and more explicit condition (Corollary 1) to ensure 

that Assumption 5 hold. Recalling the procedure of Algorithm 2, we note that it relies 

on using the negative log-likelihood as the similarity metric between target and source 

data, where the accurate estimation of coefficients or log-likelihood for GLM under the 

high-dimensional setting depends on the sparse structure. Therefore, in order to provide an 

explicit and sufficient condition for Assumption 6 to hold, we now impose a “weak” sparsity 

assumption on both w (k) and β(k) with k ∈ Aℎ
c  for some h. Note that the source data in h 

automatically satisfy the sparsity condition due to the definition of h.

Assumption 6. For some h and any k ∈ Aℎ
c , we assume w (k) and β(k) can be decomposed as 

follows with some s′ and h′ > 0 :

i. w(k) = ς(k) + ϑ(k), where ∥ς(k)∥0≤ s′ and ∥ϑ(k)∥1≤ h′ ;

ii. β(k) = l(k) + ϖ(k), where ∥l(k)∥0≤ s′ and ∥ϖ(k)∥1≤ h′.
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Corollary 1. Assume Assumptions 1, 2, 6 and 

inf
k ∈Aℎ

c
λmin E[∫0

1ψ″((1 − t)( x(0))Tβ + t( x(0))Tβ(k))d t ⋅ x(0)( x(0))T ] ≔ λ > 0 hold. Also 

assume sup
k ∈Aℎ

c
‖ β(k) ‖∞ < ∞ , sup

k
‖ w(k) ‖∞ < ∞. Let λ(k)[r] = C log p

nk + n0
+ ℎ  when 

k ∈ Aℎ , λ(k)[r] = C log p
nk + n0

⋅ (1 ∨ ‖ β(k) − β ‖2 ∨ ‖ w(k) − β ‖2) when k ∈ Aℎ
c  and 

λ(0) = C log p
n0

 for some sufficiently large constant C > 0. Then we have the following 

sufficient conditions to make Assumption 5 hold for logistic, linear and Poisson regression 
models. Denote

Ω = ℎ′ log p
mink ∈Aℎ nk + n0

1 ∕ 4
+ s′ log p

mink ∈Aℎ nk + n0

1 ∕ 4
[(s ∨ s′)1 ∕ 4 + ℎ′] + log p

mink ∈Aℎ nk + n0

1 ∕ 8
(ℎ′)1 ∕ 4[(s

∨ s′)1 ∕ 8 + (ℎ′)1 ∕ 4]

i. For logistic regression models, we require

inf
k ∈Aℎ

nk ≫ s log p, n0 ≫ [s ∨ s′ + (ℎ′)2] ∨ Ω2 ⋅ log K,

inf
k ∈Aℎ

c
‖ β(k) − β ‖2 ≳ s log p

n0

1 ∕ 4
∨ 1 + Ω, ℎ ≪ s−1 ∕ 2 .

ii. For linear models, we require

inf
k ∈Aℎ

nk ≫ s2 log p, n0 ≫ [(s ∨ s′)2 + (ℎ′)4] ∨ [(s ∨ s′ + (ℎ′)2)Ω2] ⋅ log K,

inf
k ∈Aℎ

c
‖ β(k) − β ‖2 ≳ s2 log p

n0

1 ∕ 4
∨ 1 + (s′)1 ∕ 4 + ℎ′ Ω, ℎ ≪ s−1 .

iii. For Poisson regression models, we require

inf
k ∈Aℎ

nk ≫ s2 log p, n0 ≫ (s ∨ s′ + ℎ′) ∨ Ω2 ⋅ log K, U (s ∨ s′ + ℎ ∨ ℎ′) ≲ 1,

inf
k ∈Aℎ

c
‖ β(k) − β ‖2 ≳ s log p

n0

1 ∕ 4
∨ 1 + (s′)1 ∕ 4 + ℎ′ Ω, ℎ ≪ s−1 .

