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� Provide chromosome-level genome
assemblies for BP (Boleophthalmus
pectinirostris) and PM (Periophthalmus
magnuspinnatus).

� Confirm two specific chromosome
fission events in the PM genome by
synteny comparison and ancestral
chromosome reconstruction.

� Reveal molecular clues from the loss
of some important genes (such as
SCPP and aanat1a) in certain or all of
the three mudskippers for the water-
to-land adaptation.
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Introduction: Mudskippers are a large group of amphibious fishes that have developed many morpholog-
ical and physiological capacities to live on land. Genomics comparisons of chromosome-level genome
assemblies of three representative mudskippers, Boleophthalmus pectinirostris (BP), Periophthalmus mag-
nuspinnatus (PM) and P. modestus (PMO), may be able to provide novel insights into the water-to-land
evolution and adaptation.
Methods: Two chromosome-level genome assemblies for BP and PM were respectively sequenced by an
integration of PacBio, Nanopore and Hi-C sequencing. A series of standard assembly and annotation
pipelines were subsequently performed for both mudskippers. We also re-annotated the PMO genome,
downloaded from NCBI, to obtain a redundancy-reduced annotation. Three-way comparative analyses
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Chromosome-level genome assembly
Comparative genomics
Water-to-land evolution
Terrestrial adaptation
of the three mudskipper genomes in a large scale were carried out to discover detailed genomic differ-
ences, such as different gene sizes, and potential chromosomal fission and fusion events. Comparisons
of several representative gene families among the three amphibious mudskippers and some other tele-
osts were also performed to find some molecular clues for terrestrial adaptation.
Results: We obtained two high-quality haplotype genome assemblies with 23 and 25 chromosomes for
BP and PM respectively. We also found two specific chromosome fission events in PM. Ancestor chromo-
some analysis has discovered a common fusion event in mudskipper ancestor. This fusion was then
retained in all the three mudskipper species. A loss of some SCPP (secretory calcium-binding phosphopro-
tein) genes were identified in the three mudskipper genomes, which could lead to reduction of scales for
a part-time terrestrial residence. The loss of aanat1a gene, encoding an important enzyme (arylalky-
lamine N-acetyltransferase 1a, AANAT1a) for dopamine metabolism and melatonin biosynthesis, was
confirmed in PM but not in PMO (as previously reported existence in BP), suggesting a better air vision
of PM than both PMO and BP. Such a tiny variation within the genus Periophthalmus exemplifies to prove
a step-by-step evolution for the mudskippers’ water-to-land adaptation.
Conclusion: These high-quality mudskipper genome assemblies will become valuable genetic resources
for in-depth discovery of genomic evolution for the terrestrial adaptation of amphibious fishes.
� 2024 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Water-to-land adaptation is one of the most significant events
in the evolutionary history of vertebrates. Some teleost fishes
had ventured out of water to evolve an amphibious life. Mudskip-
pers, belonging to Oxudercidae of Gobiidae family, are the largest
group of such fishes that can adapt to live on mudflats [1]. They
have great amphibious capacities, including breathing air [2], aerial
vision [3] and walk-like behavior on land [4,5]. They are a valuable
model for comparative studies on the developmental adaptation of
vertebrates from water to land.

Mudskippers include ten genera (such as Boleophthalmus, Perio-
phthalmus, Periophthalmodon, Scartelaos, Zappa, and Pseudapoc-
ryptes) and 42 species [6]. Boleophthalmus pectinirostris (BP),
presenting grey skin with a great number of small and white spots,
is widely distributed in coastal mud flats of China and Japan [6].
Periophthalmus magnuspinnatus (PM), owning light brown skin
with sky blue spots on its cheeks, opercula, flanks and head, com-
monly lives in mid-higher intertidal zones of south Korea and the
South China Sea [7]. P. modestus (PMO) has grey skin with some
dusky stripes and tiny black spots [5]; it is widespread across tem-
perate and tropical intertidal zones, including the northwestern
Pacific Ocean from Vietnam to Korea, as well as Japan [6]. Their ter-
restrial adaptation abilities are largely diverse. For instance, BP
takes less time out of water, whereas PM and PMO have more res-
idential time on their terrestrial habitats [8,9].

