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Abstract 

 From extrachromosomal DNA to neo-peptides, the broad reprogramming of the cancer genome 

leads to the emergence of molecules that are specific to the cancer state. We recently described 

orphan non-coding RNAs (oncRNAs) as a class of cancer-specific small RNAs with the potential to play 

functional roles in breast cancer progression1. Here, we report a systematic and comprehensive search 

to identify, annotate, and characterize cancer-emergent oncRNAs across 32 tumor types. We also 

leverage large-scale in vivo genetic screens in xenografted mice to functionally identify driver oncRNAs 

in multiple tumor types. We have not only discovered a large repertoire of oncRNAs, but also found that 

their presence and absence represent a digital molecular barcode that faithfully captures the types and 

subtypes of cancer. Importantly, we discovered that this molecular barcode is partially accessible from 

the cell-free space as some oncRNAs are secreted by cancer cells. In a large retrospective study 

across 192 breast cancer patients, we showed that oncRNAs can be reliably detected in the blood and 

that changes in the cell-free oncRNA burden captures both short-term and long-term clinical outcomes 

upon completion of a neoadjuvant chemotherapy regimen. Together, our findings establish oncRNAs 

as an emergent class of cancer-specific non-coding RNAs with potential roles in tumor progression and 

clinical utility in liquid biopsies and disease monitoring. 

Introduction 

Cancer-emergent macromolecules, defined as molecules that are uniquely present in cancer cells, 

have become the focus of many studies in recent years. Structural variations that lead to the 
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expression of cancer-specific fusion proteins have long been known to play a major role in 

tumorigenesis2–4. Tumors have also been shown to generate neoantigens, cancer-specific peptides that 

are absent in normal tissue, through the disruption of various cellular mechanisms5,6. 

Extrachromosomal DNA (ecDNA) is another class of cancer-emergent molecules that can drive 

oncogenesis7,8. We previously reported the discovery of orphan non-coding RNAs (oncRNAs) in breast 

cancer, small non-coding RNAs that are expressed in cancer cells but are absent in non-transformed 

tissue1. We showed that one oncRNA, a small RNA derived from the TERC transcript, plays a 

functional role in breast cancer metastasis by disrupting a miRNA-mRNA regulatory network controlling 

the expression of prometastatic genes1. However, the extent to which oncRNAs may contribute 

functional roles in tumor progression across tumor types remains largely unexplored. In this study, we 

set out to systematically annotate oncRNAs across human cancers and discovered a large set of 

oncRNAs that are not only cancer-emergent but also cancer-specific and therefore provide a digital 

molecular barcode that can reliably discriminate different cancer types or even subtypes. Furthermore, 

we developed a large-scale in vivo genetic screening strategy to identify driver oncRNAs in multiple 

xenograft models of cancer. We discovered and subsequently validated several functional oncRNAs 

that impact tumor growth, indicating that they may have roles in disease progression.  

We had previously shown that a fraction of oncRNAs are actively secreted by breast cancer cells 

and can potentially serve as a cancer-specific signal to distinguish serum samples from breast cancer 

and healthy patients. However, whether this signal was sufficiently strong to inform clinical practice in 

minimally-invasive clinical applications was unknown. Here, we found that many of the newly annotated 

oncRNAs are also actively secreted across different cancers, implying that this oncRNA molecular 

barcode is partially blood-accessible and can provide an opportunity for a sensitive and versatile liquid 

biopsy strategy for multiple cancers. In a first-in-class application of oncRNAs to liquid biopsy in 

minimal residual disease (MRD) detection, we performed a large retrospective analysis of breast 

cancer patients in an neoadjuvant chemotherapy setting. We demonstrated that cell-free oncRNAs 

provide a tumor-naive strategy for MRD applications in breast cancer with minimal sample volume and 

limited depth of sequencing. Altogether, our study encapsulates the first comprehensive effort to 

annotate oncRNAs across human cancers and reveal their potential as digital biomarkers for cancer 

cell identity, functional macromolecules in cancer progression, and blood-accessible, prognostic 

biomarkers. This work sets the stage for future investigations into the roles of oncRNAs in cancer 

biology and their applications in precision oncology strategies. 

Results 

Systematic annotation of orphan non-coding RNAs across human cancers 

To systematically discover and annotate orphan non-coding RNAs, we started with raw small RNA 

sequencing data from the full The Cancer Genome Atlas (TCGA) dataset, which consists of roughly 
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10,400 tumor biopsies across 32 cancer types and 679 tumor-adjacent normal samples across 23 

tissue types9. We first generated read-clusters by merging overlapping reads across all samples. We 

defined oncRNAs as those read-clusters that are significantly detected among the samples of a given 

cancer but are largely absent from the normal samples across all tissues. Because TCGA lacks data 

from most blood cancers and non-cancerous biofluids, we first used smRNA sequencing data from non-

cancerous samples in the Extracellular RNA Atlas (exRNA Atlas) to filter our read-clusters (Fig S1A)10. 

We then removed read-clusters present in more than 10% of the TCGA tumor-adjacent normal samples 

for any of the tissue types. We systematically assessed the cancer-specific expression of the remaining 

smRNAs by using Fisher's exact test to compare cancer samples from each tissue type against tumor-

adjacent normal samples from all tissue types. Loci that were significant after multiple testing correction 

in at least one cancer type were annotated as oncRNAs.  

By applying this framework, we discovered roughly 260,000 high-confidence oncRNA loci that are 

specifically expressed in one or more cancers (Fig 1A and Fig S1B). For example, we annotated 

15,827 oncRNAs in breast cancer (TCGA-BRCA) and analyzed their presence and expression across 

both breast cancer and tumor-adjacent normal samples across all tissue types (Fig S1C–D). Overall, 

we annotated between 104 and 105 oncRNA species for each cancer type in TCGA (Fig S1E); some 

oncRNAs were unique to specific cancers while others were detected in more than one cancer (Fig 
1B). Despite the low prevalence of any single oncRNA across all cancer samples (Fig S1F), we 

observed that the binary patterns of presence and absence of multiple oncRNAs, which we have 

named oncRNA fingerprints, are readily distinguishable between cancer types. Comparing the median 

Jaccard similarity of oncRNA fingerprints between samples from the same cancer tissue type versus all 

other cancer tissue types, we found significantly higher similarity among samples from the same tissue-

of-origin (Fig S1G). Therefore, each cancer type can be represented as a barcode based on the pattern 

of expressed oncRNAs (Fig 1A, C and Fig S1H).  