Under Assumptions 1, 2, and the sufficient conditions derived in Corollary 1, by 

Theorem 4, we can conclude that  = h for some h. Note that we don’t 

impose Assumption 4 here. Remark 4 indicates that, for h-Trans-GLM to have a 

faster convergence rate than Lasso on target data, we need ℎ ≪ log p
n0

 and nAh ≫ 

n0. Suppose s′≍s, h′ ≲ s1/2. Then for logistic regression models, when s log K 

≪ n0 ≪ s log p, the sufficient condition implie ℎ ≪ s−1 ∕ 2 ≪ log p
n0

. For linear 

models, when s2 log K ≪ n0 ≪ s2 log p , ℎ ≪ s−1 ≪ log p
n0

. And for Poisson models, when 
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s log K ≪ n0 ≪ s2 log p , ℎ ≪ s−1 ≪ log p
n0

. This implies that when target sample size n0 is 

within certain regimes and there are many more source data points than target data points, 

Trans-GLM can lead to a better ℓ2-estimation error bound than the classical Lasso on target 

data.

3.3 Theory on confidence interval construction

In this section, we will establish the theory for our confidence interval construction 

procedure described in Algorithm 3. First, we would like to review and introduce some 

notations. In Section 2.5, we defined Σβ
(k) = E[ x(k)( x(k))Tψ″(( x(k))Tβ)]. Let Θ = (Σβ

(0))−1 and 

KAh = ∣ h∣. Define

γj
(k) = arg min

γ∈ℝ p − 1
E ψ″(βT x(k)) ⋅ [ xj

(k) − (x−j
(k))Tγ]2 = (Σβ, − j, − j

(k) )−1Σβ, − j, − j
(k) ,

which is closely related to (Σβ
(k))−1 and γj

(0) can be viewed as the population version of γ j
(0). 

And Σβ, j, − j
(k)  represents the j-th row without the (j, j) diagonal element of Σβ

(k). Σβ, − j, − j
(k)  denotes 

the submatrix of Σβ
(k) without the j-th row and j-th column. Suppose

sup
k ∈A

ℎ , j = 1: p
‖ (Σβ, − j, − j

(0) )−1Σβ, − j, j
(0) − (Σβ, − j, − j

(k) )−1Σβ, − j, − j
(k) ‖1 ≤ ℎ1,

sup
k ∈A

ℎ , j = 1: p
∣ Σβ, j, j

(k) − Σβ, j, j
(0) ∣ ∨ ∣ (Σβ, j, − j

(k) − Σβ, j, − j
(0) )γj

(0) ∣ ≤ ℎmax .

Then by the definition of γj
(k),

sup
k ∈A

ℎ , j = 1: p
‖ γj

(k) − γj
(0) ‖1 ≲ ℎ1,

which is similar to our previous setting sup
k ∈Aℎ

‖ w(k) − β ‖1 ≤ ℎ. This motivates us to apply 

a similar two-step transfer learning procedure (steps 2-4 in Algorithm 3) to learn γj
(0) for j = 

1,… , p. We impose the following set of conditions.

Assumption 7. Suppose the following conditions hold:

i. sup
k ∈ {0} ∪Aℎ

‖ x(k) ‖∞ ≤ U < ∞, sup
k ∈ {0} ∪Aℎ

∣ ( x(k) )Tw(k) ∣ ≤ U ′ < ∞ a.s.;

ii. sup
j

‖ γj
(0) ‖0 ∕ s < ∞, sup

j ∈ 1: p, k ∈ {0} ∪Aℎ

∣ ( x(k) )Tγj
(0) ∣ ≤ U ″ < ∞ a.s.;

iii. inf
k ∈ {0} ∪Aℎ

λmin (Σw(k)
(k) ) ≥ U > 0;

iv. sup
k ∈ {0} ∪Aℎ

sup
∣ z ∣ ≤ U

ψ″′(( x(k))Tw(k) + z) ≤ Mψ < ∞ a.s.
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v. sup
k ∈ {0} ∪Aℎ

‖ (Σβ, − j, − j
Aℎ )−1 Σβ, − j, − j

(k) ‖1 < ∞, where Σβ
Aℎ = ∑k ∈ {0} ∪Aℎ αkΣβ

(k);

vi. mink ∈Aℎ nk ≳ n0 , n0 ≫ s3 (log p)2
KAℎ

2 ∨ KAℎ , nAℎ + n0 ≫ s2 log p;