In 2014, our team reported the first genome dataset of four
mudskipper species by using the Illumina sequencing [8]. These
genome assemblies contained long scaffolds but relatively low
contigs, without chromosomal details [8]. Yang’s team recently
assembled a chromosome-level genome for PMO with 23 chromo-
somes, which was sequenced by Illumina, PacBio, 10X and Hi-C
(high-through-put chromosome conformation capture) methods
[9]. However, this PMO annotation has too much redundancy, lead-
ing to over 30,000 genes with 10% BUSCO duplicates.

Here, we provided two improved chromosome-level genome
assemblies for BP and PM by integrating PacBio, Nanopore, Hi-C
sequencing and our previous Illumina [8] data. We also reanno-
tated the PMO genome data [9] to obtain a redundancy-reduced
annotation set. This PMO genome resource will be valuable for
us to reveal genomic divergence among Periophthalmus species.
One of our main goals is to perform three-way comparative analy-
ses of BP, PM and PMO genomes to discover their detailed genomic
differences, such as gene changes and chromosomal structure vari-
ations. The three chromosome-level assemblies can also help us to
construct the mudskipper ancestor genome karyotype. Several rep-
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resentative gene families, such as SCPP (encoding secretory
calcium-binding phosphoproteins) and aanat (encoding an impor-
tant enzyme, arylalkylamine N-acetyltransferase (AANAT), for
dopamine metabolism and melatonin biosynthesis [8]; classified
into aanat1a, aanat1b and aanat2 in various fishes), among three
mudskippers and some other teleosts were compared to reveal
some molecular clues for the terrestrial adaptation. Thus, these
high-quality mudskipper genome assemblies could be used as
good genetic materials for in-depth genomic mining of amphibious
fishes during the water-to-land evolution.

Material and methods

Ethics statement, sample collection, and whole genome sequencing

Wild samples of BP (female) and PM (female) were collected
from Shenzhen Bay in Shenzhen city, Guangdong province, China.
Animal experiments in this study were carried out according to
the guidelines of the Animal Ethics Committee of BGI, and they
were approved by the Institutional Review Board on Bioethics
and Biosafety of BGI (No. 18134). Genomic DNAs of BP and PM
were extracted separately from muscle tissues by using a DNeasy
Nucleic Acid Kit (Qiagen, Germantown, MD, USA) under the manu-
facturer’s instructions. The routine strategy of whole genome shot-
gun sequencing was used to sequence both BP and PM genomes. A
SMART Bell library of BP genome with an insert size of 20 kb was
constructed based on a PacBio RS II protocol (Pacific Biosciences,
Menlo Park, CA, USA), and then it was sequenced by a PacBio
SEQUEL II platform. A Nanopore library of PM was processed by
using the Ligation Sequencing 1D kit (SQKLSK109, Oxford Nano-
pore Technologies, Oxford, UK) in accordance with the manufac-
turer’s instructions, and it was subsequently sequenced by a
PromethION instrument (Oxford Nanopore Technologies).

Genome size prediction, genome assembly and evaluation

A 17-mer frequency distribution was employed to predict gen-
ome size with the following formula: genome size = Knum /
Kdepth, where the Knum represents 17-mer number generated
from sequencing reads, and the Kdepth is the peak depth of k-
mers at the peak frequency. Reads from Illumina short-insert
libraries (500 and 800 bp; from our previous study [8]) were uti-
lized for this prediction.

For the assembly of BP and PM genomes, Platanus (version
1.2.4) [10] with defaulted parameters was employed to generate
a de novo assembly by using clean Illumina reads from the short-
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insert libraries (250, 500 and 800 bp; Tables S1 and S2) from our
previous report [8]. Subsequently, PacBio and Nanopore reads of
BP and PM respectively (Tables S3 and S4) along with above
assembled contigs were used for further assembly by employing
the DBG2OLC pipeline (default version) [11] with the following
parameters: LD10, MinLen 200, KmerCovTh 6, MinOverlap 80,
AdaptiveTh 0.012, and RemoveChimera 1. The PacBio and Nano-
pore reads of BP and PM were then mapped onto the DBG2OLC
assembled contigs by using Minimap2 [12] with default parame-
ters. The DBG2OLC contigs were further corrected with six rounds
by Racon (v1.2.1) [13] based on above Minimap2 alignments. After
correction, all clean Illumina reads of BP and PM were separately
mapped onto the Racon corrected contigs by BWA-0.7.17 [14]
and further corrected by Nextpolish [15] with default parameters.
SSPACE-LongRead [16] with default parameters was applied to
build scaffolds based on above-mentioned Nextpolish contigs and
long reads. The BUSCO (Benchmarking Universal Single-Copy
Orthologs; University of Geneva Medical School and Swiss Institute
of Bioinformatics, Geneva, Switzerland; version 5.22) [17] with
actinopterygii_odb10 orthologues was used to evaluate the com-
pleteness of BP and PM genome assemblies.
Chromosome construction

