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SUMMARY
[18F]Fluorodeoxyglucose positron emission tomography (FDG-PET) and computed tomography (CT) are
indispensable components in modern medicine. Although PET can provide additional diagnostic value, it
is costly and not universally accessible, particularly in low-income countries. To bridge this gap, we have
developed a conditional generative adversarial network pipeline that can produce FDG-PET from diagnostic
CT scans based onmulti-center multi-modal lung cancer datasets (n = 1,478). Synthetic PET images are vali-
dated across imaging, biological, and clinical aspects. Radiologists confirm comparable imaging quality and
tumor contrast between synthetic and actual PET scans. Radiogenomics analysis further proves that the dys-
regulated cancer hallmark pathways of synthetic PET are consistent with actual PET. We also demonstrate
the clinical values of synthetic PET in improving lung cancer diagnosis, staging, risk prediction, and prog-
nosis. Taken together, this proof-of-concept study testifies to the feasibility of applying deep learning to
obtain high-fidelity PET translated from CT.
INTRODUCTION

[18F]Fluorodeoxyglucose positron emission tomography (FDG-

PET) is widely used to image patients with cancer.1 FDG-PET

measures glucose consumption, offering a valuable functional

view that is complementary to computed tomography (CT) in

multiple clinical settings. For example, PET can improve the ac-

curacy in diagnosing high-risk indeterminate pulmonary nodules
Cell Re
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detected by low-dose CT screening.2 It has shown superior

value over CT in determining the nodal and distant metastasis

for cancer staging.3 For treatment response, PET offers a new

view to assessment of metabolic tumor response to systemic

therapy and beyond as proposed in PERCIST.4 As such, it has

become an indispensable component in oncology practice.

Although PET has demonstrated clinical value, it is still not uni-

versally applicable compared to CT.5 PET-CT has approximately
ports Medicine 5, 101463, March 19, 2024 ª 2024 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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double the radiation exposure than a standard CT scan, raising

concerns about increasing cancer risk,6 especially in those at

high risk, including pregnant women, children, and cancer pa-

tients with repeated scans. PET is not considered appropriate

for lung cancer screening at current dose levels, as the radiation

risk outweighs the benefits. This might change with the develop-

ment of low-dose PET-CT.7 Moreover, PET scanners are expen-

sive and complex to acquire, run, and maintain, which contrib-

utes to stark global inequities, with only five PET scanners

existing for roughly 50 low-income countries covering a total

population of 706 million, based on recent data from the Interna-

tional Atomic Energy Agency.5

One strategy to address these limitations is by using cross-

modality imaging synthesis as an alternative way to obtain

PET. Deep learning has reshaped the landscape of medical im-

age synthesis.8 Pilot studies have proven the feasibility of ma-

chine-learning models to learn inter- and intra-modality mapping

functions, with potentially broad applications in radiology. Imag-

ing synthesis may help streamline the clinical workflow and

bypass certain imaging procedures, such as synthetic CT, to

potentially replace extra CT acquisition for pelvis PET/MR atten-

uation correction9 and for MRI-based prostate radiation dose

planning.10 Currently, cross-modality synthesis is focused on

mapping the anatomical findings between CT and MRI,8 where

there is a large amount of overlapping information. However, ma-

chine-learning-based synthesis remains underexplored for

bridging anatomical to functional mapping, given that each mo-

dality offers a different view of the underlying physiology. Inter-

estingly, a recent study demonstrated that CT-based lung perfu-

sion images synthesized by a transfer learning framework

achieved a strong voxel-wise correlation with single-photon

emission CT (SPECT) perfusion images.11 However, most previ-

ous studies have assessed synthetic image quality without

expert radiologists’ input and have lacked biological and clinical

validation.

We hypothesized that deep learning can effectively learn the

anatomical-to-metabolic mapping based on paired diagnostic

CT and FDG-PET scans, whereby the synthetic PET can pre-

serve biological correlates and add clinical value in lung cancer

diagnosis and prognosis. To test this, we performed a compre-

hensive study on multi-center multi-modal data (imaging, geno-

mics, clinical, and longitudinal data) to develop a computational

framework and systematically validate its fidelity based on imag-

ing signal, radiologists’ assessments, and radiogenomics corre-

lates, as well as evaluation of biological and clinical values.

RESULTS

High fidelity of PET images produced by applying
conditional GAN on CT with confirmation by thoracic
radiologists
We developed a conditional generative adversarial network

(cGAN) model by hybridizing pix2pix and ResUNet++ based on

multi-center PET and CT scans (for details see STAR Methods

and Figure 1). The model was trained on the MDA-TRAIN cohort

and locked for external testing on the MDA-TEST and TCIA-

STANFORD cohorts with a head-to-head comparison with ac-

quired PET as ground truth. We displayed the synthetic PET
2 Cell Reports Medicine 5, 101463, March 19, 2024
scans from the two testing cohorts to compare them side by

side with ground-truth PET and visualize the model output

(Figure 2A).

Two experienced radiologists evaluated the imaging quality

and did a Turing test (see STAR Methods for details). They rated

equivalent quality of true and synthetic PET for subjective imag-

ing quality (Figure 2B), with an average score of 4 for true PET

and 3.6 for synthetic PET using 5-point system (with 1 as poor,

3 as adequate, and 5 as excellent), as well as for tumor contrast,

with an average score of 4.5 for true PET and 4.1 for synthetic

PET using a 5-point system (with 1 as low, 3 as equal, and 5 as

high). For imaging quality rating and within one score tolerance,

radiologists rated 75% cases as equivalent and 19% cases as

decreased when comparing synthetic PET to its ground-truth

counterpart (Figures 2C and S1A). For lesion contrast evaluation,

83%cases stayed unchanged, and 13%cases decreasedwithin

one score tolerance (Figures 2D and S1B). For identification of

the synthetic scans in the Turing test, the radiologists achieved

overall 75% accuracy and misclassified 7% of synthetic cases

and 40% of real cases (Figures 2E and S1C). Also, two radiolo-

gists had high agreement regarding their consensus for imaging

quality (87%) and lesion contrast evaluation (99%) tolerant within

one score difference, while they had 77% agreement in identi-

fying the synthetic PET scans (Figure S1D, with individual radiol-

ogists’ performance detailed in Figure S1E).