vii. ℎ1 ≲ s−1 ∕ 2 ∧ n0
log p

KAℎ
s ∧ 1 , ℎ1 ∨ ℎ ≪ KAℎn0

1 ∕ 2

s2(log p)3 ∕ 2 ∧ n0
1 ∕ 4

s1 ∕ 2(log p)1 ∕ 4 , ℎℎ1
1 ∕ 2

≪
n0

−1 ∕ 4(log p)−1 ∕ 4 KAℎ
s ∧ 1 , ℎ5 ∕ 2ℎ1 ≪ n0

−3 ∕ 4(s log p)−1 ∕ 4 , ℎ1 ≪
KAℎ

1 ∕ 2n0
1 ∕ 2

s3 ∕ 2(log p)1 ∕ 2 ∧

KAℎ
3 ∕ 2n0

1 ∕ 2

s5 ∕ 2(log p)3 ∕ 2 ,

ℎ1ℎ1 ∕ 2 ≪ n0
1 ∕ 4

s(log p)1 ∕ 4 ∧ KAℎn0
1 ∕ 4

s2(log p)5 ∕ 4 , ℎ ≪
KAℎ

1 ∕ 2

(s log p)1 ∕ 2 ∧ 1
n0

1 ∕ 4(log p)1 ∕ 2 , ℎmax ≪

s−1 ∕ 2 ∧ 1
s

KAℎ
log p ,

ℎℎmax ≪ n0
−1 ∕ 2

.

Remark 8. Conditions (i)-(iii) are motivated from conditions of Theorem 3.3 in Van de 

Geer et al. (2014). Note that in Van de Geer et al. (2014), they define sj = ‖ γj
(0) ‖0 and 

treat sj and s as two different parameters. Here we require sup
j

sj ≲ s just for simplicity 

(otherwise condition (vii) would be more complicated). Condition (iv) requires the inverse 
link function to behave well, which is similar to Assumption 3. Condition (v) is similar to 
Assumption 4 to guarantee the success of the two-step transfer learning procedure to learn 
γ(0) in Algorithm 3 with a fast rate. Without condition (v), the conclusions in the following 
Theorem 5 may still hold but under a stronger condition on h, h1 and hmax, and the rate 
(34) may be worse. We do not explore the details in this paper and leave them to interested 
readers. Conditions (vi) and (vii) require that the sample size is sufficiently large and the 
distance between target and source is not too large. In condition (vi), min k∈ h nk ≳ n0 is 
not necessary and the only reason we add it here is to simplify condition (vii).

Remark 9. When x(k)’s are from the same distribution, h1 = hmax = 0. In this 
case, we can drop the debiasing step to estimate γ j

(0) in Algorithm 3 as well as 

condition (v). Furthermore, condition (vii) can be significantly simplified and only 

ℎ ≪ KAℎn0
1 ∕ 2

s2(log p)3 ∕ 2 ∧ n0
1 ∕ 4

s1 ∕ 2(log p)1 ∕ 4 ∧
KAℎ

1 ∕ 2

(s log p)1 ∕ 2 ∧ 1
n0

1 ∕ 4(log p)1 ∕ 2  is needed.

Remark 10. From conditions (vi) and (vii), we can see that as long as KAh ≲ s(log p)2/3, the 
conditions become milder as KAh increases.

Now, we are ready to present our main result for Algorithm 3.

Theorem 5. Under Assumptions 1-4 and Assumption 7,

n0(b j − βj)
Θj

TΣβ Θj
− d N (0, 1),

(10)
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and

∣ Θj
TΣβ Θj − Θjj ∣ ≲ s log p

nAℎ + n0
+ s ℎ1 ∕ 2 log p

n0

1 ∕ 4
∧ ℎ + (s ℎ1)1 ∕ 2 log p

n0

1 ∕ 4

+ (s ℎ1)1 ∕ 2 s log p
nAℎ + n0

1 ∕ 4
+ ℎ1 ∕ 4 log p

n0

1 ∕ 8
∧ ℎ1 ∕ 2 + s ℎmax,

(11)

for j = 1,… , p , with probability at least 1 − KAℎn0
−1.

Theorem 5 guarantees that under certain conditions, the (1 − α)-confidence interval for each 

coefficient component obtained in Algorithm 3 has approximately level (1 − α) when the 

sample size is large. Also, if we compare the rate of (34) with the rate Op(s log p ∕ n0 ) in 

Van de Geer et al. (2014) (see the proof of Theorem 3.1), we can see that when ℎ ≪ s log p
n0

, 

ℎ1 ≪ s log p
n0

⋅ s1 ∕ 2 ∧ nAℎ + n0

n0

1 ∕ 4
, ℎ1

1 ∕ 2ℎ1 ∕ 4 ≪ s1 ∕ 2 log p
n0

3 ∕ 8
 and ℎmax ≪ s log p

n0
, the 

rate is better than that of desparsified Lasso using only target data.