Muscle samples from BP and PM individuals were separately
fixed by formaldehyde. The restriction enzyme (Mbo I) was used
for digestion of extracted genomic DNAs by repairing of the 50

overhangs with a biotinylated residue. Both Hi-C paired-end
libraries of BP and PM were produced, and they were then
sequenced by a Hiseq Xten platform (Illumina, San Diego, CA,
USA). Hi-C reads were filtered by using the Soapnuke v1.6.5 [18]
with parameters: -n 0.01 -l 20 -q 0.1 -i -Q 2 -G -M 2 -A 0.5 -d. These
Hi-C reads were aligned onto the assembled scaffolds by using
Bowtie2 [19]. And then, scaffold linkage information from the Hi-
C pair data were produced by HiC-Pro v2.8.0 [20] with default
parameters. Juicer v1.5 [21] and 3d-DNA v170123 [22] were
employed to link scaffolds to form chromosomes. Juicebox
v1.11.08 [23] was applied to fix error-joins and remove duplicated
contigs to draw Hi-C heatmaps.
Repeat annotation and gene structure prediction

Both de novo and homology repetitive identification methods
were used to detect repetitive sequences in BP and PM genomes.
For the de novo repeat annotation, RepeatModeler v1.0.8 [24] and
LTR-FINDER v1.0.6 [25] with default parameters were employed
to identify each type of repetitive sequences. Subsequently,
RepeatMasker v4.0.6 [26] was used to build a new library based
on the Repbase TE v21.01 [27]. Tandem elements were identified
by Tandem Repeats Finder [28]. For the homology prediction,
RepeatMasker v4.0.6 [26] and RepeatProteinMask v4.0.6 [26] were
applied to find repeat sequences in the BP and PM genome assem-
blies based on the repeat libraries from the de novo repeat
annotation.

For analysis of LTR (long terminal repeat) insertion time, pairs
of LTRs with complete 50 and 30 ends from the LTR-FINDER results
were collected, and then they were self-aligned using MUSCLE
(V3.8.31). The nucleotide distance K values from each pair of LTRs
were calculated by using the Kimura two-parameter model from
the EMBOSS package [29]. The LTR insertion time (T) was calcu-
lated according to the following formula T = K / 2r, where the
mutation rate (r) was set as 3.51 � 10�9 substitution rate per base
per year [30].

Homology, de novo and transcriptome annotation pipelines
were employed to identify gene structures in BP and PM genomes.
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For the homology annotation, protein sequences of five representa-
tive species, including Danio rerio (zebrafish), Gasterosteus aculea-
tus (threespine stickleback), Homo sapiens (human), Oryzias
latipes (medaka), and Tetraodon nigroviridis (green spotted puffer),
were downloaded from the NCBI database (release 95). Each pro-
tein set was mapped onto the BP and PM assemblies by tBLASTn
[31] with an e-value � 10�5, respectively. Subsequently, GeneWise
v2.4.1 [32] was employed to identify gene structures on the
tBLASTn alignments. For the transcriptome annotation, pooled
RNA-seq reads were mapped onto the assembly by using HISAT2
v2.0.4 [33]. Cufflinks v2.2.1 (https://cole-trapnell-lab.github.io/cuf-
flinks/) was employed to identify gene structures on above RNA-
seq alignments. For the de novo annotation, Augustus v3.3.3 [34]
was used to predict potential gene structures in BP and PM gen-
omes. Three gene sets from above-mentioned three annotation
approaches were merged by MAKER [35] to generate final non-
redundant gene sets for BP and PM respectively. Similarly, we used
same approaches to annotate the assembled PMO genome (related
data were downloaded from the GigaScience database of Yang’s
study [9]).

Genome alignments among the three mudskippers

The chromosome assembly of PMO (downloaded from NCBI),
the protein sequences of PMO (annotated by us in this study),
and chromosome assemblies and protein sets of both BP and PM
were used as the input data for genomic comparisons. Whole gen-
ome and protein alignments among these three mudskippers were
performed by i-ADHoRe v3.0 [36] with default parameters based
on protein identity and gene synteny. Highly conserved synteny
and strict correspondence of chromosomes were displayed by
using SVG in Perl. Detailed chromosome fissions, fusions, and
translocations were manually checked.