Quantitative comparison confirmed the high fidelity of
the synthetic PET
The generated PET scanswere comparedwith ground-truth PET

images quantitatively. As seen in Figure 2A, the model showed

good performance (Figures S2A and S2B) for ten presented

cases fromMDA-TEST (mean structural similarity indexmeasure

[SSIM] = 0.88) and TCIA-STANFORD (mean SSIM = 0.81), where

the SSIM is between 0 and 1 with a higher value indicating more

similarity. We further computed the SSIM and root-mean-square

error (RMSE) for a large sample of cases from an internal valida-

tion set in MDA-TRAIN as well as in the external testing sets (i.e.,

MDA-TEST and TCIA-STANFORD). As shown in Figure S2C, the

cGANmodel had high SSIM values, with amedian value in MDA-

TRAIN and MDA-TEST around 0.9 and with a narrower deviation

for MDA-TRAIN than MDA-TEST. For the TCIA-STANFORD

cohort, the median of SSIM was around 0.8. Together, these

data indicate high fidelity of synthetic PET with ground-truth

PET during validation. The RMSE had a similar trend, with

the MDA-TRAIN cohort showing the lowest median and

MDA-TEST a lower RMSE compared to TCIA-STANFORD

(Figure S2D).

Next, we calculated the pairwise Pearson correlation of imag-

ing metrics (metabolic tumor volume [MTV], total lesion glycol-

ysis [TLG], and mean and maximum standardized uptake values

[SUVmean and SUVmax]) between true and generated PET in the

MDA-TRAIN, MDA-TEST, and TCIA-STANFORD cohorts (Fig-

ure 3A). Relatively high positive correlations were observed for

MTV and TLG features consistently in all the cohorts. The highest

PET feature correlations were MTV1.5 (r = 0.71) for MDA-TRAIN,

MTV1.5 (r = 0.85) for MDA-TEST, and MTV2.5 (r = 0.55) for TCIA-

STANFORD. Low correlations were observed for SUVmax and

SUVmean features, whichmay be attributed to the long tail effects



Figure 1. Overview of the study design

(A) Training the cGAN to predict PET image from CT. The input of the generator is a CT slice along with its six neighboring slices while its output is the synthetic

PET image. The discriminator tries to classify between the synthetic and ground-truth PET/CT pairs.

(B) In the imaging validation, similarity metrics including SSIM and RMSE were employed for comparing the synthetic and ground-truth PET images. A group of

two thoracic radiologists was enrolled blindly to visually assess the quality of synthetic PET images. Next, they conducted a Turing test on synthetic and ground-

truth PET images. Moreover, we analyzed the pairwise similarity between the synthetic and ground-truth PET features.

(C) In the biological validation, we applied radiogenomic analysis using the GSEAmethod to find the association of cancer hallmarks with extracted features from

ground-truth and synthetic PET scans.

(D) In the subsection ‘‘synthetic PET complements CT for early lung cancer diagnosis,’’ we investigated whether the performance of indeterminate pulmonary

nodule classification using only main CT-based features can be further improved by adding the extracted features from the synthetic PET. In cancer prediction,

we validated the clinical value of synthetic PET in prediction of the development of lung cancer and in staging prediction. In staging prediction, two radiologists

assess the synthetic PET capability for accurately staging the lung cancer patients. In the subsection ‘‘synthetic PET predicts prognosis after standard of care,’’

we showed that the extracted nodule features from the synthetic PET are capable of stratifying patients into good and bad survival groups.

(E) The cohorts used in different sections.
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of SUV values (refer to STAR Methods). Further, we studied the

agreement between predicted and true PET features using

Bland-Altman plots (Figure S3). Reasonable agreements were

observed across the predicted and true PET consistently in three

cohorts for MTV.

Given the observation that synthetic SUVmax had reduced cor-

relation to ground -truth, we computed a threshold-based confu-

sion matrix to evaluate the progressive correlation at different

SUV threshold values. As shown in Figure 3B, when the

threshold was set at 1.5, the synthetic SUVmax aligned closely
with the ground-truth SUVmax. With increasing threshold,

SUVmax values of more synthetic PET scans did not pass the

threshold, leading to an accuracy of 89%–91% in MDA-TRAIN

or MDA-TEST and 66% in TCIA-STANFORD at a high cutoff of

2.5. Taken together, these results systematically validated that

a reasonable fidelity of SUVmax exists between the predicted

and the ground-truth PET slices.

Furthermore, we assured that the synthetic SUVmax pro-

duced by the cGAN model was not solely driven by the tu-

mor/nodule tumor volume. In particular, we computed the
Cell Reports Medicine 5, 101463, March 19, 2024 3



Figure 2. Validation of imaging signal fidelity and cancer staging performance by radiologists

(A) Presentation of synthetic PET images with ground-truth PET in MDA-TEST and TCIA-STANFORD testing cohorts. The first three columns from left to right for

each cohort correspond to CT, ground-truth, and synthetic PET images. The PET images are shown inversely with the normalized window of SUV in ½0; 3�.
Therefore, the completely black color in tumors indicates that the tumor had uptake with maximum SUV value of at least 3.

(B) The radiologists’ score on quality and relative uptake of lung region in task 1 of the imaging quality test.

(C) Alluvial plot shows the radiologists’ scoring on imaging quality difference using paired PET scans.

(D) Alluvial plot shows the radiologists’ scoring on tumor contrast difference using paired PET scans.

(E) Alluvial plot shows the radiologists’ reading of ground-truth vs. synthetic using paired PET scans.

(F) Comparison matrix of staging between radiologists reading CT and ground-truth PET and pathological stage.

(G) Comparison matrix of staging between radiologists reading CT and synthetic PET and pathological stage.

(H) Consensus matrix of staging between the two radiologists when one radiologist reads true PET and CT compared to another reading synthetic PET and CT.
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correlation between the SUVmax and tumor/nodule volume, with

a small correlation for both the ground-truth PET (R2 = 0:039)

and synthetic PET (R2 = 0:101) (Figures S4A and S4B). A

similar trend was also observed for subgroup analysis of pa-

tients with SUVmax < 7 (Figures S4C and S4D). Additionally,

we presented a scatterplot illustrating the relationship between

ground-truth and synthetic SUVmax in the combined train
4 Cell Reports Medicine 5, 101463, March 19, 2024
and test cohorts of MDA-TRAIN, MDA-TEST, and TCIA-STAN-

FORD (Figures S4E and S4F).

Biological inferences are consistent between synthetic
and ground-truth PET
We next performed gene set enrichment analysis (GSEA) to

explore radiogenomics correlation12 of an imaging feature



Figure 3. Validation of imaging signal fidelity by PET feature correlation

(A) Pearson correlation for evaluating the pairwise similarity between the synthetic (rows) and ground-truth (columns) PET features in MDA-TRAIN, MDA-TEST,

and TCIA-STANFORD cohorts.