To formalize this relationship, we took advantage of machine learning-based classifiers to assess 

the extent to which the oncRNA fingerprint from a given sample could be used to identify its tissue-of-

origin (TOO). For this task, we first split the samples from TCGA into train and test datasets (80:20 

ratio). Within the training set, we used recursive feature elimination in a 5-fold cross validation setup to 

reduce the feature space (from 260,968 to 1805 oncRNA features) and identify a robust set of 

oncRNAs to use as our fingerprint. We then trained an XGBoost classifier with 500 trees on this set of 

1805 oncRNAs to predict TOO on the whole training cohort. Applying the resulting model on the test 

data, we observed a strong performance with 90.9% accuracy. The performance metrics for each 

cancer are listed in Fig S1I, and the resulting confusion matrix reported in Fig 1D shows the fraction of 

samples of each cancer type that were correctly predicted. This confusion matrix is comparable to gene 

expression-based, genetic algorithm/k-nearest neighbors and convolutional neural network classifiers 

for TOO, including the higher number of mistakes in distinguishing rectal adenocarcinomas (READ) 
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from colon adenocarcinoma (COAD), which were also found in other studies to be biological similar and 

often grouped together11–13. Interestingly, we also found that our model’s errors were enriched with 

misclassifications between different squamous cancers (P = 1.24 × 10-13, Fisher’s Exact Test), including 

bladder urothelial carcinoma (BLCA), cervical squamous cell carcinoma (CESC), esophageal 

carcinoma (ESCA), head and neck squamous cell carcinoma (HNSC), and lung squamous cell 

carcinoma (LUSC), consistent with previously reported unsupervised clusterings of different squamous 

tumors by various molecular platforms14,15. To emphasize the digital nature of oncRNA barcodes 

capable of distinguishing different cancer types, we plotted the binary expression patterns of oncRNAs 

selected by the XGBoost classifier for TOO classification (Fig. S1J). These results suggest that 

oncRNA expression patterns are informative of the underlying cancer biology, and thus our model can 

capture the heterogeneity of human cancers.  

We also observed quantitative differences in the expression of oncRNAs beyond their binary 

presence-absence patterns, and thus asked whether including the relative oncRNA expression level 

could further improve our model’s TOO predictions (Fig S1K, L). To do this, we trained an XGBoost 

classifier using the counts per million (cpm)-based oncRNA expression profiles, using the same 80:20 

ratio to split our samples into training and testing datasets. We found that the model trained on cpm 

data performed equally well with negligible differences and picked up important oncRNA features with 

similar patterns of expression as the binary model (Fig S1M–Q). The similarity in model performance of 

“digital” models trained on binarized oncRNA expression and “analog” models trained on normalized 

oncRNA expression data suggests that oncRNAs provide a digital barcode of cancer cell identity that is 

robust to the challenges in precise quantification of small RNA species.  

Taken together, we have identified a large number of oncRNAs that are not only cancer-emergent 

but also reflective of cancer tissue-of-origin. We posited two likely routes for these orphan non-coding 

RNAs to emerge: (i) activation of cryptic promoters that lead to new transcriptional events and (ii) 

aberrant nucleolytic digestion of longer RNAs. We previously described T3p, a breast cancer-

associated oncRNA derived from the TERC transcript, as an example of the latter pathway1. Mapping 

all of our newly identified oncRNAs to their genomic locations suggests that 58.9% of oncRNAs may 

originate from existing longer RNAs. In contrast, the 41.1% of oncRNAs that map to intergenic regions 

are more likely produced by cancer-specific transcriptional activation (Fig S1R). To explore this 

hypothesis further, we used roughly 386 ATAC-seq samples from TCGA to compare chromatin 

accessibility between samples as a function of oncRNA expression across tumors16. Approximately 

10,000 intergenic oncRNA loci were captured at sufficient depth in the corresponding ATAC datasets. 

For a third of these loci, we observed a positive association between oncRNA expression in the small 

RNA data and chromatin accessibility in the ATAC-seq dataset, of which 1,989 oncRNA loci showed 

statistically significant associations at an FDR of 1% (Fig 1E). As expected, this association is entirely 

one-sided and we did not observe any oncRNAs in loci with closed chromatin. In Fig 1F and Fig S1S, 
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we show the chromatin accessibility scores and relative expression of the top significant and expressed 

oncRNA loci as examples. This strong association between chromatin accessibility and oncRNA 

expression further supports our annotations and hypothesis that oncRNA biogenesis may arise from 

novel transcription events. 
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Figure 1. Systematic annotation of oncRNA loci across human cancers using small RNA sequencing data 
from TCGA and exRNA atlas. (A) A binary heatmap representing the presence and absence of oncRNA species 
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across human cancers. Here we show a subset of 2,808 of the top significant oncRNAs. The subset was created 

by selecting 100 of the most significant oncRNAs for each cancer type as determined by the Fisher exact test and 

collapsing oncRNAs selected multiple times. Each column represents an annotated oncRNA, and each row 

represents one TCGA sample. Rows were grouped based on their tumor type (TCGA code) and columns were 

clustered based on their patterns. (B) Number of oncRNAs associated with the major human cancers, namely 
lung, breast, and gastrointestinal cancers, depicted as an UpSet plot. The vertical blue bars represent the 

oncRNA counts across one or more cancers with the exact numbers included at the top. (C) A 2D UMAP 

projection summarizing the oncRNA profiles across TCGA cancer samples. Samples are colored by tumor type. 