Reconstruction of ancestral chromosomes

Each protein set of three mudskippers and stickleback was
aligned to the protein set of previously predicted ancestor chromo-
somes [37,38] respectively by using BLASTp (e-value < 1 � 10�10).
We then identified the reciprocal best-hit alignments between
each mudskipper and the ancestor chromosomes. Finally, chromo-
somal fissions and fusions were determined by using SVG in Perl.

Phylogeny, divergence time, and gene expansion/contraction
analyses

Genome data and protein sets of ten representative teleost spe-
cies were download from NCBI for a phylogenomic analysis,
including Lepisosteus oculatus (spotted gar; GCF_000242695.1),
Danio rerio (zebrafish; GCF_000002035.6), Oryzias latipes (medaka;
GCF_002234675.1), Kryptolebias marmoratus (Mangrove killifish;
GCF_001649575.2), Lates calcarifer (Asian seabass;
GCF_001640805.1), Anabas testudineus, (climbing perch;
GCF_900324465.2), Gasterosteus aculeatus (threespine stickleback;
GCF_016920845.1), Tetraodon nigroviridis (green spotted puffer;
GCA_000180735.1), Takifugu rubripes (Japanese pufferfish;
GCF_901000725.2) and Sphaeramia orbicularis (orbiculate cardinal-
fish; GCF_902148855.1). Protein sequences and protein sets of the
three mudskippers were aligned with each other by using BLASTp
[39] (e-value � 1e-5). OrthoMCL v2.0.92 [40] with default param-
eters was employed to cluster gene families. The detailed number
of multiple-copy, single-copy orthologs, and unique paralogs were
summarized in Table S5. We then aligned those single-copy gene
families using MUSCLE v3.8.31 [41] and connected the coding
sequence (CDS) regions of all single-copy genes. Gblock [42] was
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applied to determine the conserved regions for constructing a phy-
logenetic tree by using PhyML v3.0 with the maximum likelihood
method [43].

A divergence time analysis was performed by MCMCtree in the
PAML package [44]. Fossil records [45] were used to calibrate four
branch nodes. In addition, we predicted expansion and contraction
gene families by using CAFE v4.2.1 [46], and then annotated these
gene families based on Gene Ontology (GO) [47] terms and KEGG
[48] pathways (Fig. S1).
Identification of aanat1a and its neighboring genes

Zebrafish genome (GRCz11, GCF_000002035.6) was used as the
reference (Table S6) to identify melatonin biosynthesizing genes in
three mudskippers. We first employed tBLASTn [31] to search sep-
arately against three mudskipper genome assemblies, and then
retained the high-identity regions by using Solar v0.9.6 [49], fol-
lowed by the extraction of exon sequences using Exonerate v2.4
[50].

In order to verify the loss of aanat1a in PM [8],we searched pro-
tein sequences of aanat1a and 20 nearby genes to detect the syn-
teny correlations among three mudskipper genomes. BLASTp [31]
was performed for the aanat1a along with the adjacent upstream
ten genes (including pex6, atl2, acox1, slc22a7, ttbk1a, ttbk1b,
ddx5, polg2, srp68, and evpl) and ten downstream genes (ube2o,
sphk1, cygb2, myh10, map2k7, pkn2, c19orf67, rh2a, mcoln1, and
trappc5) of the aanat1a gene (Table S7). Genomic locations of these
genes were collected, and a synteny plot was drawn using the SVG
module in Perl.

To obtain a broader view of this region, we aligned the corre-
sponding nucleotide sequences of these target regions among the
three mudskipper genomes using LASTZ v1.04.15 [51], and a syn-
teny plot was generated by CIRCOS v.0.69 [52]. Entire chromo-
somes containing aanat1a genes were also aligned and plotted
using the LAST package [53].
Identification of SCPP gene family