(B) Threshold-based confusion matrix for synthetic SUVmax and the ground-truth SUVmax for four different thresholds (a = 1:5;2:5) in MDA-TRAIN, MDA-TEST,

and TCIA-STANFORD cohorts.
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(MTV1.5) extracted from true and synthetic PET scans with

hallmark pathways. Given the fact that MTV has several ad-

vantages over SUVmax, including its robustness to access

the spatial extent of metabolically active tumor tissue rather

than providing a fragile single value based on the highest ac-

tivity in a small region,2,13,14 we chose to concentrate our ef-

forts on exploring its radiogenomic correlates. Specifically,

we studied MTV1.5, since it shows a higher correlation be-

tween synthetic and ground-truth PET scans (Figure 3A). We

observed that several cancer-associated hallmark pathways

consistently have significant associations with true and pre-

dicted MTV1.5, although the enriched pathway lists vary across

different cohorts (Figure 4A), which may be attributable to

different genes covered in tumors of different cohorts. E2F tar-

gets, MYC targets, and G2M checkpoint were the top dysre-

gulated pathways in the MDA-TRAIN cohort; epithelial-mesen-

chymal transition (EMT), glycolysis, and MYC targets were the

top enriched pathways in the MDA-TEST cohort; and EMT,

mitotic spindle, and transforming growth factor-b signaling

were the top dysregulated pathways in the TCIA-STANFORD

cohort. High concordance was observed between synthetic

PET and true PET scans regarding the normalized enrichment

score of all cancer hallmark pathways calculated, with

Pearson correlation of 0.88 (p = 1.3e�16) in MDA-TRAIN
for training, 1.0 (p < 1e�16) in MDA-TEST, and 0.74 (p =

1.9e�9) in TCIA-STANFORD, suggesting consistent image-

to-genomics alignment.

Further unsupervised hierarchical clustering of the pathway

enrichment scores from all three cohorts revealed hallmark

pathways with consistent positive/negative correlation with

MTV1.5 across the cohorts (Figures 4B and S5A). Increased

activity reportedly associated with cancer aggressiveness

such as EMT, hypoxia, angiogenesis, and mitotic spindle

pathways were consistently associated with greater MTV1.5,

while biological processes implicated in cancer suppression,

such as peroxisome, adipogenesis, heme metabolism, fatty

acid metabolism, and bile acid metabolism, were consistently

associated with lower MTV1.5 values. Among processes linked

to cancer progression, EMT and angiogenesis were the top

pathways significantly positively correlated with MTV1.5 values

(Figure S5A). Highly similar enrichment plots were observed

for the association of each pathway with MTV1.5 from true or

synthetic PET in each studied cohort (Figure S6). Interestingly,

glycolysis was found to be significantly positively associated

with true and synthetic MTV1.5 only in two cohorts, MDA-

TRAIN and MDA-TEST (q values from <0.0001 to 0.02).

Considering the known association of PET features with

glycolysis-related genes in non-small cell lung cancer
Cell Reports Medicine 5, 101463, March 19, 2024 5



Figure 4. Validation of biological fidelity by radiogenomics analysis

(A) Significant hallmark gene sets associated with MTV extracted from ground-truth and synthetic PET for MDA-TRAIN, TCIA-STANFORD, and MDA-TEST

cohorts.

(B) The first column shows the unsupervised hierarchical clustering heatmap of hallmark pathways normalized enrichment score for correlation of each pathway

with MTV feature from ground-truth and synthetic PET across MDA-TRAIN, TCIA-STANFORD, and MDA-TEST cohorts, where the asterisks represent the

significant false discovery rate q value >0.25.
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(NSCLC),15 we further evaluated associations between the

true and synthetic MTV1.5 with a glycolytic score representing

overall expression of glycolysis-related genes in each cohort.

Combining the three cohorts and dichotomizing tumors into

glycolysis-high and glycolysis-low groups, we found that

the former group has significantly greater MTV1.5 values ex-

tracted from either ground-truth or synthetic PET images (Wil-

coxon rank-sum test p value 0.03 and 0.05, respectively)

(Figure S5B).

Synthetic PET complements CT for early lung cancer
diagnosis
Next, we applied the cGAN model and generated the corre-

sponding PET from the CT scans in the LIDC-IDRI cohort (n =

1,048 for training and n = 350 for testing) to assess whether
6 Cell Reports Medicine 5, 101463, March 19, 2024
the synthetic PET could provide additional information to classify

the benign vs.malignant nodules. A cutoff valuewas set at 1.5 for

MTV, which is highly correlated with MTV2.5 and TLG features

(Figure 3A). We also chose SUVmax, which was less correlated

withMTV and TLG-based features (Figure 3A). We first evaluated

the accuracy of individual CT features (tumorsize and tumormax-d)

or PET features (SUV or MTV), where CT features have demon-

strated higher accuracy (training in Figure S7, testing in Fig-

ure 5A). Next, we integrated PET and CT features to assess

whether PET provides additional value on top of CT and im-

proves the accuracy of lung cancer diagnosis. For the three ma-

chine-learning models, we observed consistent augmentation

when adding PET features (Figures 5A and S7). For instance,

using the XGBoost classifier, the top-ranked models were ob-

tained by adding SUVmax and MTV to tumormax-d and tumorsize,



Figure 5. Validation of clinical value by diag-

nosingmalignant vs. benign from indetermi-

nate pulmonary nodules

(A) Model accuracy in the test cohort (n = 350)

obtained from synthetic PET univariate features

(MTV, SUVmax), CT univariate features (tumorsize,

tumormax-d), and CT and PET bivariate features

(tumorsize &MTV, tumorsize & SUVmax, tumormax-d &

MTV, tumormax-d & SUVmax) in the LIDC-IDRI

cohort.

(B) The first column corresponds to the confusion

matrix of the best performance obtained using

either of single CT features tumorsize or tumormax-d.

The second column corresponds to the confusion

matrix of the best performance when adding one

synthetic PET feature, SUVmax or MTV.

(C) Threshold-based confusion matrix for synthetic

SUVmax and the nodulemalignancy at four different

thresholds (a = 1:5;2:5) in the LIDC-IDRI cohort.
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respectively, resulting in training accuracies of 98.1% and

90.8%, and testing accuracies of 84.1% and 83.5%, respec-

tively. These results outperformed the best CT-based prediction,

which had a training accuracy of 89.8%and a testing accuracy of

82.3%, when using tumorsize (training accuracy = 89.8%, testing

accuracy = 82.3%). Similar patterns were observed for random

forest and support vector machine (SVM) models, where PET

improved the training accuracy by 3%–7% and testing accuracy

by 2%–5%, respectively.

Further, we presented the lesion level classification perfor-

mance by head-to-head comparison of the optimal CT model

with the optimal PET-CT model (Figure 5B). In general, during

testing the synthetic PET improved the F1 score in lesion detec-

tion by 3%, 5%, and 12% in XGBoost, SVM, and random forest,

respectively. Also, we observed a 5% and 13% sensitivity in-

crease in SVM and random forest, respectively.