(D) The confusion matrix for tissue-of-origin classification based on oncRNA presence and absence in each 

sample. The matrix was row-normalized. (E) A volcano plot representing the relationship between chromatin 

accessibility and oncRNA detection. The x-axis represents, for each oncRNA, the log2 median difference in 

chromatin accessibility between samples in which the oncRNA was present versus absent. The y-axis shows the 
significance of the observed differences based on FDR corrected P values calculated using a one-sided Mann-

Whitney test. A total of 10,290 oncRNA loci were considered for this analysis based on the coverage of ATAC 

data. Of these, 3,255 showed a positive association between oncRNA presence and increased chromatin 

accessibility; of these, 1,989 were also statistically significant at an FDR of 1%. (F) Chromatin accessibility signal 

of four exemplary oncRNA loci from (E), grouped by the detection of the cognate oncRNA in the small RNA 

dataset of each sample. Values are shown as violin plots and boxplots. The boxplots show the distribution 

quartiles, and the whiskers show the quartiles ± IQR (interquartile range). Also reported are the number of 

samples in which the oncRNAs were detected as well as their associated corrected P values. 

oncRNA expression patterns are associated with cancer subtypes 

In the previous section, we made two important observations: (i) oncRNAs show strong tissue-

specific expression patterns and (ii) intergenic oncRNAs are associated with chromatin accessibility in 

cancer cells. Based on these findings, we hypothesized that oncRNA fingerprints may reflect the 

cellular state of cancer cells. To assess this possibility, we sought to identify oncRNAs whose presence 

or absence were informative of cancer subtypes. For this purpose, we used the Prediction Analysis of 

Microarray 50 (PAM50) breast cancer subtype classification (i.e., basal, HER2+, and luminal A and B) 

as well as the consensus molecular subtype (CMS) framework in colon cancer 13,17. Following the CMS 

classification system methodology, we combined the TCGA COAD and READ cohorts into a single 

colorectal cancer (CRC) cohort for all subsequent analyses 13. Of the 15,827 breast-cancer associated 

oncRNAs, 1,006 show significant subtype-specific patterns across the TCGA BRCA cohort (Fig 2A). 
For the TCGA CRC cohort, 1,198 of 57,632 CRC-associated oncRNAs demonstrate a significant 

association with CMS groups (Fig 2B). In Fig 2C and 2D, we also included the normalized expression 

of several oncRNAs significantly associated with tumor subtypes after multiple testing correction (Fig 
2A, B), highlighting the different quantitative patterns of expression across subtypes. Furthermore, we 

identified thousands of oncRNAs that were exclusively detected in samples of a given subtype for both 
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breast and colorectal cancers, albeit insignificant when tested for subtype association across all 

samples (Fig 2E, F).  
We then asked whether the cancer-associated oncRNAs could be leveraged to distinguish tumor 

subtypes using machine learning models. In a 5-fold cross-validation scheme, we used each training 

fold to train a multiclass XGBoost classifier. We then measured the performance of the model on the 

respective held-out fold. Breast cancer subtype classifications achieved AUCs between 0.83 and 0.99; 

similarly, colon cancer CMSs resulted in AUCs ranging between 0.73 and 0.94 (Fig 2E–F). More 

detailed metrics of model performance for breast and colorectal cancers are reported in Fig S2A and 

S2B, respectively. Interestingly, we observed that the breast cancer model made a higher number of 

mistakes when distinguishing subgroups of luminal breast cancers, luminal A and luminal B, which are 

known to be more closely related and harder to distinguish18 (Fig S2C). We did not observe any 

notable patterns of confusion for CMS classification (Fig 2SD). We also show the binary patterns of all 

the oncRNA features selected by the XGBoost classifier within each training fold across all samples 

and the relative expression of the oncRNAs with the top 10 average feature importance score (Fig 
S2E–H). Our results indicate that the XGBoost model is able to learn and leverage a subset of 

informative oncRNAs from oncRNA fingerprints to accurately classify cancer subtypes for both breast 

and colorectal cancers. Together, these results further establish the utility of oncRNAs in not only 

distinguishing cancer tissue-of-origin, but also capturing their underlying cancer subtype identity. 
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Fig. 2
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Figure 2. Annotation of subtype-associated oncRNAs across breast and colorectal cancer samples. (A–B) 
Binary heatmaps of oncRNAs associated with breast cancer subtypes (A) and colorectal cancer CMS labels (B). 

One-way ANOVA tests followed by FDR correction were used to identify oncRNAs with significant associations. 

(C–D) Exemplary subtype-associated oncRNA loci along with their expression patterns  for breast cancer 

subtypes (C) or colon cancer CMS labels (D). The expression values are natural log transformed and P values 
were calculated using a one-way ANOVA test. (E–F) The number of oncRNAs that were detected in one or more 

breast cancer subtypes (E) or colorectal cancer CMS labels (F) shown as UpSet plots. (G–H) ROC curves for 

XGBoost multiclass classifiers that predict the breast cancer subtype or colon cancer CMS label based on 

oncRNA presence/absence fingerprints averaged across held-out validation sets in a 5-fold cross validation 

setup. 946 and 514 samples were tested in breast and colorectal cancer respectively and the resulting mean and 

standard deviation of AUCs  were calculated for each subtype across the 5 folds.  