4 Numerical Experiments

In this section, we demonstrate the power of our GLM transfer learning algorithms via 

extensive simulation studies and a real-data application. In the simulation part, we study 

the performance of different methods under various settings of h. The methods include 

Trans-GLM (Algorithm 2), naïve-Lasso (Lasso on target data), h-Trans-GLM (Algorithm 

1 with  = h) and Pooled-Trans-GLM (Algorithm 1 with all sources). In the real-data 

study, besides naïve-Lasso, Pooled-Trans-GLM, and Trans-GLM, additional methods are 

explored for comparison, including support vector machines (SVM), decision trees (Tree), 

random forests (RF) and Adaboost algorithm with trees (Boosting). We run these benchmark 

methods twice. First, we fit the models on only the target data, then at the second time, we 

fit them a combined data of target and all sources, which is called a pooled version. We use 

the original method name to denote the corresponding method implemented on target data, 

and add a prefix “Pooled” to denote the corresponding method implemented on target and 

all source data. For example, Pooled-SVM represents SVM fitted on all data from target and 

sources.

All experiments are conducted in R. We implement our GLM transfer learning algorithms in 

a new R package glmtrans, which is available on CRAN. More implementation details can 

be found in Section S. 1.3.1 in the supplements.

4.1 Simulations

4.1.1 Transfer learning on h—In this section, we study the performance of h-

Trans-GLM and compare it with that of naïve-Lasso. The purpose of the simulation is to 

verify that h-Trans-GLM can outperform naïve-Lasso in terms of the target coefficient 

estimation error, when h is not too large.
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Consider the simulation setting as follows. We set the target sample size n0 = 200 and 

source sample sample size nk = 100 for each k ≠ 0. The dimension p = 500 for both 

target and source data. For the target, the coefficient is set to be β = (0.5·1s, 0p−s)T, 

where 1s has all s elements 1 and 0p−s has all (p − s) elements 0, where s is set to 

be 5. Denote R p(k) as p independent Rademacher variables (being −1 or 1 with equal 

probability) for any k. Rp(k) is independent with Rp(k′) for any k ≠ k2. For any source 

data k in h, we set w(k) = β + ( ℎ ∕ p)Rp
(k)

. For linear and logistic regression models, 

predictors from target xi
(0) ∼i . i . d . N(0p , Σ) with Σ = [Σ jj2]p×p where Σ jj2 = 0.5∣j−j′∣, for all 

i = 1, … , n. And for k ∈ Aℎ, we generate p-dimensional predictors from N (0p , Σ + ∊∊T ), 
where ∊ ∼ N (0p , 0.32Ip) and is independently generated. For Poisson regression model, 

predictors are from the same Gaussian distributions as those in linear and binomial cases 

with coordinate-wise truncation at ±0.5.

Note that naïve-Lasso is fitted on only target data, and h-Trans-GLM denotes Algorithm 

1 on source data in h as well as target data. We train naïve-Lasso and h-Trans-GLM 

models under different settings of h and K h, then calculate the ℓ2-estimation error of 

β. All the experiments are replicated 200 times and the average ℓ2-estimation errors of 

h-Trans-GLM and naïve-Lasso under linear, logistic, and Poisson regression models are 

shown in Figure 1.

From Figure 1, it can be seen that h-Trans-GLM outperforms naïve-Lasso for most 

combinations of h and K. As more and more source data become available, the performance 

of h-Trans-GLM improves significantly. This matches our theoretical analysis because the 

ℓ2-estimation error bounds in Theorems 1 and 3 become sharper as n h grows. When h 
increases, the performance of h-Trans-GLM becomes worse.