We next explored the relationship of nodule likelihood ofmalig-

nancy with the synthetic SUVmax (Figure 5C). With the increase of
Cell Rep
threshold a, an increase in the specificity

and decrease in the sensitivity were obs-

erved as expected. Of note, when we

used the cutoff of 1.5, the specificity

reached 99% with sensitivity at 27%.

Synthetic PET improves the
performance of state-of-the-art CT
deep-learning model for predicting
lung cancer risks
We next sought to test whether synthetic

PET scans will add additional value to the

CT deep-learning model that has demon-

strated high accuracy in predicting lung

cancer risks using low-dose CT scan im-

ages for lung cancer screening.16 We

applied the cGAN model to predict the

risk of developing lung cancer in the

MDA-SCREENING set (n = 122). We

divided this dataset into two subsets.
The first subset includes CT scans from patients who developed

lung cancer within 1 year vs. patients who were diagnosed with

lung cancer after >3 years, consisting of 355 CT scans. The sec-

ond subset consists of CT scans from patients who were diag-

nosedwith cancer within 1 year vs. patients whowere diagnosed

with lung cancer after >5 years, totaling 259CT scans (Figure 6A).

We randomly divided the patients into discovery (n = 90) and

testing (n = 32). We then obtained the synthetic PETs.

We observed that the SUVmax measured on synthetic PET

were significantly different between the low-risk vs. high-risk

groups (Figure 6B). Next, we employed a DenseNET-based au-

toencoder to extract its latent features from synthetic PETs. In

addition, we obtained the CT deep-learning-based risk predic-

tion based on a pre-trained model (i.e., SYBIL16) risk. By

combining the PET features with SYBIL risk, we trained a joint

CT and PET model for risk prediction. We observed higher

area-under-the-curve (AUC) values when adding the synthetic

PET features. Specifically, for predicting cancer development
orts Medicine 5, 101463, March 19, 2024 7



Figure 6. Validation of clinical value of syn-

thetic PET by predicting the risk of devel-

oping lung cancer

(A) Distribution of CT scans in training, validation,

and test sets in both group 1 and group 2.

(B) Two box plots were used to compare the syn-

thetic SUVmax values in group 1 (lung cancer

diagnosed within 1 year vs. lung cancer diagnosed

at >3 years) and group 2 (lung cancer diagnosed

within 1 year vs. lung cancer diagnosed at >5

years).

(C) Receiver-operating characteristic curves for CT

and CT plus synthetic PET analysis along with

their respective AUC values for both group 1 and

group 2.
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within 1 year vs. >3 years, the AUC increased from 0.67 to 0.70;

and for the 1-year vs. >5-year group, the AUC increased from

0.73 to 0.77 (Figure 6C).

Radiologist staging on synthetic PET scans achieves
accuracy similar to that of staging on true PET with
pathological staging as gold standard
To further assess the potential clinical utility of synthetic PET,

two thoracic radiologists directly staged the lung cancer on syn-

thetic PET to compare head-to-head with ground-truth PET

based on 30 lung cancer cases randomly selected from the

testing group (for details see STAR Methods and Table S1B).

The final pathological staging was used as the gold standard.

The radiologists reading CT paired with ground-truth PET

achieved an overall accuracy of 70% compared to the patho-

logical stage, with 13.3% downstaged and 16.7% upstaged

(Figure 2F). When reading CT paired with synthetic PET, their

accuracy was 66.7%, with 16.7% downstaged and 16.7% up-

staged (Figure 2G). Interestingly, compared to ground-truth

PET, radiologists’ reading from synthetic PET is better aligned

with pathological stage I and II patients, which dropped for stage

III patients. Furthermore, two radiologists exhibited an 87%

consensus in staging (Figure 2H) when one read ground-truth

PET and another read synthetic PET.
8 Cell Reports Medicine 5, 101463, March 19, 2024
Synthetic PET predicts prognosis
after standard of care
Given the correlation of imaging featu-

res obtained from synthetic PET and

ground-truth PET (Figure 3) and prior clin-

ical evidence,14,17,18 we next assessed

the prognostic performance of MTV1.5

and MTV2.5 to stratify patients’ overall

survival (OS) using Kaplan-Meier analysis

(Figure 7). We observed that the synthetic

MTV1.5 and MTV2.5 can stratify patients’

OS in both MDA and non-MDA cohorts:

for MTV1.5, MDA cohort hazard ratio

(HR) = 1.78, 95% confidence interval (CI)

1.11–2.84 ðp = 0:00051) and non-MDA

cohort HR = 1.51, 95% CI 1.26–1.81

ðp < 1e � 4); for MTV2.5, MDA cohort

HR = 1.42, 95% CI 1.07–2.04 ðp =
0:015) and non-MDA cohort HR = 1.37, 95% CI 1.18–1.60

ðp < 1e � 4).

Furthermore, we compared the prognostic value of individual

features in a head-to-head fashion between synthetic PET and

ground-truth PET when it was available (Figure S8A). We

observed that the prediction capacity of synthetic MTV declined

as the SUV cutoff threshold was raised from 1:5 to 2:5, possibly

due to decreasing correlation of the MTV feature extracted from

synthetic and true PET for higher SUV cutoff thresholds (Fig-

ure 3). While it was expected that the synthetic PET would

achieve an inferior performance as measured by concordance

index compared to ground-truth PET, it did achieve statistically

meaningful prediction in the majority of cases. For SUVmax, we

observed a relatively lower prognosis compared to MTV and

TLG, especially the cases with low fidelity of ground truth

(Figures S8B and S8C). More interestingly, the synthetic PET

offeredmeaningful prediction for stratifying a patient’s prognosis

for the NSCLC-RT cohort when true PET data were not available.

DISCUSSION

In this study, we developed and validated a conditional GAN-

based pipeline to synthesize PET of high fidelity from diagnostic

CT scans from multi-center multi-modal lung cancer datasets



Figure 7. Validation of clinical value of synthetic PET by predicting overall survival

Kaplan-Meier curves of patients’ overall survival (OS) stratified by MTV1.5 and MTV2.5 features obtained from the synthetic PET images on MDA cohorts (MDA-

TRAIN and MDA-TEST) and non-MDA cohorts (TCIA-STANFORD and NSCLC-RT).
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(n = 1,478). Our proposed computational framework demon-

strates robust performance during external validation assessed

by thoracic radiologists, measuring image quality and a Turing

test, whereby the synthetic PET scans were found to be of equiv-

alent quality and tumor avidity when compared side by side to

the ground-truth FDG-PET scans. The synthetic PET images

were also consistent with true PET in radiogenomics validation

by demonstrating significant correlation of imaging features

with dysregulated biological processes. More importantly, the

synthetic PET demonstrated additional diagnostic value in dis-

tinguishing malignant from benign lung nodules compared to

CT nodule size and maximum diameter measurements, in accu-

rately staging patients compared to pathological staging, in pre-

dicting risk of developing lung cancer during follow-up, and in

predicting survival of lung cancer patients. Taken together, our

proof-of-concept study proves the feasibility of applying deep

learning to obtain high-fidelity functional imaging translated

from the anatomical imaging. With further tuning and validation,

this pipeline may potentially add value in cancer screening, stag-

ing, diagnosis, and prognosis.