 

A systematic search for functional oncRNAs across multiple cancers 

Given the regulatory potential of novel oncRNAs through oncRNA-RNA or oncRNA-protein 

interactions, we had previously investigated the possibility that oncRNAs may be adopted by cancer 

cells to engineer cancer-specific regulatory pathways1. Specifically, we uncovered one such oncRNA, 

T3p, and showed that it promotes breast cancer metastasis by dysregulating endogenous RISC 

complex activity. However, the extent to which other oncRNA species may play a functional role in 

cancer remains unexplored. The sheer number of oncRNA species emphasizes the need for systematic 

approaches to screen for functional representatives, in particular to identify oncRNAs that may drive 

tumorigenesis. To tackle this question, we developed a large-scale pooled in vivo screening framework 

to rapidly identify functional oncRNAs through gain- and loss-of-function studies. Our approach, 

schematized in Fig 3A, involves generating two libraries of lentiviral constructs: 1) a gain-of-function 

library encoding oncRNAs under the control of a U6 promoter to increase their expression; 2) a loss-of-

function library of Tough Decoys (TuDs) to sequester oncRNAs, thereby inhibiting their endogenous 

functions19. To generate these libraries, we focused on four major cancers: breast, colon, lung, and 

prostate. We selected a human cell line with established xenograft models for each cancer: MDA-MB-

231 for breast, SW480 for colon, A549 for lung, and C4-2B for prostate. We then used small RNA 

sequencing data from these cell lines to select expressed oncRNAs that were associated with each cell 

line’s respective tumor type in TCGA. For each cell line experiment, roughly 100 of the top expressed 

oncRNAs were selected for inclusion in the gain-of-function and loss-of-function (oncTuD) libraries. We 

also included non-targeting scramble sequences as endogenous controls. We transduced each of the 

four cell lines with their corresponding libraries and compared the representation of oncRNA/oncTuD 

species among cancer cell populations grown in mammary fat pads (MDA-MB-231) or subcutaneously 

(SW480, C4-2B, A549) in vivo, or grown in vitro for a similar number of doublings (Fig S3A). For each 

oncRNA/oncTuD instance, we compared their normalized counts between in vivo grown tumors and in 
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vitro controls to identify those oncRNAs whose expression or TuD-mediated sequestration resulted in 

changes in the relative representation in the tumor context. We posited that changes in the baseline 

representation of cells harboring the cognate oncRNA or oncTuD lentiviral construct result from a 

selection pressure during tumorigenesis, which we can use as a criterion to identify functional 

oncRNAs. 

To identify oncogenic driver oncRNAs in our gain-of-function screens, we searched for those 

with increased expression in the tumors from the xenografted mice. We discovered several candidate 

functional oncRNAs in the breast and colon cancer screens; however, the lung and prostate cancer 

screens did not nominate any significant oncRNAs (Fig 3B, C and Fig S3B). Similarly, for the oncTuD 

screens, we selected oncRNAs whose antisense TuDs showed a reduced representation in the tumors. 

As shown in Fig S3C–D, a handful of oncRNAs showed a significant phenotypic effect within each 

cancer with the exception of breast cancer, which did not have oncRNAs with a significant phenotypic 

effect in the oncTuD screen. Our results indicate that between the gain and loss-of-function screens, 

roughly 5% of oncRNAs showed a significant tumor growth phenotype. This suggests that our earlier 

identification of T3p as a promoter of breast cancer metastasis was not a unique discovery and that 

cancer-emergent oncRNAs likely play unexplored roles in disease progression across human cancers. 

Together, these findings establish a systematic means of nominating likely functional oncRNA 

candidates impacting oncogenesis. 
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Figure 3. Systematic annotation of driver oncRNAs using a scalable in vivo genetic screening approach. 
(A) Workflow schematic of oncRNA cancer and oncRNA TuD functional screens. (B-C) Volcano plots of oncRNA 

functional screen results for breast cancer (MDA-MB-231) and colorectal cancer (SW480), respectively. In vivo 

growth phenotypic score refers to enriched representation of cancer cells transduced with cognate oncRNA upon 
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tumor growth in the xenograft model. (D) Expression levels of two example oncRNAs with significant tumor 

growth phenotype from the functional screen in TCGA-BRCA  tumor and tumor-adjacent normal tissues. P values 

were calculated using a one-tailed Mann-Whitney test. (E) Survival of TCGA-BRCA patients stratified by 

expression level of cognate driver oncRNA. P values were calculated using a log-rank test. (F) Informative iPage 

pathways associated with TCGA-BRCA cancer samples expressing cognate oncRNAs compared to TCGA-BRCA 
cancer samples with no detectable respective oncRNAs. Top panel shows gene expression differences in 

discrete expression bins. Genes that are up-regulated in oncRNA expressing cancer samples are in the right bins, 

whereas bins to the left contain genes with lower expression. The heatmap shows the corresponding pathway in 

relation to the expression bins. Red entries indicate enrichment of pathway genes in a given expression bin 

whereas blue entries indicate depletion. Enrichment and depletion are measured using log-transformed 

hypergeometric P values. 

 
Two oncRNAs that promote tumor growth and in vivo metastatic colonization of breast cancer 
cells 

We next selected two exemplary breast cancer oncRNAs for a deeper analysis of their function. In 

Fig 3D, we compared the normalized expression levels of these two oncRNAs between TCGA-BRCA 

cancer and tumor-adjacent normal tissue samples and demonstrated the highly cancer-specific 

expression pattern of these oncRNAs (referred to by their respective genomic coordinates 

oncRNA.ch7.29 and oncRNA.ch17.67). Both oncRNA.ch7.29 and oncRNA.ch17.67 map to the 3’ UTRs 

of cancer-associated genes, SCRN1 and PSMD12 respectively. We also investigated the association of 

oncRNA expression with patient survival and found that these two oncRNAs were both significantly 

associated with poor clinical outcomes, further highlighting their potential functional role in breast 

cancer progression (Fig 3E). However, we did not find any significant associations when we stratified 

oncRNA expression by cancer stage or receptor subtype for either oncRNA (Fig S3E). To identify 

cellular processes and pathways that are associated with each of these two oncRNAs, we used the 

TCGA breast cancer dataset to compare the transcriptomic profiles between samples in which the 

oncRNA was detected versus those where it was not. We performed differential gene expression 

analysis and found significant changes in the gene expression landscape of tumors expressing each 

oncRNA (Fig S3F). Subsequent pathway analysis similarly revealed significant modulated pathways 

associated with the expression of each oncRNA, raising the possibility that they are acting downstream 

of these functional oncRNAs to drive cancer progression (Fig 3F, S3G)20. Of note, we observed a 

significant association between oncRNA.ch7.29 expression and up-regulation of genes in the EMT 

pathway, and significant associations between oncRNA.ch17.67 and up-regulation of genes in the DNA 

repair and E2F pathways.   

