
AI IN BRIEF

Accurate radiology report communication is essential for 
high-quality patient care. However, the use of speech 

recognition software for radiology reporting has been as-
sociated with increased error rates, with speech recognition 
errors observed in 20% to 60% of dictated reports (1–4). 
About 2% of reports may contain clinically significant 
speech recognition errors that risk misinterpretation and 
may impede care (3,5,6).

Efforts to reduce speech recognition errors include the 
use of structured reporting templates, which have shown 
some success but face variable acceptance by radiologists 
(1,7). More recently, deep learning approaches like neural 
sequence-to-sequence models (8) and bidirectional auto-
encoders (9,10) have been investigated for the detection of 
speech recognition errors. While promising, these methods 
rely on extensive customized training data and detect errors 
on only a per-sentence basis.

Recent advances in natural language processing pres-
ent opportunities to overcome these limitations through 
the use of generative large language models (LLMs). These 
models can learn complex linguistic patterns and gener-
ate fluent, coherent text. Large context windows allow 
these models to process the complete textual content of 
lengthy radiology reports, which may offer advantages over 
sentence-by-sentence analysis.

Proprietary LLMs represent the state-of-the-art in per-
formance, with OpenAI’s GPT-4 showing promise in ra-
diology applications such as transformation of free text to 
structured reports (11) and appropriate imaging request 

study protocoling (12,13). However, studies evaluating the 
use of generative LLMs for decision support in radiology 
remain lacking.

In this study, we evaluated the performance of five 
leading generative LLMs—GPT-3.5-turbo, GPT-4, 
text-davinci-003, Llama-v2–70B-chat, and Bard—for 
the automatic detection of speech recognition errors 
in radiology reports. We hypothesized that advanced 
LLMs can accurately flag such errors to offer automated 
error identification, potentially improving radiology re-
port accuracy.

Materials and Methods
This study was approved by the Western Health Ethics 
Panel (HREC/23/WH/94984). Informed consent was 
waived for this retrospective study of existing radiology 
reports because all data were de-identified and patient 
care was not impacted.

Data Collection
The authors for this study analyzed 3233 de-identified 
radiology reports (2498 CT and 825 MRI). The reports 
were randomly selected from the picture archiving and 
communication system of a major tertiary hospital over 
a 12-month period. Stratified random sampling was used 
to select reports representing all radiologists (22 attend-
ing physicians, 23 residents) and examinations (79 study 
types covering all body systems). This established a repre-
sentative sample of our institutional dataset.
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This study evaluated the ability of generative large language models (LLMs) to detect speech recognition errors in radiology reports. A da-
taset of 3233 CT and MRI reports was assessed by radiologists for speech recognition errors. Errors were categorized as clinically significant 
or not clinically significant. Performances of five generative LLMs—GPT-3.5-turbo, GPT-4, text-davinci-003, Llama-v2–70B-chat, and 
Bard—were compared in detecting these errors, using manual error detection as the reference standard. Prompt engineering was used to op-
timize model performance. GPT-4 demonstrated high accuracy in detecting clinically significant errors (precision, 76.9%; recall, 100%; F1 
score, 86.9%) and not clinically significant errors (precision, 93.9%; recall, 94.7%; F1 score, 94.3%). Text-davinci-003 achieved F1 scores 
of 72% and 46.6% for clinically significant and not clinically significant errors, respectively. GPT-3.5-turbo obtained 59.1% and 32.2% F1 
scores, while Llama-v2–70B-chat scored 72.8% and 47.7%. Bard showed the lowest accuracy, with F1 scores of 47.5% and 20.9%. GPT-4 
effectively identified challenging errors of nonsense phrases and internally inconsistent statements. Longer reports, resident dictation, and 
overnight shifts were associated with higher error rates. In conclusion, advanced generative LLMs show potential for automatic detection of 
speech recognition errors in radiology reports.
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of metadata fields containing identifiable information, (b) re-
moval of all report sections except Findings and Conclusion 
(of most clinical relevance and least likely to contain person-
ally identifiable information), (c) automated de-identification 
of reports with recently published machine learning methods 
(15), and (d) manual inspection.