The same pipeline was employed to identify the less conserved
SCPP genes in three mudskipper genomes, and the following two
methods were also used so as to generate a full list of SCPP genes.
First, the SCPP proteins of both zebrafish and spotted gar [54,55]
were aligned and indexed by HMMER v3.3.2 [56], and hmmsearch
was conducted against the three mudskipper protein sets sepa-
rately. Secondly, we applied published transcriptome assemblies
[8] as the subjects, and those known SCPP proteins as the queries.
BLASTp was performed and the EMBOSS tool [29] was then used to
predict open reading frames of those aligned mRNA sequences,
which were further fed as inputs in Exonerate to extract gene
structures from the three mudskipper genome assemblies. All pre-
Table 1
Statistics of the three mudskipper genomes.

species B. pectinirostris (BP) P. magnus

Common name Blue-spotted mudskipper Giant-fin
Estimated genome size 973.0 Mb 773.0 Mb
Assembly genome size 957.8 Mb 753.0 Mb
Scaffold N50 40.7 Mb 32.0 Mb
Contig N50 1.1 Mb 2.5 Mb
Gene Numbers 22,685 22,272
Repeat elements 47.4% 40.4%
Genome BUSCO C:93.8% [S:90.9%, D:2.9%], F:2.0%, M:4.2% C:93.3% [S
Gene BUSCO C:96.8% [S:92.9%, D:3.9%], F:1.4%, M:1.8% C:96.1% [S

* These annotation and evaluation data, performed through our pipelines in this stud
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dicted SCPP genes were concatenated and those replicates were
discarded manually.
Results

Summary of the three mudskipper genome assemblies

We conducted whole genome sequencing and annotation of
both BP and PM genomes, and we also reannotated the PMO gen-
ome from Yang’s data [9]. Approximately 39.3 gigabases (Gb) and
55.8 Gb of raw reads were produced from PacBio and Nanopore
platforms for BP and PM, respectively. After a series of assembly
procedures, we generated genome assemblies for both BP and
PM with a total length of 957.8 Mb and 753.0 Mb, respectively.
These lengths are close to the estimated values (973.0 Mb for BP
and 773.0 Mb for PM; Table 1). Their detailed contig N50 values
are 1.1 Mb (BP) and 2.5 Mb (PM), and their BUSCO completeness
are about 93.8% and 93.3% respectively (Table 1).

We subsequently anchored their haplotype contigs into 23 and
25 chromosomes (Chr) for BP and PM respectively (Fig. 1a, b). We
also performed a series of annotation pipelines to predict gene sets
for BP, PM and PMO, and obtained 22,685, 22,272 and 29,442
protein-coding genes with completed BUSCO values of 96.8%,
96.1% and 82.4%, respectively (Table 1). For repeat annotation,
we predicted that repeat sequences account for about 47.4%,
40.4% and 43.8% of BP, PM and PMO genomes respectively. Inter-
estingly, BP has the highest ratio of repeats among the three mud-
skippers, while it is the least terrestrial fish.
Genome synteny and ancestor chromosome reconstruction

Genome synteny demonstrated that BP chromosomes are one-
to-one aligned to PMO chromosomes with identification of 1,912
synteny blocks (Fig. S1). Interestingly, PM has two more chromo-
somes than BP and PMO, due to chromosome fissions. Detailed
synteny shown that Chr11 and Chr25 of PM were well aligned to
Chr21 of BP and P_modestus_1320 of PMO (Fig. 2a, b), and Chr12
and Chr25 matched to Chr18 of BP and P_modestus_54 of PMO
(Fig. 2b, c). Therefore, we speculate that the two chromosomal
breakages were solely presented in the PM lineage after the diver-
gence of PM and PMO.

For reconstruction of ancestral chromosomes, we generated
7,639 (BP), 7,956 (PM), 7,207 (PMO) and 7,470 (stickleback) of
reciprocal best-hit gene pairs between each of the four species
and teleost ancestor protein set. We observed that most mudskip-
per chromosomes have well retained teleost ancestor chromosome
karyotypes (Fig. 3). A common chromosome fusion, appearing in all
the three mudskippers, could have occurred from the mudskipper
ancestor lineage. However, PM chromosomes had undergone two
specific fission events.
pinnatus (PM) P. modestus (PMO)

mudskipper Shuttles hoppfish
729.0 Mb
854.4 Mb
32.9 Mb
0.6 Mb
29,442*
43.8%

:90.5%, D:2.8%], F:2.4%, M:4.3% C:90.4% [S:89.1%, D:1.3%], F:0.8%, M:8.8%
:92.6%, D:3.5%], F:1.9%, M:2.0% C:82.4% [S:80.1%, D:2.3%], F:3.4%, M:14.2%*

y, are improved from those in Yang’s study [9].