We then performed in vivo tumor growth and metastasis assays to further validate the 

oncogenic role of these two oncRNAs. To test their effect, we first transduced MDA-MB-231 cells with 

oncRNA.ch7.29 or oncRNA.ch17.67 under the control of a U6 promoter for increased expression. 
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Overexpression of oncRNA.ch7.29 and oncRNA.ch17.67 both significantly increased the primary tumor 

growth rates of cells implanted in the mammary fat-pad of NOD scid gamma (NSG) mice by 2.6 and 1.7 

folds, respectively, relative to scrambled controls (Fig 4A). We then injected these transfected cells into 

the venous circulation of NSG mice and measured their lung metastatic colonization over time via 

bioluminescence imaging. Both oncRNA.ch7.29 and oncRNA.ch17.67 overexpressing cells had 

significantly increased capacity for lung colonization when compared to controls (Fig 4B, S4A). We 

repeated these experiments in an independent breast cancer cell line, HCC1806 genetic background 

(HCC-LM2 21), to ensure that our observations were not cell line dependent. We found that HCC-LM2 

cells overexpressing oncRNA.ch7.29 or oncRNA.ch17.67 also exhibited significantly higher primary 

tumor rates and metastatic capacity (Fig 4C–D, S4B).  
We next asked if the function of these oncRNAs was mediated through the associated pathways 

we identified in TCGA-BRCA. To test this, we compared the transcriptomes of our cancer cells lines 

overexpressing oncRNA.ch7.29 or oncRNA.ch17.67 relative to controls in both genetic backgrounds 

(Fig 4E, S4B). Pathway analysis of differential expression patterns revealed modulations in key 

oncogenic pathways that were also observed in our oncRNA association analysis in TCGA (Fig S4C–

D), highlighting reproducible modulations of cellular pathways. Specifically, over-expressing 

oncRNA.ch7.29 resulted in an increase in the expression of epithelial-mesenchymal transition-related 

(EMT) genes, consistent with our observations in TCGA-BRCA tumors expressing oncRNA.ch7.29 (Fig 
4F, 3F). Likewise, oncRNA.ch17.67 overexpressing cells demonstrated perturbation of the E2F 

pathway in a similar pattern as TCGA-BRCA tumors expressing oncRNA.ch17.67 (Fig 4F, 3F). While 

many significant oncRNA-associated pathways were shared among the HCC-LM2 and MDA-231 

genetic backgrounds, we note that the E2F target regulon was not shown to be significantly associated 

with oncRNA.ch17.67 in MDA-231 cells (Fig. S4D). Together, our findings strongly support that a 

subset of oncRNAs drive oncogenesis, likely by perturbing specific gene pathways. 
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Figure 4. In vivo validation of functional oncRNAs in xenograft models of breast cancer. 
(A) Left: Growth of MDA-MB-231 tumors overexpressing oncRNA.ch7.29 or oncRNA.ch17.67 relative to controls 

in the mammary fat-pad of NSG mice. 2 tumors per mouse and n=4 mice for each cohort. P values were 

calculated using two-way ANOVA. Right: Ex vivo tumor measurements after tumor excision. P values were 
calculated using a one-tailed Mann-Whitney test. Tumors overexpressing oncRNA.ch7.29 were 2.6 fold larger 

than controls. Tumors overexpressing oncRNA.ch17.67 were 1.7 fold larger than controls. (B) Bioluminescence 

imaging plot of lung colonization by MDA-MB-231 cells overexpressing oncRNA.ch7.29 or oncRNA.ch17.67 

compared to control. n = 5 per cohort. P values were calculated using two-way ANOVA. (C) Left: Growth of HCC-

LM2 cells overexpressing oncRNA.ch7.29 or oncRNA.ch17.67 and HCC-LM2 controls in the mammary fat-pad of 

NSG mice mammary fat-pad assays. n=4 for each cohort. P values were calculated using two-way ANOVA. 

Right: Ex vivo tumor measurements after tumor excision. P values were calculated using a one-tailed Mann-
Whitney test. Tumors overexpressing oncRNA.ch7.29 were 1.6 fold larger than controls. Tumors overexpressing 

oncRNA.ch17.67 were 1.8 fold larger than controls. (D) Bioluminescence imaging plot of lung colonization by 
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HCC-LM2 cells overexpressing oncRNA.ch7.29 or oncRNA.ch17.67 compared to control. n = 5 per cohort. P 

values were calculated using two-way ANOVA. (E) Volcano plots of differentially expressed genes in HCC-LM2 

cells overexpressing oncRNA.ch7.29 or oncRNA.ch17.67 compared to HCC-LM2 controls. The P value cut-off 

corresponds to a 10% FDR. (F) Representative pathways associated with HCC-LM2 overexpressing 

oncRNA.ch7.29 or oncRNA.ch17.67 compared to controls generated using iPAGE. Top panel shows gene 
expression differences in discrete expression bins. Genes that are up-regulated in oncRNA over-expressing cells 

are in the rightmost bins, whereas bins to the left contain genes with lower expression in oncRNA over-expressing 

cells. The heatmap shows the enrichment or depletion of the corresponding pathway in each expression bin. Red 

entries indicate enrichment of pathway genes in a given expression bin whereas blue entries indicate depletion.  