It is worth clarifying that synthesizing PET is not intended to

replace PET scanning but rather to offer complementary value

to CT data, which aremore popular, especially when PET images

are difficult to acquire. A few pilot studies have been carried out

to show the feasibility of CT-to-PET conversion in some clinical

applications, such as reducing the false-positive rate in detect-

ing malignant liver lesions19 and improving the differentiation be-
tween malignant lymph nodes from thyroid tissue in head and

neck cancer.20 However, such attempts at clinical translation

have been missing in lung cancer, the leading cause of cancer

death, where PET-CT is part of the standard of care across

different clinical settings. To the best of our knowledge, this is

the largest reported CT-to-PET mapping study based on multi-

center multi-modality datasets of clinical, radiological, and mo-

lecular information. The details of our algorithm development

and evaluation according to the newly published guidelines to

develop and evaluate artificial intelligence (AI) specifically in nu-

clear medicine21,22 are detailed in Tables S2 and S3. Our study

has made important contributions in the following ways.

At the technical level, we leveraged the 2.5D convolutional

neural network that combines neighboring slice information to

augment performance and to balance computational cost.

Moreover, in contrast to generation of a fake image, which uti-

lizes a fixed-length random vector to generate a photorealistic

sample, we used ResUNet++ as backbone for the generator

without adding a random vector to learn the definitive CT-to-

PET mapping that increases the reproducibility. Collectively,

this has also led to our cGAN model outperforming the diffusion

model UNSB (unpaired neural Schrödinger bridge),23 which

holds a distinct advantage over classical diffusion models by by-

passing the limitation imposed by the Gaussian prior assumption

(Figure S9).

Beyond the classical imaging signal validation, we have pio-

neered a systemic validation incorporating different fronts,
Cell Reports Medicine 5, 101463, March 19, 2024 9
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including image quality and Turing test evaluated by thoracic ra-

diologists and biological validation by radiogenomics design.

Contrasting with prior studies, which utilized radiologists to qual-

itatively assess the image in limited small tumor regions,24 we

asked them to quantitatively evaluate the quality and contrast

of synthetic PET in the whole field. In addition, we directly fed

these synthetic PET scans for cancer staging to radiologists—

a common clinical task performed on PET. With pathological

staging as ground truth, it is encouraging to see that staging

on synthetic PET has achieved an equivalent accuracy with

ground-truth PET scans when pairing with CT scans.

Furthermore, we validated synthetic PET at the biological level

in three independent cohorts to prove radiogenomics fidelity of

cancer-related hallmark pathways between true and synthetic

PET. Both true and synthetic PET avid tumors demonstrated up-

regulated pathways involving EMT, hypoxia, and angiogenesis,

corroborating the previous observations of high 18F-labeled

FDG activities in cancer cells undergoing EMT, particularly in

hypoxic regions.25 In addition, we observed that aggressive tu-

mors with higher MTV, as stratified by true or synthetic PET,

were consistently associated with elevated glycolytic activity

and downregulated metabolism of fatty acid, bile acid, and

heme. This is consistent with a recent study on The Cancer

Genome Atlas lung adenocarcinomas showing that high glyco-

lytic and low lipid metabolism exhibited high metastatic potency

and poor survival.26

A robust CT-to-PET translation framework would bring

several potential impacts on oncology practice. Our data sug-

gested that synthetic PET can confer additional value on top

of CT scans to distinguish benign from malignant lung nodules,

a clinically unmet need for lung cancer screening and early

diagnosis. In addition, it can augment the CT deep-learning

model to accurately identify patients at high risk of developing

lung cancer.27 We also demonstrated a similar prognostic ca-

pacity of synthetic PET scans compared to true PET. With suf-

ficient training data for individual tasks to further improve the

model, this technology can be of great potential from a patient

safety perspective and financial standpoint. Because of con-

cerns regarding higher radiation doses compared to routine

CT scans and radiotracer exposure, PET is used with caution

for certain patient populations, including young children and

pregnant women. Recently, a strong association between cu-

mulative radiation dose from CT scans and the risk of hemato-

logical malignancies was reported for young people.6 Our

models can be potentially applied to routine CT scans to

extract additional clinically relevant data from these patients

and reduce their exposure to radiation. Also, it may reduce

the frequency of repetitive PET scans, and the substantially

lower cost from routine CT scans may relieve the increasing

healthcare cost in western countries. More importantly, the

optimized model could be swiftly deployed in low-income

countries to fill the gap and improve cancer staging and man-

agement. The encouraging results from our study, along with

other structure-to-function transfer studies such as hyperpolar-

ized gas MRI ventilation scans derived from CT28 and SPECT

perfusion scans based on CT,11 underscore the need for future

research investigations. These studies hold the potential to

facilitate the development of an all-in-one multi-modality scan-
10 Cell Reports Medicine 5, 101463, March 19, 2024
ner designed to optimize the diagnosis and prognosis predic-

tion of lung cancer. Finally, as PET scans are also widely

used in managing other medical conditions such as cardiac

and neurological diseases, our proposed tool and pipeline

may have a broader impact beyond cancer care.

It is worth clarifying that cross-modality medical imaging syn-

thesis is conceptually different from the fake image generation in

computer vision,29 although they share some common technical

foundations such as using a GAN algorithm. Fake image gener-

ation (e.g., deepfake30) aims to produce photorealistic images to

fool people and can be viewed as an interpolation problem to

produce non-existing samples. By contrast, cross-modality im-

aging synthesis, such as the CT-to-PET translation presented

here, can be mathematically formulated as a regression prob-

lem,which aims to learn a latent transmodalitymapping function.