We also apply the inference algorithm 3 with h and compare it with desparsified Lasso 

(Van de Geer et al., 2014) on only target data. Recall the notations we used in Section 

3.3. Here we consider 95% confidence intervals (CIs) for each component of coefficient 

β, and report three evaluation metrics in Figure 2 when h = 20 under different K h : (i) 

the average of estimation error of Θ jj over variables in the signal set S and noise set Sc 

(including the intercept), respectively (which we call “average estimation error”); (ii) the 

average CI coverage probability over variables in the signal set S and noise set Sc; (iii) 

the average CI length over j ∈ signal set S and noise set Sc. Note that there is no explicit 

formula of Θ for logistic and Poisson regression models. Here we approximated it through 5 

× 106 Monte-Carlo simulations. Notice that the average estimation error of h-Trans-GLM 

declines as K increases, which agrees with our theoretical analysis in Section 3.3. As for the 

coverage probability, although CIs obtained by desparsified Lasso can achieve 95% coverage 

probability on Sc in linear and binomial cases, it fails to meet the 95% requirement of 

coverage probability on S in all three cases. In contrast, CIs provided by h-Trans-GLM 

can achieve approximately 95% level when K is large on both S and Sc. Finally, the results 

of average CI length reveal that the CIs obtained by h-Trans-GLM tend to be wider 

as K increases. Considering this together with the average estimation error and coverage 

probability, a possible explanation could be that desparsified Lasso might down-estimate Θ 
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jj which leads to too narrow CIs to cover the true coefficients. And h-Trans-GLM offers a 

more accurate estimate of Θ jj which results in wider CIs.

We also consider different ({nk}k = 0
K , p , s) settings with the results in the supplements.

4.1.2 Transfer learning when h is unknown—Different from the previous 

subsection, now we fix the total number of sources as K = 10. There are two types of 

sources, which belong to either h or Aℎ
c . Sources from h have similar coefficients to the 

target one, while the coefficients of sources from h can be quite different. Intuitively, using 

more sources from h benefits the estimation of the target coefficient. But in practice, h 

may not be known as a priori. As we argued before, Trans-GLM can detect useful sources 

automatically, therefore it is expected to be helpful in such a scenario. Simulations in this 

section aim to justify the effectiveness of Trans-GLM.

Here is the detailed setting. We set the target sample size n0 = 200 and source sample sample 

size nk = 200 for all k ≠ 0. The dimension p = 2000. Target coefficient is the same as 

the one used in Section 4.1.1 and we fix the signal number s = 20. Recall Rp
(k) denotes p 

independent Rademacher variables and Rp
(k′) are independent for any k ≠ k2. Consider h = 20 

and 40. For any source data k in h, we set w(k) = β + ( ℎ ∕ p)Rp
(k). For linear and logistic 

regression models, predictors from target xi
(0) ∼i . i . d . N (0 , Σ) with Σ = [Σ jj2]p×p where Σ 

jj2 = 0.9∣j−j2∣, for all i = 1, …, n0. For the source, we generate p-dimensional predictors 

from independent t-distribution with degrees of freedom 4. For the target and sources of 

Poisson regression model, we generate predictors from the same Gaussian distribution and 

t-distribution respectively, and truncate each predictor at ±0.5.

To generate the coefficient w(k) for k ∉ Aℎ, we randomly generate S(k) of size s from {2s + 

1, … , p}. Then, the j-th component of coefficient w(k) is set to be

wj
(k) = 0.5 + 2 ℎ rj

(k) ∕ p, j ∈ {s + 1, …, 2 s} ∪ S(k),
2 ℎ rj

(k) ∕ p, otherwise,

where rj
(k) is a Rademacher variable. We also add an intercept 0.5. The generating process 

of each source data is independent. Compared to the setting in Section 4.1.1, the current 

setting is more challenging because source predictors come from t-distribution with heavier 

tails than sub-Gaussian tails. However, although Assumption 2 is violated, in the following 

analysis, we will see that Trans-GLM can still succeed in detecting informative sources.

As before, we fit naïve-Lasso on only target data. h-Trans-GLM and Pooled-Trans-GLM 

represent Algorithm 1 on source data in h and target data or all sources and target data, 

respectively. Trans-GLM runs Algorithm 2 by first identifying the informative source set , 

then applying Algorithm 1 to fit the model on sources in . We vary the values of K h 
and h, and repeat simulations in each setting 200 times. The average ℓ2-estimation errors are 

summarized in Figure 3.
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From Figure 3, it can be observed that in all three models, h-Trans-GLM always achieves 

the best performance as expected since it transfers information from sources in h. Trans-

GLM mimics the behavior of h-Trans-GLM very well, implying that the transferable 

source detection algorithm can successfully recover h. When K h is small, Pooled-Trans-

GLM performs worse than naïve-Lasso because of the negative transfer. As K h increases, 

the performance of Pooled-Trans-GLM improves and finally matches those of h-Trans-

GLM and Trans-GLM when K h = K = 10.