 

Annotation of cell-free orphan non-coding RNAs across models of cancer 

We have shown that oncRNA fingerprints represent a digital molecular barcode that effectively 

captures cancer type identity and are associated with modulations of cellular pathways that drive 

cancer progression. Importantly, oncRNA fingerprints have also shown the potential to be accessible 

from the extracellular space; we previously observed that a subset of breast cancer oncRNAs are 

secreted from breast cancer cells at detectable levels1. To investigate whether secreted oncRNA 

fingerprints are generalizable to other cancer types, we selected 25 established human cancer cell lines 

representing nine tissues of origin – blood, bone, breast, colon, kidney, lung, pancreas, prostate, and 

skin. After growing the cell lines in vitro, we collected conditioned media with exosome-depleted FBS in 

biological replicates, extracted RNA from the cell-free conditioned media, and performed smallRNA 

sequencing. It is known that many small RNAs, such as microRNAs, YRNAs, and tRNA fragments are 

secreted into the extracellular space 22–25. As shown in Fig 5A–B and Fig S5A, annotated small RNA 

profiles from biological replicates cluster together and, overall, cell lines from the same tissue of origin 

show similar patterns. We used this dataset of cell-free RNA content to identify oncRNAs that are 

expressed and secreted from each cell line. Overall, we observed cell-free small RNA reads mapping to 

thousands of oncRNA loci, making this biotype a significant contributor to the extracellular RNA space 

relative to other biotypes of smRNAs (Fig 5C). Roughly 0.5% of cell-free RNA reads were annotated as 

oncRNAs in our pipeline with about 30% of our pancancer list of oncRNAs detected in at least two cell 

lines (Fig S5B). Similar to our observation in tumor biopsies, we observed tumor type-specific 

oncRNAs among the cell-free oncRNAs (Fig 5D). Furthermore, UMAP visualization suggested an 

overall similarity between cell-free oncRNA fingerprints from cell lines of the same tumor type as their 

2D UMAP projections clustered more closely together (Fig 5E). Similar clusterings of cell lines were 

also observed in the 2D PCA space of their oncRNA fingerprints (Fig S5C). To quantify this similarity, 

for each cell line, we compared the median correlation between its oncRNA profile with those from cell 

lines of the same tissue versus all other cell lines. Consistently, we observed a higher correlation 

between lines from the same tissue of origin than cell lines from different tissues of origin (Fig S5D). 
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Taken together, our systematic analysis of cell-free RNA species secreted by cell line models of cancer 

demonstrates that oncRNAs contribute to the cell-free RNA content of cancer cells and that cell-free 

oncRNA expression profiles also reflect tumor type-specific patterns in these models.  

 
Figure 5. Analysis of cell-free RNA content across a large panel of cancer cell lines. (A) Pair-wise 

correlation heatmap for small RNA abundance in the cell-free RNA extracted from conditioned media. The counts 

for annotated small RNAs, such as miRNAs, tRNA fragments, snoRNAs, and etc, were used to generate this 

heatmap. (B) A 2D UMAP plot summarizing the abundance of small RNAs in the cell-free space across the cell 

line models we have profiled (in biological replicates). The points are colored based on the tissue-of-origin. (C) 
Contribution of each annotated family of small RNA species to their cell-free RNA content relative to annotated 
RNAs, omitting cell-free RNA with no known annotations. The values are normalized across cell lines and 

oncRNAs are shown in blue. (D) An UpSet plot of oncRNA counts detected in the cell-free RNA fraction of cell 

lines from each tissue-of-origin. Cell-free oncRNAs show tumor-specific patterns of expression. (E) 2D UMAP 

summary of oncRNA profiles across cell-free RNA profiles collected.  
 

Circulating oncRNAs capture short-term and long-term clinical outcomes in breast cancer 

Thus far, we have established that cell-free oncRNAs faithfully reflect cancer type identity. Since 

oncRNAs are cancer-emergent, their presence in circulation points to the presence of an underlying 

tumor that is actively releasing them. This notion is supported by our previous work showing that 

circulating T3p oncRNA can be used to detect breast cancer from serum in patients1. To assess the 

clinical utility of circulating oncRNAs as a cancer-specific biomarker, we performed a retrospective 

ancillary study on longitudinally collected samples from high-risk early breast cancer patients enrolled in 

the multicenter neoadjuvant I-SPY 2 TRIAL (NCT01042379)26. We extracted cell-free RNA from 1mL 

0.75

1

A EB

C

M
D

A
-2

31
H

E
K

29
3

H
12

99
M

IA
P

aC
a2

A
20

58
M

C
F7

H
S

70
7A

S
W

62
0

P
A

N
C

1
A

54
9

M
D

A
-4

53
S

W
48

0
LN

C
aP H
23

B
xP

C
3

C
ol

o3
20

C
42

B
A

37
5

P
C

3
H

35
8

H
C

C
44

K
56

2
LS

17
4T

ZR
-7

5-
1

H
C

T1
16

0

20

40

60

80

100
oncRNA
mir-3p
mir-5p
piRNA
rRNA
scRNA
snoRNA
snRNA

Fr
ac

tio
n 

of
 R

ea
ds

 A
nn

ot
at

ed
fo

r E
ac

h 
Fe

at
ur

e 
(%

)

D

P
ea

rs
on

 C
or

re
la

tio
n

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

A2058−1
A2058−2

A375tr−1

A375tr−2

A549−1
A549−2

BxPC3−1
BxPC3−2

C42B−1

C42B−2

Colo320−1

Colo320−2

H1299−1

H1299−2

H23−1

H23−2

H358−1

H358−2

HCC44−1

HCC44−2

HCT116−1

HCT116−2

HEK−1

HEK−2

HS707A−1

HS707A−2

K562−1

K562−2

LNCaP−1

LNCaP−2

LS174Ttr−1

LS174Ttr−2

MCF7−1

MCF7−2MDA−231−u−1

MDA−231−u−2

MDA−453−1

MDA−453−2

MP2−1

MP2−2

PANC1tr−1

PANC1tr−2

PC3−1

PC3−2

SW480tr−1

SW480tr−2

SW620−1

SW620−2

ZR−75−1−1

ZR−75−1−2

●a

●a

●a

●a

●a

●a

●a

●a

●a

Blood

Bone

Breast

Colon

Kidney

Lung

Pancreas

Prostate

Skin

oncRNA Fingerprints 

−2

−1

0

1

2

−2 −1 0 1

UMAP1

U
M

A
P

2

Tissue Type

2

BxPC3.1
BxPC3.2
H358.1
H358.2
MP2.1
MP2.2
HCC44.1
HCC44.2
K562.1
K562.2
HCT116.1
HCT116.2
H1299.1
H1299.2
LS174T.1
ZR.75.1.1
ZR.75.1.2
SW620.1
SW620.2
SW480.1
SW480.2
H23.1
H23.2
LNCaP.1
LNCaP.2
Colo320.1
Colo320.2
HS707A.1
HS707A.2
PANC1.1
PANC1.2
MDA.231.1
A2058.1
A2058.2
A375h.1
LS174T.2
A375.2
HEK.1
HEK.2
MDA.453.1
MDA.453.2
A549.1
A549.2
C42B.1
C42B.2
MCF7.1
MCF7.2
MDA.231.2
PC3.1
PC3.2