Fig. 1. The Hi-C heatmaps of BP (a) and PM (b) haplotype genomes. The picture in (c) is enlarged of the chromosome 25. Blue boxes represent chromosomes, while green
boxes stand for scaffolds. The red plots mark those mapped Hi-C reads. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article).
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Gene family clustering and divergence time estimation

We detected 34,292 gene families from 13 examined teleost
species, containing 429 common single-copy gene families. For
the three mudskippers, there are 14,869, 15,351 and 13,531 gene
families clustered from BP, PM and PMO, respectively. Moreover,
a total of 11,139 common gene families were detected among
the three mudskippers. Gene families shared with each mudskip-
per species were provided in Fig. S2.

A total of 110,181-bp conserved nucleotide sequences from the
single-copy gene families were collected to construct a phyloge-
netic tree (Fig. 4a). The divergence time between BP and two Perio-
97
phthalmus mudskippers was predicted at about 34.6 million years
ago (Mya), which is consistent with our previous report [8] and
Yang’s study [9]. The divergence time of PM and PMO, within the
same genus, was about 20.8 Mya.

Eventually, we predicted 2,476 expanded gene families and 444
contracted gene families in BP (Fig. 4a), which were enriched into
GO terms and KEGG pathways (Fig. 5a, Fig. 5b and Fig. S3). For the
enriched expanded gene families, the top five GO terms were
‘‘binding”, ‘‘catalytic activity”, ‘‘cell”, ‘‘cell part”, and ‘‘cellular pro-
cess”; the top five KEGG pathways included ‘‘infectious disease:
viral”, ‘‘signal transduction”, ‘‘global and overview maps”, ‘‘signal-
ing molecules and interaction” and ‘‘immune system”. The



Fig. 2. Chromosomal synteny relationships among the three mudskippers. a An amplified synteny block view among BP Chr 21, PM Chr 11 & Chr 25, and PMO
P_modestus_1320. b-c Synteny blocks of various chromosomes among BP, PM, and PMO. d An amplified synteny block view among BP Chr 18, PM Chr 12 & Chr 23, and PMO
P_modestus_54.
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enriched GO terms and KEGG pathways of PM (Fig. S4) and PMO
(Fig. S5) were similar to those of BP. It seems that BP may have
developed a good immune system to fight with exogenous patho-
gens, thereby supporting its daily amphibious life in water and on
land. Three genes in GO ‘‘growth” were enriched in expanded gene
families of BP, including htra1 (encoding serine protease HTRA1)
gene, and two copies of igf1 (insulin-like growth factor I). Chromo-
somal locations of these growth-related genes in the BP genome
were provided in Fig. 5c. In brief, the htra1 gene was located at
98
6.5 Mb on Chr4, while two igf1 genes were tandem duplicated at
33.9 Mb on Chr12.
SCPP gene variations among the three mudskipper genomes

The scales of air-breathing mudskippers are usually reduced in
size and number [57]. We thus investigated SCPP genes, a family
encoding a series of P/Q-rich or acidic proteins that are putatively
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Fig. 3. Reconstruction of the ancestral chromosomes for the three mudskippers. Different colored bars represent 13 ancestral chromosomes. Gene sequences from the same
ancestral chromosomes were presented in the same color. Green arrows mark some translocation, fusion, and fission events. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article).
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involved in bone mineralization, as well as tooth and scale forma-
tion [55,58,59]. Our data show that all the three mudskippers had
ten SCPP genes (Fig. 6, Table S6), much less than other four repre-
sentative vertebrates (each with more than 20 SCPP genes). In addi-
tion, these SCPP genes distributed in three chromosomes of PM and
PMO, namely as scpp1 cluster, spp1 cluster and P/Q-rich-only clus-
ter, respectively (Fig. 6). However, an enam gene, belonging to the
SCPP gene family too, located in the fourth chromosome of BP; that
is to say, this gene was split from the scpp1 cluster, which is differ-
ent from the pattern in PM. Interestingly, this enam gene was lost
in PMO, but the neighboring gene scpp5 was duplicated (see more
details in Fig. 6).