Generative LLM Analysis
We developed a web application for comparing model out-
puts. This application provides an interface for entering sample 
reports, allowing side-by-side comparison of the original and 
corrected reports (Fig 1). Five generative LLMs were used via 
application programming interface calls within the applica-
tion: OpenAI’s text-davinci-003, GPT-3.5-turbo, and GPT-4; 
Meta’s Llama-v2–70B-chat; and Google’s Bard (https://plat-
form.openai.com/docs/models/gpt-3-5-turbo, https://openai.com/
gpt-4, https://llama.meta.com/, https://bard.google.com). The 
Replicate application programming interface (16) was used to 
access Llama-v2–70B-chat. The average of three outputs for 
each model provided the report error classifications.

Prompt Engineering
The textual prompts provided to generative LLMs are known 
to influence model performance. To optimize prompts, a mul-
tistep approach adapted from the AdaTest method (17) was 
used (Table S1).

First, an extensive prompt-engineering phase was under-
taken over 100 iterations for each model. Prompts were sys-
tematically modified with four distinct approaches: chain-of-
thought (18) (requiring the model to answer in an explanatory 
step-by-step manner), few-shot learning (19) (providing exam-
ple input and output as part of the prompt), grounding con-
text (20) (giving the model lexical or contextual information 
that may be relevant to the subject), and variation in model 
“temperature” value (designed to allow variation in how deter-
ministic a model’s responses are, where 0 is more deterministic 
and 1 more stochastic). On each iteration, model outputs were 
assessed for five generated reports containing known errors.

Prompt optimization was validated by comparing model per-
formance on the dataset of 100 reports annotated by three rat-
ers, using the base prompt “Correct this radiology report,” ver-
sus prompts optimized in the engineering phase. The optimized 
prompts were used for all subsequent analyses.

Statistical Analysis
Statistical analysis was performed with Python version 3.9.6 
and the libraries pandas (version 1.5.3), scikit-learn (version 
1.2.2), SciPy (version 1.9.1), and statsmodels (version 0.14.0).

We employed a mixed effects logistic regression model to 
analyze the relationship between errors and other variables in-
cluding report length, patient status, radiologist training level, 
and shift type. The reporting radiologist was included as a ran-
dom effect, controlling for the possibility that radiologists may 
systematically differ in their error rates and report characteris-
tics. A P value of less than .05 indicated a statistically signifi-
cant difference. Cohen κ was used to assess interrater reliability 
for error classification.

Data related to the reports such as report length, imaging 
modality, study type, patient status (inpatient, outpatient, or 
emergency department patient), dictating radiologist training 
level, and shift type (day, evening, or overnight) were acquired 
from the picture archiving and communication system. Of the 
3233 studies, 12 (0.37%) were excluded from the dataset due to 
missing data.

Reader Evaluation of Radiology Reports
A radiology resident (R.A.S.) (R2 level) performed manual 
review of the 3233 reports for speech recognition errors. Ad-
ditional independent evaluation was conducted by two board-
certified radiologists (W.L., L.L.) with more than 20 years of 
experience, who annotated a random subsample of 100 reports 
for errors.

Specific examples of speech recognition errors are de-
tailed in the Table. Error severity was marked as clinically 
significant or not clinically significant according to the 
ontology of Chang et al (3) and as used in recent studies 
(9,14). Clinically significant errors are considered to change 
the meaning of the report and risk misinterpretation by the 
clinician. Examples included nonsense phrases (“The lungs 
nuclear” instead of “the lungs are clear”), omission of im-
portant words (“Intracranial hemorrhage” instead of “No 
intracranial hemorrhage”), and internally inconsistent state-
ments (“left occipital lesion” referred to as “left parietal le-
sion” later in the report). The location and severity were 
recorded for each error in each report.