smRNA Expression

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●
●

●●

●

●

●

●

●●

●
● ●

● ●

●

●
●

●●●

●

●●
●

●

●●

A2058−1 A2058−2

A375tr−1

A375tr−2

A549−1 A549−2

BxPC3−1

BxPC3−2

C42B−1

C42B−2

Colo320−1

Colo320−2

H1299−1

H1299−2

H23−1

H23−2

H358−1

H358−2

HCC44−1
HCC44−2

HCT116−1
HCT116−2

HEK−1

HEK−2

HS707A−1

HS707A−2

K562−1 K562−2

LNCaP−1

LNCaP−2

LS174Ttr−1

LS174Ttr−2

MCF7−1

MCF7−2

MDA−231−u−1

MDA−231−u−2

MDA−453−1

MDA−453−2

MP2−1

MP2−2

PANC1tr−1PANC1tr−2

PC3−1PC3−2

SW480tr−1
SW480tr−2

SW620−1

SW620−2

ZR−75−1−1
ZR−75−1−2

−10

0

10

20

30

−40 −20 0 20
UMAP1

U
M
AP

2

●a

●a

●a

●a

●a

●a

●a

●a

●a

Tissue Type
Blood

Bone

Breast

Colon

Kidney

Lung

Pancreas

Prostate

Skin

smRNA Expression 

Prostate

Lung

Colon

Breast

Pancreas

Skin

In
te

rs
ec

tio
n 

si
ze

 ( 
lo

g 10
)

0

4

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.03.19.585748doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.19.585748
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

serum samples from 267 breast cancer patients treated in the I-SPY 2 TRIAL with standard 

neoadjuvant chemotherapy (NAC) alone or combined with MK-2206 (AKT inhibitor) or Pembrolizumab 

(PD-1 inhibitor) treatment. For each patient, we processed longitudinal serum samples collected at 

pretreatment (T0) and prior to surgery (T3) for small RNA sequencing. For 192 patients with T0 and T3 

samples that passed our quality control filters, we measured total oncRNA burden, defined as the sum 

of all oncRNA species across all loci normalized by library size, for each time point. We then used the 

change in oncRNA burden before and after treatment (ΔoncRNA) as a measure of residual oncRNA 

burden. Detailed descriptions of our final patient cohort in our analysis are summarized in Fig 6A and 

6SA. In Fig S6B, we report the distribution of the resulting residual oncRNA burden classes across 

cancer subtypes, stages, and node status. Importantly, consistent with the response to treatment in the 

majority of patients, we observed a significant overall reduction in oncRNA burden after neoadjuvant 

chemotherapy (Fig 6B, S6C). 

Short-term clinical responses to NAC, i.e., pathologic complete response (pCR) and residual 

cancer burden (RCB) class, are strongly associated with favorable outcomes in the ISPY-2 trial. Thus, 

we first examined whether our ΔoncRNA calls were associated with these early clinical readouts. We 

used logistic regression to capture the association between high residual oncRNA burden after NAC 

with pCR and high RCB classification, respectively. As shown in Fig 6C, in both cases, we observed a 

significant association between residual oncRNA burden and short-term clinical responses. 

With a median follow-up of 4.72 years in our study, we next sought to measure the extent to which 

residual oncRNA burden captures long-term clinical outcomes. For both overall survival and disease-

free survival, we observed that high ΔoncRNA is significantly associated with poor survival outcomes 

(Fig 6D, Fig S6E). These associations were not highly sensitive to the choice of threshold for the high 

residual oncRNA burden call in patients (Fig S6F). Finally, we asked whether residual oncRNA burden 

provided additional information over pCR and RCB class regarding long-term survival. For this, we 

performed multivariable Cox regression analyses, and in both cases we observed that residual oncRNA 

burden remains significantly informative of survival even when controlling for pCR or RCB (Fig 6E and 

Fig S6G). Residual oncRNA burden also provided additional information when we controlled for tumor 

subtype and patient age (Fig S6H), highlighting the limitations of subtyping in predicting treatment 

response and the added benefit of disease monitoring via oncRNA burden dynamics. These findings 

further highlight the tumor as the source of circulating oncRNAs in blood and establish these cell-free 

RNA species as clinically relevant liquid biopsy biomarkers that can be accessed from low volumes of 

blood.  
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Figure 6. Changes in circulating oncRNA content over the course of neoadjuvant chemotherapy is 
informative of short-term and long-term clinical outcomes. (A) Overview of patient and tumor characteristics 

tabulated based on changes in oncRNA burden (ΔoncRNA). (B) Normalized oncRNA burden (counts per million) 

before (T0) and after (T3) neoadjuvant chemotherapy. P value was calculated using a one-tailed Wilcoxon test. 

(C) Forest plots for logistic regression models predicting pathologic complete response (pCR) or high residual 
cancer burden (RCB III) as a function of ΔoncRNA after neoadjuvant chemotherapy. One-tailed P values are also 

included. (D) Survival in patients grouped based on their oncRNA burden (ΔoncRNA). Reported are the hazard 

ratio and P value based on a log-rank test. (E) A forest plot for a multivariate Cox proportional hazard model 

including both ΔoncRNA and pCR as covariates. 
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Discussion 

In this study, we discovered and systematically annotated a previously unknown class of cancer-

specific RNA species, oncRNAs, which have largely remained unexplored in the context of cancer 

biology. Our analysis not only reveals that these oncRNAs exhibit remarkable cancer type and subtype 

specificity, but also highlights the possible functional roles of oncRNAs for cancer progression. 