4.2 A real-data study

In this section, we study the 2020 US presidential election results of each county. We 

only consider win or lose between two main parties, Democrats and Republicans, in 

each county. The 2020 county-level election result is available at https://github.com/tonmcg/

US_County_Level_Election_Results_08-20. The response is the election result of each 

county. If Democrats win, we denote this county as class 1, otherwise, we denote it as 

class 0. And we also collect the county-level information as the predictors, including the 

population and race proportions, from https://www.kaggle.com/benhamner/2016-us-election.

The goal is to explore the relationship between states in the election using transfer learning. 

We are interested in swing states with a large number of counties. Among 49 states (Alaska 

and Washington, D.C. excluded), we select the states where the proportion of counties 

voting Democrats falls in [10%,90]%, and have at least 75 counties as target states. They 

include Arkansas (AR), Georgia (GA), Illinois (IL), Michigan (MI), Minnesota (MN), 

Mississippi (MS), North Carolina (NC), and Virginia (VA).

The original data includes 3111 counties and 52 county-level predictors. We also consider 

the pairwise interaction terms between predictors. After pre-processing, there are 3111 

counties and 1081 predictors in the final data, belonging to 49 US states.

We would like to investigate which states have a closer relationship with these target states 

by our transferable source detection algorithm. For each target state, we use it as the target 

data and the remaining 48 states as source datasets. Each time we randomly sample 80% 

of target data as training data and the remaining 20% is used for testing. Then we run 

Trans-GLM (Algorithm 2) and see which states are in the estimated transferring set . We 

repeat the simulation 500 times and count the transferring frequency between every state 

pair. The 25 (directed) state pairs with the highest transferring frequencies are visualized in 

Figure 4. Each orange node represents a target state we mentioned above and blue nodes are 

source states. States with the top 25 transferring frequencies are connected with a directed 

edge.

From Figure 4, we observe that Michigan has a strong relationship with other states, 

since there is a lot of information transferable when predicting the county-level results 

in Michigan, Minnesota, and North Carolina. Another interesting finding is that states 

which are geographically close to each other may share more similarities. For instance, 

see the connection between Indiana and Michigan, Ohio and Michigan, North Carolina and 

Virginia, South Carolina and Georgia, Alabama and Georgia, etc.
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In addition, one can observe that states in the Rust Belt also share more similarities. As 

examples, see the edges among Pennsylvania, Minnesota, Illinois, Michigan, New York, and 

Ohio, etc.

To further verify the effectiveness of our GLM transfer learning framework on this dataset 

and make our findings more convincing, we calculate the average test misclassification error 

rates for each of the eight target states. For comparison, we compare the performances of 

Trans-GLM and Pooled-Trans-GLM with naïve-Lasso, SVM, trees, random forests (RF), 

boosting trees (Boosting) as well as their pooled version. Average test errors and the 

standard deviations of various methods are summarized in Table 1. The best method and 

other top three methods for each target are highlighted in bold and italics, respectively.

Table 1 shows that in four out of eight scenarios, Trans-GLM performs the best among 

all approaches. Moreover, Trans-GLM is always ranked in the top three except in the case 

of target state MS. This verifies the effectiveness of our GLM transfer learning algorithm. 

Besides, Pooled-Trans-GLM can always improve the performance of naïve-Lasso, while for 

other methods, pooling the data can sometimes lead to worse performance than that of the 

model fitted on only the target data. This marks the success of our two-step transfer learning 

framework and the importance of the debiasing step. Combining the results with Figure 4, it 

can be seen that the performance improvement of Trans-GLM (compared to naïve-Lasso) for 

the target states with more connections (share more similarities with other states) are larger. 

For example, Trans-GLM outperforms naïve-Lasso a lot on Michigan, Minnesota and North 

Carolina, while it performs similarly to naïve-Lasso on Mississippi.

We also try to identify significant variables by Algorithm 3. Due to the space limit, we put 

the results and analysis in Section S.1.3.4 of supplements. Interested readers can find the 

details there. Furthermore, since we have considered all main effects and their interactions, 

one reviewer pointed out that besides the classical Lasso penalty, there are other variants like 

group Lasso (Yuan and Lin, 2006) or Lasso with hierarchy restriction (Bien et al., 2013), 

which may bring better practical performance and model interpretation. To be consistent 

with our theories, we only consider the Lasso penalty here and leave other options for future 

study.

