Skip to main content
. Author manuscript; available in PMC: 2024 Apr 1.
Published in final edited form as: J Am Stat Assoc. 2022 Jun 27;118(544):2684–2697. doi: 10.1080/01621459.2022.2071278
Algorithm 2: Trans-GLM
Input:target data(X(0),y(0)),all source data{(X(k),y(k))}k=1K,a constantC0>0,penalty parameters{{λ(k)[r]}k=0K}r=13Output:the estimated coefficient vectorβ,and the determind transferring set𝒜1Transferablesourcedetection:Randomly divide(X(0),y(0))into three sets of equalsize as{(X(0)[i],y(0)[i])}i=132forr=1to3do3β(0)[r]fit the Lasso on{(X(0)[i],y(0)[i])}i=13(X(0)[r],y(0)[r])with penalty parameterλ(0)[r]4β(k)[r]run step1in Algorithm1with({(X(0)[i],y(0)[i])}i=13(X(0)[r],y(0)[r]))(X(k),y(k))and penalty parameterλ(k)[r]for allk05Calculate the loss functionL^0[r](β(k)[r])on(X(0)[r],y(0)[r])fork=1,,K6end7L^0(k)r=13L^0[r](β(k)[r])3,L^0(0)r=13L^0[r](β(0)[r])3,σ^=r=13(L^0[r](β(0)[r])L^0(0))228𝒜{k0:L^0(k)L^0(0)C0(σ^0.01)}9𝒜TransGLM:βrun Algorithm1using{(X(k),y(k))}k{0}𝒜10Outputβand𝒜