Data De-Identification
Prior to analysis by the generative LLM, reports were de-iden-
tified via a four-step process involving (a) automated removal 

Abbreviations
LLM = large language model, OR = odds ratio

Summary
GPT-4 showed high performance compared with other generative 
large language models for the detection of speech recognition errors 
in radiology reports, demonstrating the potential of such models to 
improve report accuracy.

Key Points
	■ GPT-4 demonstrated high accuracy in detecting clinically signifi-

cant speech recognition errors (F1 score, 86.9%) and not clinically 
significant errors (F1 score, 94.3%) in radiology reports.

	■ GPT-4 effectively flagged challenging errors like internal inconsis-
tencies (12 of 12, 100%) and nonsense phrases (22 of 24, 91.7%), 
which require assimilation of the entire report context and fluency 
in radiologic text.

	■ Increased error rates were associated with longer reports (P < 
.001), trainee dictation (odds ratio [OR], 2.2; P = .003), and 
overnight shifts (OR, 1.9; P = .04), identifying high-yield areas for 
integrating error detection tools.
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errors (P < .001). For each additional word in the report, the 
likelihood of an error increased by 0.1% (coefficient = 0.001; 
95% CI: 0.000, 0.001). Radiology residents had significantly 
higher odds of errors compared with attending radiologists (P 
= .003, odds ratio [OR] = 2.2, 95% CI: 1.3, 3.7). Working the 
overnight shift was also associated with higher odds of errors (P = 
.04, OR = 1.9, 95% CI: 1.2, 3.4), whereas working evening and 
day shifts showed no significant association (P = .46, OR = 1.04, 
95% CI: 1.0, 1.1 for evening shifts and P = .35, OR = 1.08,  
95% CI: 1.0, 1.2 for day shifts). No significant association was 
identified between patient status and error presence (emergency 
department patient status, P = .50, OR = 0.02, 95% CI: -0.1, 
0.1; outpatient status P = .33, OR = 0.03, 95% CI: -0.1, 0.0, 

with inpatient status used as reference).

Model Error Detection
Optimized prompts increased the models’ F1 scores by 5%–
15% on the subset of 100 reports assessed by three inde-
pendent raters. For GPT-3.5-turbo, F1 score increased from 
59.1% to 73% for clinically significant errors and 32.2% to 
45% for not clinically significant errors. F1 score for GPT-4 
increased from 86.9% to 91% for clinically significant errors 
and from 94.3% to 97% for not clinically significant errors. 
Further increases were achieved for text-davinci-003 (72% to 
82% F1 score on clinically significant errors, 60% to 74.3% F1 

Performance of the models was interpreted with the com-
mon machine learning metrics of precision (positive predic-
tive value), recall (sensitivity), and F1 score. As the harmonic 
mean of precision and recall, the F1 score ranged 0 to 1, ex-
pressed as 0% to 100%, with higher values indicating better 
classification performance.

The benchmark used was manual detection of actual errors 
and their location by the primary researcher. A true positive 
means the model identified an error at the correct location of an 
actual error. A false negative means an actual error was missed by 
the LLM. The models’ suggested corrections were not evaluated.

Results

Manual Error Detection
A total of 3233 radiology reports were manually reviewed for 
errors. The mean report length was 230.07 words. There were 
1429 (44.2%) reports that had at least one error, with clinically 
significant error identified in 106 (3.2%) reports. On the sub-
sample of 100 reports, interrater agreement was strong, with 
Cohen κ values of 0.79 between the resident and the first con-
sultant, 0.81 between the resident and the second consultant, 
and 0.88 between the two consultants.

Report length, as measured by word count, showed a signifi-
cant positive association with the presence of communication 

Types of Speech Recognition Error

Error Type Definition
Intended/Spoken  
Phrase

Clinically  
Significant Error

Not Clinically  
Significant Error

Nonsense Passages/words/phrases that make no sense 
or have no sensible meaning.