Validation of the loss of aanat1a in PM but not in PMO

Our previous study [8] revealed that the scaffold-level genome
assembly of PM has lost aanat1a, an important gene encoding the
most crucial enzyme AANAT for melatonin biosynthesis [60,61]
and dopamine metabolism, while BP retains all the three aanat
99
genes (aanat1a, aanat 1b and aanat2) as most teleosts [8,60]. To
further verify this interesting loss, we screened ten core genes
for melatonin biosynthesis in our improved chromosome-level
genome assemblies of BP, PM (this study) and PMO [9]. Obviously,
we confirmed that PM lost aanat1a, while PMO in the same genus
and BP both kept the three aanat genes (Fig. 7, Table S7). This con-
sistence suggests that the loss of aanat1a is species-specific rather
than lineage shared.

To figure out how aanat1a was lost in PM, we performed a syn-
teny comparison of the target genomic regions with this gene
among the three mudskipper genomes (Table S8). It seems that
both BP and PM shared a well-conserved suite of genes around
aanat1a disregarding the presence or absence of this gene, while
this region was split into two clusters right after aanat1a in PMO,
and the downstream cluster was translocated to another chromo-
some with relative variability (Fig. 7). Although the whole chromo-
some alignments show extensive synteny and collinearity between
the two Periophthalmus species due to their closer relationship, the
aanat1a region was less conserved within this genus (Fig. S6).



Fig. 4. Phylogeny and gene-family analysis of the three mudskippers. a A phylogenetic tree of the three mudskippers (BP, PM and PMO). Estimated divergence times (in the
unit of Mya) were marked in blue. Numbers of expanded and contracted gene families were marked in green and red, respectively. MRCA represents the most recent common
ancestor. b Density plot of the timing of LTR insertions among the three mudskipper species. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Discussion

Genomic differences among the three mudskippers

In the present study, we obtained two high-quality
chromosome-level genome assemblies for BP and PM with 23
and 25 chromosomes respectively. Both assemblies and previously
reported PMO assembly enable us to perform genomic compar-
isons among the three mudskippers. Their genome sizes are largely
diverse. BP’s genome is about 100� 200Mb larger than other twos.
A total length of repeat sequences of BP (454.0 Mb) is also longer
than the other two mudskippers (304.2 Mb for PM and 374.2 Mb
for PMO). After identifying the detailed types of repeat sequences,
we found that the total length of LTRs in BP (105.1 Mb) were about
two-fold as long as those in PM (47.5 Mb) and PMO (59.0 Mb).
After calculating their LTR insertion time, we observed that their
LTRs appeared to be accumulated gradually over time (Fig. 4b). A
remarkable LTR accumulation and insertion period in BP genome
was between 5 and 10 Mya (Fig. 4b), which is more recent than
PM’s and PMO’s. A big scale of LTR explosion in the BP lineage
100
could be one major reason to interpret its larger genome than
the other two mudskippers.

Moreover, when comparing various gene families among the
three mudskippers, we obtained a GO term of ‘‘growth” that con-
tained three genes in expanded gene family of BP (Fig. 5a). Chro-
mosomal locations of these genes were summarized in Fig. 5c for
detailed comparisons. Interestingly, one gene on Chr4 was anno-
tated as htra1, and other two genes were both annotated as igf1
with tandem duplication on Chr10. The igf1 is known to be crucial
for bone growth [62] and tissue physiology [63]. It seems that
expansions of these growth-related genes may be related, at least
in part, to the largest body size of BP among the three
mudskippers.
Chromosomal evolution of three mudskippers and their
common ancestor

Another surprising difference among the three mudskippers is
that PM has 25 chromosomes that are two more than both BP
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and PMO. We clearly observed four separate squares with densely
mapped Hi-C reads for four important chromosomes (Chr12 and
Chr23, Chr11 and Chr 25) in the Hi-C heatmap (Fig. 1b and
Fig. 1c). Synteny blocks also clearly demonstrated that Chr11 and
Chr25 of PM were split from one ancestor chromosome that was
subsequently well retained to be the Chr21 of BP and P_modes-
tus_1320 of PMO (Fig. 2a and Fig. 2b). Similarly, Chr12 and
Chr25 of PM were derived from one ancestor chromosome corre-
sponding to Chr18 of BP and P_modestus_54 of PMO (Fig. 2b and
Fig. 2c).