This is where deep learning outperforms conventional algo-

rithms, as it efficiently learns any complex non-linear function ac-

cording to the universal approximation theorem.31 Our study

adds important evidence to support the growing utility of deep

learning for cross-modal/platform synthesis in radiographic

scans,8,11,32 digital pathology for microscopy-based drug dis-

covery,33 and immunohistochemical image quantification.34

When a certain data type is missing or difficult to access, syn-

thetic data will potentially help to fill the coverage gaps in order

to build trustworthy AI models.35

Limitations of the study
Our study has several important limitations. First, although we

included large multi-center multi-modal datasets, the results

need to be interpreted as proof-of-concept and hypothesis-

generating research. The primary aim of this pilot study is to

establish the feasibility of generating synthetic PET images

from CT scans as well as to assess the clinical and biological

values of synthetic PET images through radiologist evalua-

tions, radiogenomics correlations, radiomics analyses, and

deep-learning experiments. It is important to highlight that

while our proof-of-concept study holds promise, it is not in-

tended to supplant conventional PET imaging or alter current

clinical practices. Instead, it serves as a critical stepping

stone, warranting further investigation using a prospective

design with fine-grained lung cancer subtypes to bring this

to clinical translation. Second, PET imaging has limited value

in lesions with predominant ground-glass opacity36 and nodal

immune flare after immunotherapy.37 Unfortunately, a syn-

thetic PET approach would be expected to inherit these

intrinsic limitations. Here, we have leveraged limited imaging

metrics from synthetic PET scans that have been extensively

examined in prior studies, including MTV, SUV, and TLG, to

prove the added value. Future efforts are needed to develop

next-generation imaging biomarkers beyond conventional

metrics to overcome these challenges through radiomics,38–41

habitat imaging,42,43 and deep learning.27,44 Moreover, with

the rapid evolution of generative AI, more sophisticated pipe-

lines45 can be leveraged to improve the quality of synthetic

scans. In the end, it remains challenging to integrate complex

AI models into clinical workflows, which is beyond the scope

of the current study, and future efforts are critical to over-

coming these hurdles.46
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In conclusion, we have developed and validated a cGAN-

based CT-to-PET translation framework based on multi-center

PET and CT scans. The synthetic images were extensively vali-

dated by clinical thoracic radiologists and biological correlation

using a novel radiogenomics analysis. More importantly, the syn-

thetic PET scans demonstrated promising diagnostic values in

cancer staging, improving early detection of lung cancer, strati-

fying lung cancer development in a high-risk population, and

cancer prognostication. All things considered, future studies in

a prospective setting are warranted to validate and translate

these intriguing findings to clinical oncology practice.
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Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Jia Wu (JWu11@

mdanderson.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d In our study, the internal datasets fromMDAnderson, which contain sensitive patient information, are not publicly available due

to privacy and institutional policy. However, the publicly available datasets used in our research can be accessed online, with

detailed instructions and links provided in the ‘‘patient cohort’’ section of this paper.

d Source code for the deep learning model is available at: https://github.com/WuLabMDA/Synthetic-PET-from-CT/

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient cohorts
This study was approved by the Institutional Review Board (IRB) of The University of Texas MD Anderson Cancer Center. We

collected 5 multi-center multi-modal datasets from a total of 1478 lung cancer patients. The details of individual datasets and their

roles are summarized in Figure 1E and elaborated in the following.

d MDA-TRAIN cohort (n = 132): contains lung cancer patients who underwent surgical resection at MD Anderson (see details

elsewhere50). We collected the diagnostic CT, PET/CT, gene expression, and clinicopathological and follow-up data. This

cohort was used to train the deep learning model and used for biological and clinical validation. Clinical characteristics of

this cohort is presented in Table S1A.

d MDA-TEST cohort (n = 75) & TCIA-STANFORD cohort (n = 125): MDA-TEST contains lung cancer patients who underwent

surgical resection at MD Anderson (see details elsewhere51,52), and TCIA-STANFORD cohort contains lung cancer patie-

nts treated at Stanford,47 which is publicly shared as NSCLC-Radiogenomics through the TCIA website: https://wiki.

cancerimagingarchive.net/display/Public/NSCLC+Radiogenomics. The diagnostic CT, PET/CT, gene expression, and clinico-

pathological and follow-up data were complied. These cohorts were used to validate the deep learning model, and used for

imaging, biological, and clinical validation. Clinical characteristics of these two cohorts are presented in Table S1A.

d LIDC-IDRI cohort (n = 665): LIDC-IDRI contains lung cancer CT screening scans from Lung Image Database Consortium with a

total of 1398 nodules with detailed radiologists’ annotation and diagnosis48 (see details at https://wiki.cancerimagingarchive.

net/pages/viewpage.action?pageId=1966254). This dataset contains the lesion annotations and their segmentations for

nodule classification, including the nodule information such as CT slice number, malignancy rating, texture information, and
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the coordinate of the center of the nodules. Four experienced thoracic radiologists independently assigned themalignancy rat-

ing from ‘10 to ‘50 for all the nodules, where a higher value indicates a higher likelihood of malignancy. To minimize ambiguity,

only nodules with malignancy rating of ‘10;0 20 or ‘40;0 50 were selected, while the undifferentiated nodules with malignancy rating

of ‘30 were discarded. This resulted in a total of 1398 nodules for further analyses. We have downloaded the screening CT

scans, and diagnosis readings. This cohort was used to validate the deep learning model in lung cancer diagnosis.

d NSCLC-RT cohort (n = 359): contains lung cancer patients who received radiation treatment.49 This dataset is publicly shared

as NSCLC-Radiomics through the TCIA website (https://www.cancerimagingarchive.net/collection/nsclc-radiomics/). CT

scans, and clinical and follow up data were obtained. This cohort was used to validate the prognostic value of the deep learning

model.

d MDA-SCREENING (n = 122): comprises longitudinal CT scans obtained from 122 patients who underwent lung cancer

screening at MD Anderson, totaling 355 CT scans. This cohort was used to test the predictive value of developing lung cancer

based on the deep learning model.

METHOD DETAILS

Study design
Based on the high-quality multimodal data (including FDG-PET and CT, clinicopathological, genomic, and survival information) from

different centers, we developed a CT-to-PET deep learning model and evaluated its fidelity as well as value in the clinical context

(Figure 1). We first developed a conditional generative adversarial network (cGAN) based model that can generate FDG-PET from

CT scans trained from paired CT and PET scans in the MDA-TRAIN cohort. Then, we externally validated the performance of the

CT-to-PET model on MDA-TEST and TCIA-STANFORD cohorts by comparing the synthetic PET with acquired PET scans as

the ground-truth through the lens of radiologists and quantitative metrics. Next, we biologically validated the model by assessing

the degree of consistency of radiogenomics correlates53 with the true PET and synthetic PET scans, leveraging the paired gene

expression data in MDA-TRAIN, MDA-TEST and TCIA-STANFORD. Finally, we tested the added clinical value of models for both

lung cancer diagnosis in LIDC-IDRI and prognosis in NSCLC-RT.