Leveraging our in vivo screening platform, we revealed that a small subset of oncRNAs significantly 

impacts tumor growth phenotypes. Importantly, we view these numbers of significant hits to be a 

conservative estimate due to several factors. First, the lentiviral constructs described here are not 

guaranteed to up- or down-regulate their cognate oncRNAs: RNA Polymerase III-driven exogenous 

oncRNAs may be more unstable than endogenously expressed and processed oncRNAs, and TuDs 

may insufficiently inhibit their target oncRNAs, requiring fine-tuning of TuD design (i.e. optimizing 

thermodynamic properties) for adequate potency 27. Second, functions of oncRNAs are likely context-

dependent, and the inclusion of other xenograft models will likely yield additional functional species. 

Finally, xenograft models only capture some aspects of tumor growth, lacking key characteristics such 

as adaptive immunity and native tumor microenvironment. Despite these limitations, our findings 

establish a systematic approach of combining in vivo screens and computational analysis to nominate 

new oncRNA drivers of oncogenesis. Namely, we consider oncRNAs that (i) display cancer-specific 

expression in both TCGA tumors and cancer cell line models, (ii) present a phenotypic effect in our 

functional screens, (iii) demonstrate significant association with poor clinical outcomes and (iv) cancer-

relevant gene pathways as prime candidates for further functional or biogenesis investigations.  

Although the molecular mechanism of action and biogenesis of oncRNA.ch7.29 and 

oncRNA.ch17.67 remains unknown, this study substantially expands our catalog of cancer-engineered 

oncogenic pathways and opens up exciting new avenues for exploring oncRNAs as novel therapeutic 

targets in cancer. Specifically, we found oncRNA.ch7.29 and oncRNA.ch17.67 to be significantly 

associated with modulations in EMT and E2F pathways, respectively. EMT is a crucial hallmark for 

cancer progression, particularly through loss of cell-adhesion, resistance to apoptosis, and acquired 

invasiveness 28. While non-coding RNAs like miRNAs have been shown to regulate cancer cell invasion 

and metastasis by targeting the mRNA of EMT-inducing transcription factors, our results suggest that 

cancer cells can also co-opt the complex EMT process via novel cancer-emergent RNA species 29–31. 

The E2F target regulon collectively controls cell cycle progression, and are commonly activated in 

cancer cells to drive tumor proliferation 32. Consequently, there has been much attention for therapeutic 

interventions that affect E2F activity via targeting the CDK-RB-E2F axis throughCDK4/6 inhibitors for 

breast cancer 33. oncRNA.ch17.67’s upregulation of E2F genes may partially explain the increased 

tumor proliferation rate observed in our xenograft models and present as another potential therapeutic 

target to control E2F’s activity. Given E2F’s non-canonical role in apoptosis, metabolism, and 
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angiogenesis, oncRNA.ch17.67 may also promote metastasis in a cell proliferation-independent 

manner 32,34. Because oncRNAs are largely  absent in normal cells, targeting these cancer-associated 

pathways via oncRNAs may offer a specific therapeutic advantage by minimizing on-target toxicity and 

therefore reducing patient side effects.  

Most importantly, our study shows that oncRNAs can be reliably detected in the circulating blood of 

cancer patients, making them valuable biomarkers for clinical applications. The current state-of-the-art 

liquid biopsy strategies for minimal residual disease detection in breast cancer rely on development of 

tumor-informed bespoke assays for detection of high variant allele frequency (VAF) mutations in the 

blood 35,36. Due to low DNA shedding from breast tumors, however, even with these bespoke assays 

DNA-based modalities are often not sensitive enough to reliably detect residual disease after clinical 

intervention35. Circulating oncRNAs allow us to overcome these limitations for liquid biopsy markers. 

The much larger feature space of oncRNAs confers higher robustness against the zero-inflated nature 

of circulating biomarkers. Additionally, cancer cells actively secrete RNA; whereas DNA is passively 

shed as a result of cell death37. Thus, cell-free RNA biomarkers are often more abundant than their 

DNA counterparts, making oncRNAs highly sensitive biomarkers that can be detected even in low 

volumes of blood after treatment. Other cell-free RNAs, including microRNAs, repeat element derived 

RNAs, and transfer RNA-derived small RNAs, have also been of recent research interest for their 

potential as circulating biomarkers of cancer38–41. While prior studies have shown cfRNA profiles to be 

promising for applications in cancer detection, cfRNA signatures have primarily been discovered 

directly from human plasma samples and are unlikely to be directly representative of the underlying 

tumor biology or state. These signatures also predominantly rely on RNAs of known annotations that 

can originate from any cell and may not be directly secreted by cancer cells. Furthermore, 

investigations of cfRNAs as clinical biomarkers have largely been restricted to applications in cancer 

detection with limited success.  

In our retrospective study, we investigated the utility of circulating oncRNAs for minimum residual 

disease detection and predicting clinical outcome in a neoadjuvant chemotherapy setting. We 

combined all oncRNA species to define an oncRNA burden score and found the dynamic changes in 

the oncRNA burden score in response to neoadjuvant chemotherapy to be strongly associated with 

both short-term clinical responses and long-term survival outcomes. These results establish oncRNAs 

as biomarkers for minimally-invasive and real-time monitoring of underlying cancers, which can 

significantly help guide cancer management. We anticipate that future liquid biopsy studies with 

substantially larger cohort sizes as well as larger collected blood volumes and deeper sequencing of 

the cell-free RNA content will enable us to delve deeper into the wealth of information offered by 

oncRNAs and potentially reveal new cancer-subtype signatures, cancer subtype switching occurrences, 

or relationships to treatment response.  
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In conclusion, our study has unveiled a previously unannotated class of RNA species, oncRNAs, 

which hold immense potential for both disease monitoring and therapeutic applications in cancer. As we 

continue to investigate the various roles and information carried out by individual oncRNAs, we 

anticipate that these RNA species will prove to be invaluable tools in the ongoing battle against cancer. 
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