To our best knowledge, our present work is the first report of
the mudskipper ancestor chromosome karyotype. Previous studies
have predicted that the ancestral teleost karyotype possibly con-
tained 13 pairs of chromosomes (represented as a � m), subse-
quently experienced teleost specific genome duplication,
underwent chromosome translocation or variation and returned
to diploid by losing some functionally redundant genes and seg-
ments, and then gradually shaped the recent teleost karyotype
[37,38]. Our ancestor chromosome data revealed that an ancestor
chromosome (i) and another ancestor chromosome (k) had under-
gone a fusion event in the mudskipper ancestor chromosome kary-
otype (Fig. 3). Therefore, BP and PMO present a similar fused
chromosome (i.e., Chr18 and P_modestus_54 respectively). How-
101
ever, in PM we clearly observed that its ancestor chromosomes
(i) and (k) had merged into one original chromosome (mudskipper
ancestor chromosome), and then they were split to form two inde-
pendent chromosomes (Chr12 and Chr23). In addition, a specific
fission event was also identified in PM’s Chr11 and Chr25, which
were directly split from the ancestor chromosome (b) in the PM
lineage (Fig. 3).
Gene families potentially related to water-to-land adaptation

The air-breathing mudskippers deal with the dried condition on
land through some relatively developed or modified structures,
such as thick skin with abundant blood vessels [2] and a reduction
or even absence of scales [57], to improve gas exchange. Histology
of the skin of BP [64,65], PM [57] and PMO [66] reveals that they all
present a reduction of scales, and their minute scales are located
under the epidermis. It is therefore reasonable to propose differ-
ence of certain genes involved in scale formation between these
mudskippers and other teleosts with normal scales. For example,
the SCPP gene family encodes a series of P/Q-rich or acidic proteins
that are involved in bone mineralization, as well as tooth and scale
formation [55,58].
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We thus investigated these SCPPs, a gene family with many
reports for involvement in scale formation [58]. Our result shows
that the mudskippers’ SCPP gene repertoires are considerably smal-
ler (Fig. 6) than those of normal-scaled zebrafish [58], the modified
elasmoid-scaled bowfin with enamel-covered teeth [67], and the
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ganoid-scaled spotted gar that has the largest known SCPP family
(38 genes) [54], the denticle-scaled cartilage sturgeons and paddle-
fish [68,69], and the diverse tetrapods [59]. In addition, the spp1
cluster is supposed to play major roles in scale formation [67].
Interestingly, this cluster was split apart and reduced to only three
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P/Q-rich genes in the mudskippers (Fig. 6), and it was reduced to
only one gene (scpp8) in scaleless channel catfish [67,70,71]. We
hence hypothesize that the loss of some specific SCPP genes may
lead to the reduction of mudskipper scales, which is definitely ben-
eficial to the terrestrial life of these mudskippers.

Meanwhile, we validated the loss of aanat1a gene in PM again
(Fig. 7), but it was retained in both PMO and BP. The AANAT1a pro-
tein has been proven to acetylate dopamine in retina, which brings
down the retina dopamine concentration thus causes myopia for
most fishes [8,71]. Therefore, the loss of aanat1a is speculated to
keep high dopamine levels in retina, and therefore help the mud-
skippers retain a good aerial vision [8] so as to be able to see clearly
on land for escape or predation [70]. Although both Periophthalmus
species spend more time on land than BP [8,72], the loss of aanat1a
gene in PM but not in PMO (as previously reported existence in BP)
suggests that PM may have a better air vision than both PMO and
BP [8]. Such a tiny variation within the genus Periophthalmus
exemplifies to prove a step-by-step evolution for the mudskippers’
water-to-land adaptation.
Conclusion

In this study, we generated high-quality chromosome-level
genome assemblies for BP and PM respectively. High completeness
of assembled genome and annotation sets of both BP and PM can
be widely used as the reference genomes for Gobiidae family. We
also discovered two specific chromosome fission events in PM
leading to shape its 25 chromosomes, which is two more than both
BP and PMO (with 23 chromosomes). Combined our assemblies
with the previously reported PMO genome assembly, we con-
structed ancestor chromosomes of mudskippers and observed a
common fusion event in the predicted mudskipper ancestor. Inter-
estingly, some SCPP genes were lost in the three mudskipper gen-
omes, which could potentially lead to the reduction of scales and
further improve air-breathing of mudskippers; the loss of aanat1a
gene was confirmed in PM but not in PMO, suggesting a better air
vision of the more terrestrial PM and a step-by-step evolution for
the mudskippers’ water-to-land adaptation. These complicated
mudskipper genome data will become valuable genetic resources
for in-depth investigations on water-to-land transition and com-
parative genomics in various vertebrates.
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