Imaging data preprocessing
We collected the 18F-FDG PET/CT scans and separate diagnostic CTs. The PET images were reconstructed with an ordered-

subset expectation maximization (OSEM) algorithm, using the co-acquired CT data for attenuation correction. We computed

standardized uptake value (SUV) maps for the FDG-PET images. The PET SUV map was registered to the diagnostic CT scans

using elastix toolbox.54 The registration results were visually checked and manually corrected to mitigate the uncertainties due to

respiratory motion and positioning differences when necessary. For MDA-TRAIN and MDA-TEST, radiologist collaborators manu-

ally contoured the primary tumor on diagnostic CT scans. For TCIA-STANFORD, LIDC-IDRI, and NSCLC-RT, the tumor contours

were provided along with the original imaging data. In addition, we extracted the lung masks based on pre-trained U-net55 to

help identify the slices covering lung regions from the original CT images. The CT scans were displayed using lung window/level

settings.

Conditional generative adversarial network (cGAN) pixel by pixel maps CT to FDG-PET
A cGANmodel was adopted to learn a non-linear mapping function from input CT images in order to output PET images, where it was

extended on top of the original pix2pix translation algorithm.56 The objective function in our cGAN is defined as:

G� = lECT;PETkGðCTÞ � PETk1 + arg min
G

max
D

LcGANðG;DÞ (Equation 1)

where G and D are the generator and discriminator, respectively, G� is the optimized generator, k:k1 denotes the L1-norm. The first

term in Equation 1 is the L1-norm of the pixel-wise difference between the learned PET and ground-truth PET and its goal is to make

them closer. l is a regularization parameter that balances between the two terms; CT is the input CT slide(s) and PET is the ground-

truth PET slice. The second term can be extended as follows:

arg min
G

max
D

LcGANðG;DÞ = arg min
G

max
D

½ECT ;PET ½log DðCT ;PETÞ� + ECT ½logð1 � DðCT ;GðCTÞÞÞ�� (Equation 2)

Essentially, Equation 2 calculates the binary cross entropy (BCE) loss where the discriminator gives higher loss value if it cannot

classify the generator’s output as fake and the ground-truth PET output as real. In contrast, the generator learns to generate an output

to fool the discriminator with a lower loss value if the discriminator cannot catch its output as fake.

Similar to the pix2pix translation algorithm,56 we did not train our cGAN using a random noise vector z as input for the generatorG.

Themain reason is that we aim to produce deterministic PET images as the output of generator. Instead, the ResUNet++ architecture

was utilized for the generator, which has outperformed U-Net and ResUNet in several image-to-image applications.57 For the

discriminator, we employed the original structure used in the image-to-image translation algorithm,56 with a total of five convolution

layers with a kernel size of four.
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cGAN model configuration
The MDA-TRAIN cohort was utilized for training and internal validation of the deep learning model using a 5-fold cross-validation

approach. A total of 120 patients were employed for training, and the remaining 12 patients were used for validation and fine-tuning

of the generated PET image quality. Registered diagnostic CT and FDG-PET slices from the lung region were used to train themodel.

Specifically, the cGANmodel was configured with a 2.5-dimentional (2.5D) scheme, which took seven consecutive axial slices of CT

(5123 5123 7) as input to predict the central PET slice (5123 512) (Figure 1A). Of note, we focused on the lung regions in the current

study tomitigate the computational cost. In total, the training dataset was comprised of 15;291 unique sets of data arrays of sevenCT

slices and one PET slice.

One challenging aspect of CT to PET translation is related to accurately predicting the dynamic ranges of SUV. As we observed in

the training cohort, the SUVmax of primary tumors fluctuated in the range of ½1:4;56:6� with a median of 11:5. The distribution of SUV

scores demonstrated a long tail, with fewer and fewer voxels associated with higher SUV values. Two strategies were used to miti-

gate the long tail effect. First, we introduced amaximumcutoff (SUV= 7) to clip and normalize the SUVmap. Since SUV 2.5 is clinically

accepted to distinguish betweenmalignant and benign tumors and also predict patient’s survival,17 the selected cutoff balanced be-

tween computational challenges and clinical value. Second, we applied gamma compressionwith g = 0:5 on the SUV intensitymaps.

Thus, the distribution range for lower SUV values becomes wider to increase its resolution, with a narrower range for the less frequent

higher SUV values.

cGAN model training
Weapplied the common strategy to train the cGANmodel, alternating between one step of optimizingD and one step of optimizingG.

The Adam optimizer with b1 = 0:5 and b2 = 0:999 was used in optimizing both D and G. The initial learning rate was set to 0:0002

for 200 epochs and batch size of 5. For data augmentation, we used on-the-fly augmentation: affine transformation with rotation

(�p/4, +p/4), translation ð0:1;0:1Þ, scaling ð0:85;1:15Þ, shearing (�8, +8).

Imaging signal level validation by thoracic radiologists
We systematically evaluated the fidelity of synthetic PET scans on testing cohorts. First, visual comparison was employed

for validation, where we carried out a 2-step imaging Turing test. Two experienced thoracic radiologists qualitatively

assessed the scans independently. In task 1, they were blinded to the information that any PET images were synthetic and asked

to assess PET scans paired with corresponding CT (randomly sampled from 60 patients’ from the MDA-TEST and TCIA-

STANFORD cohorts) for: 1) subjective quality score (5-point system, with 1 as poor, 3 as adequate, 5 as great); 2) uptake of dominant

lung lesions relative to mediastinal blood pool (5-point system, with 1 as low, 3 as equal, 5 as high). In task 2, the radiologists were

informed of the presence of synthetic PET images and asked to identify whether the PET images (randomly sampled from 30 patients’

from the MDA-TEST and MDA-TRAIN cohorts) were real or synthesized. The questionnaires of tasks 1 and 2 are available online at

(https://drive.google.com/drive/folders/13qlGhYc5jl9DrlINPmzAxxRiW8RYBFmW?usp=sharing).

Second, we quantitatively compared the synthetic PET images with the ground-truth PET scans. In particular, we computed the

structural similarity index measure (SSIM)58 and the root-mean-square error (RMSE) for both the training cohort (MDA-TRAIN) and

two external validation cohorts (MDA-TEST and TCIA-STANFORD), by randomly sampling 195 PET slices from a subset of 13 patients

for eachcohort. TheSSIM indexprovides a fractional valuebetween0 and1where a higher value indicatesmoresimilarity between two

images. This index is calculatedbyweightedmultiplications of three global component: luminance, contrast, andstructure.While SSIM

captures global components, RMSE is calculatedbased onpixel-to-pixel difference,whichmakes it very sensitive tomisalignment be-

tween the two images. Of note, the ground-truth PET scans cannot be perfectly registered to the diagnostic CT images, which were

taken on a different date, due to inevitable respiratory motion and positioning differences. Therefore, the RMSE is not expected to

bezeroeven for theground-truthPET.Nevertheless,RMSEcanbeused for comparing themodel’sperformanceof training and testing.

