Skip to main content
. Author manuscript; available in PMC: 2024 Apr 1.
Published in final edited form as: J Am Stat Assoc. 2022 Jun 27;118(544):2684–2697. doi: 10.1080/01621459.2022.2071278
Algorithm 3: Confidence interval construction via nodewise regression
Input:target data(X(0),y(0)),source data{(X(k),y(k))}k=1K,penalty parameters{λj}j=1pand{λ~j}j=1p,transferring set𝒜,confidence level(1α)Output:Level-(1α)confidence intervalIjforβjwithj=1,,p1Computeβvia Algorithm 12Computeγ^j𝒜arg minγ{12(n𝒜+n0)k{0}𝒜Xβ,j(k)Xβ,j(k)γ22+λjγ1}forj=1,,p3Computeϱjarg minϱ{12n0Xβ,j(0)Xβ,j(0)(γ^j𝒜+ϱ)2+λ~jϱ1}4Computeγ^j(0)γ^j𝒜+ϱj,Σβk{0}𝒜nkn𝒜+n0Σβ(k),τ^j2=Σβ,j,jΣβ,j,jγ^jand calculateΘvia(6),whereγ^j(0)=(γ^j,1(0),,γ^j,j1(0),γ^j,j+1(0),,γ^j,p(0))T.5ComputeIj[b^jΘjTΣβΘjqα2n0,b^j+ΘjTΣβΘjqα2n0]forj=1,,p,whereb^jis thejth component ofbin(7),andqα2is theα2left tail quantile ofN(0,1)6Output{Ij}j=1p