The lungs are clear. The lungs nuclear. Lungs are clear stop.

Translational Translation error that may change the 
meaning of a phrase/sentence.

There is no opacity in 
the left lung.

There is an opacity in the 
left lung.

There is no opacity in 
their left lung.

Omission Words not transcribed (omitted) that 
may change the meaning of a phrase/
sentence.

There is no opacity in 
the left lung.

There is opacity in the left 
lung.

There is no opacity in 
left lung.

Homonym error Misuse of words or phrases that sound the 
same but are semantically distinct.

The right lung is clear. The write lung is clear. Thee right lung is 
clear.

Grammatical 
error

Standard grammatical errors including the 
use of sentence fragments.

The lungs are clear. The lungs is clear. The lungs clear.

Template error Retained statement from a standardized 
template that contradicts the dictated 
findings or impression.

There is a hazy opacity 
obscuring the right 
hemidiaphragm.

The lungs are clear. 
There is a hazy opacity 
obscuring the right 
hemidiaphragm.

The lungs are clear. 
Both lungs are 
clear.

Extraneous state-
ments

Fragments of discussion that are included 
inadvertently in the radiology report.

The right lung is clear. The right lung is clear. We 
may have a problem.

The right lung is clear. 
The.

Internal incon-
sistency

Human error deriving from the speech 
recognition process, related to inconsis-
tencies in describing the side or location 
of an abnormality or finding.

For this error type, the first occurrence was 
taken to be correct, and any subsequent 
contradictory occurrence was consid-
ered an error.

5 mm left ureteric 
calculus.

(Previous mention earlier 
in the report of calculus 
in left ureter)

5 mm right ureteric 
calculus.

All internal incon-
sistency errors are 
considered clini-
cally significant.

Note.—Adapted, with permission, from reference 1.
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nal inconsistency and nonsense errors. The former requires as-
similation of context across the entire radiology report, beyond 
the capacity of per-sentence analysis by deep learning models 
described in recent literature (8,9). The latter requires com-
prehension of what is considered appropriate for a radiology 
report, a subject still in contention regarding GPT-4’s current 
abilities (21).

Our radiology center demonstrated error rates aligning with 
previous studies, with increased error rates associated with lon-
ger reports, overnight shifts, and resident dictations. Overnight 
shifts potentially induce fatigue-related oversights. Inexperience 
with speech recognition software likely drives higher resident 
error rates, compounded by confirmation bias of the attending 
radiologist checking the resident report. This confirmation bias 
represents an attending radiologist’s “inattentional blindness” 
(22) to discrepancies when anchored to an existing report. These 
findings reveal areas for selective application of AI-assisted error 
detection tools to compensate for human limitations.

Despite anonymization efforts, data processed by third-party 
systems risk compliance violations. On-site private generative 
LLMs may mitigate this, possibly with locally hosted versions 
of open-source models such as Llama-v2–70B-chat. This model 
is a fine-tuned version of the Llama-v2–70B base model and 
has been designed for optimal chat-based interactions. Llama-
v2–70B-chat performed poorly in comparison to the proprietary 
models evaluated. Further work is needed to assess the utility of 
fine-tuning the base Llama-v2–70B model, or other open-source 
models, on domain-specific data to improve performance.

Although theoretical capabilities exist for generative LLMs to 
synthesize novel radiology reports without human input (14), 
they are more likely to be decision support tools in the near fu-
ture. Such tools will still require manual visual inspection of all 
reports by a radiologist prior to sign-off. In this context, it is 

score on not clinically significant errors), Llama-v2–70B-chat 
(58.8% to 67% F1 score, 31.2% to 41%), and Bard (34.8% to 
44% F1 score, 33.2% to 39%).