Third, we evaluated the consistency of conventional imagingmetrics extracted from ground-truth PET and synthetic PET, including

SUVmax, SUVmean, metabolic tumor volume (MTV), and total lesion glycolysis (TLG). Beyond directly assessing the clinical value of

synthetic PET in clinical workflow by the radiology team, we extend the evaluation of how it would assist cancer diagnosis and prog-

nosis in the context of radiomics analysis. Specifically, we focus on the putative PET metrics, including metabolic tumor volume

(MTV), total lesion glycolysis (TLG), in conjunction with SUVmax to provide a comprehensive characterization of tumors, which

have been extensively validated in prior studies.2,59 The Pearson’s correlation was used for evaluating the pairwise similarity.

Also, Bland–Altman plots used in analyzing the agreement between two different types of PET features. In particular, we assessed

the consistency of the SUVmax in the synthetic PET slices. To do so, we introduced a threshold-based confusionmatrix (CM) to further

examine the change of SUVmax. The elements of thematrix represent the number of cases in which the SUVmax exceeds or falls below

a given threshold in the generated and ground-truth PET slices. We calculated this matrix with different SUV thresholds (a = 1:5;2:5)

in MDA-TRAIN, MDA-TEST and TCIA-STANFORD cohorts.

Biological validation using gene expression profiles
We used the gene set enrichment analysis (GSEA, version 4.2.3, default parameters)60 of RNA sequencing data of the MDA-TRAIN

and TCIA-STANFORD cohorts andmicroarray data of theMDA-TEST cohort to identify biologic processes and pathways associated

with imaging features extracted from true and synthetic PET scans.
e3 Cell Reports Medicine 5, 101463, March 19, 2024
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Hallmark gene sets from the Molecular Signatures Database (MSigDB) were tested for associations with ground-truth and syn-

thetic PET features frommetabolic tumor volume and total lesion glycolysis in the 3 cohorts. Only known genes, found in all samples

in the cohorts, were used for the analysis. The Pearson correlation of log-transformed PET feature values with the gene expression

profile across samples was used for ranking genes in each cohort. Gene sets significantly correlated with ground-truth or synthetic

PET features were then compared using the normalized enrichment score (NES) and the false discovery rate (FDR) q-value. To

discover biological processes that were consistently positively or negatively correlated with PET features across three cohorts,

we performed unsupervised hierarchical clustering of all identified NES followed by meta-analysis. Namely, the Fisher’s method im-

plemented in R library ‘‘metap’’ was used to combine the q-value separately for ground-truth PET and synthetic PET. Biological pro-

cesses with combined q-values less than 0.25 were considered as significantly associated with PET features.

Associations of true and synthetic PET imaging features with the tumor glycolytic activity were evaluated using a glycolytic score15

representing overall expression of glycolysis related genes in the tumor and is calculated as the geometric mean of two genes GPI

and GAM4 (log2-transformed). The scores were initially computed separately for each cohort then normalized using the standard

score andmerged. For tumors having high or low glycolytic activity, the joined set of the glycolytic scores was dichotomized accord-

ing to the median. Then the Mann-Whitney test was used to determine significance of the difference in values of ground-truth and

synthetic PET features, between groups with low versus high glycolytic activity.

Clinical validation: Cancer diagnosis of indeterminant pulmonary nodules
We evaluated the clinical value of the synthetic PET for improving cancer diagnosis in lung cancer screening in LIDC-IDRI cohort.

Based on the extracted imaging features from synthetic PET scans, we built different machine learning models (including XGBoost,

random forest, and SVM) to classify malignant versus benign nodules, where we randomly split the 1398 indeterminate pulmonary

nodules (IPNs) into training (n = 1048) and testing (n = 350) sets. To address the added value of synthetic PET on top of CT, we used

parsimonious models with limited features to mitigate model overfitting risk. In addition, we also tested the impact of dynamic cutoff

values of SUVmax on the prediction accuracy of benign or malignant.

Clinical validation: High-risk patient identification for developing lung cancer
Next, we also applied the deep learning approach to synthetic PET for predicting individual patients’ risk of developing lung cancer.

This analysis was carried out on MDA-SCREENING set. DenseNET-based autoencoder was applied to extract PET latent features.

Also, we a pre-trained CT deep learningmodel (i.e., SYBIL16) to obtain the risk of developing lung cancer. For combining PET features

and CT-based SYBIL risk, random forest classifier was trained. In order to explore the association between SUVmax from synthetic

PET images and the risk of cancer development, we enlisted the assistance of our radiologists, who performed segmentation on the

lung lesions of each CT scan for SUVmax extraction.

Clinical validation: Cancer staging by radiologists on synthetic PET with pathology as gold standard
Two radiologists assess the synthetic PET capability for accurately staging the lung cancer patients when replacing the ground truth

PET. We randomly selected 30 patients, with 10 patients assigned to each stage of lung cancer (stages I, II, and III) from the testing

group (MDA-TEST cohort). For all 30 patients, we collected their pathological staging after surgery, which was used as the ground

truth label for evaluating the imaging staging. After obtaining their synthetic PET images, we conducted the experiment in a blind way

in which two in-house radiologists were blind of PET image types (synthetic or real). For each lung cancer cases, one radiologist pro-

vided the stage reading based on the CT paired with ground-truth PET, and another radiologist independently provided the stage

based on the CT paired with the synthetic PET. To mitigate the bias, each radiologist randomly read 50% cases with read PET

and 50% cases with synthetic PET (Table S1B).

Clinical validation: Lung cancer survival prediction after standard treatment
We performed survival analysis using the tumor features obtained from the synthetic PET images, and independently tested them on

MDA-TRAIN,MDA-TEST, TCIA-STANFORD, and NSCLC-RT cohorts to test whether the synthetic PET can provide clinically relevant

information comparable to ground-truth PET scan. In particular, we evaluated the individual feature’s prognostic value to compare

between synthetic PET and ground-truth PET.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
We reported the diagnostic model’s F1 score, sensitivity, specificity, and accuracy when classifying an indeterminate lung nodule

into benign versusmalignant. Receiver operating characteristic (ROC) curve and area under the curve (AUC) analysis were employed

as evaluation metrics to assess the performance and effectiveness in predicting the lung cancer development. For prognostic eval-

uation, Harrell’s C statistics (C-index) was used to measure the goodness of fit between a PET feature and overall survival (OS) time.

The Kaplan-Meier (KM) curves of patients’ OS alongwith their hazard ratio (HR) and p valuewere used to show the performance of the

tumor features extracted from the individual PET features. The statistical tests were double-sided, with p values less than 0.05 or FDR

less than 0.25 assumed statistically significant. All statistical analyses were performed in R 3.6.1.
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