5 Discussions

In this work, we study the GLM transfer learning problem. To the best of our knowledge, 

this is the first paper to study high-dimensional GLM under a transfer learning framework, 

which can be seen as an extension to Bastani (2021) and Li et al. (2021). We propose GLM 

transfer learning algorithms, and derive bounds for ℓ1/ℓ2-estimation error and a prediction 

error measure with fast and slow rates under different conditions. In addition, to avoid the 

negative transfer, an algorithm-free transferable source detection algorithm is developed and 

its theoretical properties are presented in detail. Moreover, we accommodate the two-step 

transfer learning method to construct confidence intervals of each coefficient component 

with theoretical guarantees. Finally, we demonstrate the effectiveness of our algorithms via 

simulations and a real-data study.
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There are several promising future avenues that are worth further research. The first 

interesting problem is how to extend the current framework and theoretical analysis to 

other models, such as multinomial regression and the Cox model. Second, Algorithm 

1 is shown to achieve the minimax ℓ1/ℓ2 estimation error rate when the homogeneity 

assumption (Assumption 4) holds. Without homogeneity of predictors between target and 

source, only sub-optimal rates are obtained. This problem exists in the line of most existing 

high-dimensional transfer learning research (Bastani, 2021; Li et al., 2021, 2020). It remains 

unclear how to achieve the minimax rate when source predictors’ distribution deviates a lot 

from the target one. Another promising direction is to explore similar frameworks for other 

machine learning models, including support vector machines, decision trees, and random 

forests.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The average ℓ2-estimation error of h-Trans-GLM and naïve-Lasso under linear, logistic and 

Poisson regression models with different settings of h and K. n0 = 200 and nk = 100 for all k 
= 1, … , p, p = 500, s = 5. Error bars denote the standard deviations.
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Fig. 2. 
Three evaluation metrics of Algorithm 3 with h (we denote it as h-Trans-GLM) and 

desparsified Lasso on target data, under linear, logistic and Poisson regression models, with 

different settings of K. h = 20. n0 = 200 and nk = 100 for all k = 1, … , p, p = 500, s = 5. 

Error bars denote the standard deviations.
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Fig. 3. 
The average ℓ2-estimation error of various models with different settings of h and K h when 

K = 10. nk = 200 for all k = 0, … , K, p = 2000, s = 20. Error bars denote the standard 

deviations.
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Fig. 4. 
The transferability between different states for Trans-GLM.
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Table 1

The average test error rate (in percentage) of various methods with different targets among 500 replications. 

The cutoff for all binary classification methods is set to be 1/2. Numbers in the subscript indicate the standard 

deviations.

Methods
Target
states

AR GA IL MI MN MS NC VA

naïve-Lasso 4.793.36 6.983.90 5.734.14 11.492.44 12.462.70 7.536.57 15.606.73 9.484.88

Pooled-Lasso 3.594.71 9.984.22 7.895.56 7.045.80 10.385.18 22.017.18 12.735.35 21.445.46

Pooled-Trans-GLM 1.833.12 4.863.60 2.523.55 5.624.54 10.755.60 7.236.65 9.715.75 7.154.23

Trans-GLM 1.542.94 4.743.54 2.513.45 5.534.73 10.345.73 7.246.81 9.345.57 7.184.67

SVM 6.711.70 17.093.89 7.005.40 12.591.87 13.292.29 23.928.90 12.666.86 10.785.29

Pooled-SVM 7.846.32 13.474.73 7.755.24 7.586.40 13.015.69 27.328.72 12.305.75 17.315.46

Tree 2.233.58 8.374.40 4.625.27 10.055.53 10.978.42 5.975.26 18.298.01 14.466.88

Pooled-Tree 7.816.89 7.684.59 4.634.26 7.426.18 10.535.91 16.737.30 14.767.26 17.435.85

RF 3.603.57 6.043.59 4.083.98 6.424.79 10.515.10 7.275.72 11.296.29 7.734.77

Pooled-RF 3.734.82 7.493.90 4.353.63 5.344.99 10.864.96 12.566.88 11.046.03 10.405.18

Boosting 2.233.58 4.653.77 2.553.82 7.795.52 10.646.51 5.285.16 10.886.47 7.535.10

Pooled-Boosting 3.104.84 5.713.53 3.823.85 5.815.27 11.215.13 14.317.42 10.825.99 11.955.25
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