For clinically significant errors, the optimized GPT-4 achieved 
76.9% precision, 100% recall, and 86.9% F1 score. GPT-3.5-
turbo (65.1% precision, 54.1% recall, 59.1% F1 score) and text-
davinci-003 (75.2% precision, 69.2% recall, 72% F1 score) per-
formed less well. Llama-v2–70B-chat (62.5% precision, 87.3% 
recall, 72.8% F1 score) and Bard (34.1% precision, 44.1% re-
call, 38.5% F1 score) showed the lowest performance. Of 12 
internal inconsistency errors in the corpus, GPT-4 detected 
100% (text-davinci-003, 91.67%; GPT-3.5-turbo, 50.00%; 
Llama-v2–70B-chat, 33.33%; Bard, 33.33%). Of 24 nonsense 
errors, GPT-4 detected 91.6% (text-davinci-003, 83.3%; GPT-
3.5-turbo, 79.1%; Llama-v2–70B-chat, 79.1%; Bard, 70.8%).

For not clinically significant errors, GPT-4 had 93.9% pre-
cision, 94.7% recall, and 94.3% F1 score. Text-davinci-003 
(31.3% precision, 91.3% recall, 46.6% F1 score), GPT-3.5-
turbo (21.5% precision, 64.1% recall, 32.2% F1 score), Llama-
v2–70B-chat (32.3% precision, 91.3% recall, 47.7% F1 score), 
and Bard (11.9% precision, 84.7% recall, 20.9% F1 score) 
demonstrated lower accuracy. Sample model outputs are dem-
onstrated in Figure 2, with examples of GPT-4’s performance 
demonstrated in Figure 3.

Discussion
This study provides preliminary evidence that advanced gener-
ative LLMs can automatically detect speech recognition errors 
in radiology reports. GPT-4 demonstrated the highest accuracy 
in this comparison, achieving an F1 score of 86.9% for clini-
cally significant errors in the dataset of 3233 radiology reports, 
and 94.3% F1 score for errors that were not clinically signifi-
cant. Effectiveness was demonstrated in the detection of inter-

Figure 1:  Web interface for review of large language model–detected errors on a sample generated radiology report. Example shown for text-
davinci-003 model. In red are the sections that have been removed, in green the model’s suggestions. Examples of word omission, nonsense phrases, 
and internal inconsistency (eg, “right” changed to “left”) are included in the sample report for demonstration.

http://radiology-ai.rsna.org
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Figure 2:  Model output comparison for a sample generated radiology report 
with multiple errors. Errors (red) and corrections (green) detected by (A) GPT-4, 
(B) text-davinci-003, (C) GPT-3.5-turbo, (D) Llama-v2–70B-chat, and (E) Bard.

Figure 3:  GPT-4 correctly detected multiple types of clinically significant errors (red indicates errors, green 
indicates correction): (A) homonym error, (B) omission error, (C) nonsense phrase, (D) translational error, (E) 
extraneous statements, and (F) internal inconsistency error.

http://radiology-ai.rsna.org
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worth acknowledging that error detection makes only one part 
of the creation of an accurate radiology report (23).

This study had several limitations. Data preparation and 
model evaluation were performed by one radiology resident at a 
single institution, with assessment performed on a small dataset, 
raising uncertainty regarding real-world viability. Additionally, 
while customized prompt optimization aims to maximize each 
model’s capabilities, it introduces nonstandardization that risks 
biasing comparisons. The prompts were engineered and vali-
dated on a limited sample, incurring risk of overfitting. Finally, 
model capabilities are rapidly evolving, which makes compari-
sons quickly outdated.

In conclusion, this study demonstrates capabilities of ad-
vanced generative LLMs, particularly GPT-4, to automatically 
detect speech recognition errors in radiology reports. Further 
research is warranted to validate these findings in larger datas-
ets across multiple institutions. If integrated into the radiology 
workflow, such models could potentially assist in improving re-
port accuracy.
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