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A B S T R A C T
The pandemic of COVID-19 has imposed tremendous pressure on public health systems and social
economic ecosystems over the past years. To alleviate its social impact, it is important to proactively
track the prevalence of COVID-19 within communities. The traditional way to estimate the disease
prevalence is to estimate from reported clinical test data or surveys. However, the coverage of clinical
tests is often limited and the tests can be labor-intensive, requires reliable and timely results, and
consistent diagnostic and reporting criteria. Recent studies revealed that patients who are diagnosed
with COVID-19 often undergo fecal shedding of SARS-CoV-2 virus into wastewater, which makes
wastewater-based epidemiology for COVID-19 surveillance a promising approach to complement
traditional clinical testing. In this paper, we survey the existing literature regarding wastewater-
based epidemiology for COVID-19 surveillance and summarize the current advances in the area.
Specifically, we have covered the key aspects of wastewater sampling, sample testing, and presented
a comprehensive and organized summary of wastewater data analytical methods. Finally, we provide
the open challenges on current wastewater-based COVID-19 surveillance studies, aiming to encourage
new ideas to advance the development of effective wastewater-based surveillance systems for general
infectious diseases.

1. Introduction
The pandemic of COVID-19 has posed significant chal-

lenges to public health systems and the global economy,
thereby urging the need for effective surveillance methods to
monitor the prevalence of the disease within communities.
Conventional surveillance methods are heavily dependent
on clinical test data, such as positive test cases and hos-
pitalizations. The inherent limitation of clinical data-based
surveillance methods lies in their limited coverage, labor
intensity, and data staleness due to prolonged test proce-
dures. In order to estimate the prevalence of the disease
and detect potential outbreaks in a more timely fashion,
wastewater-based epidemiology (WBE1) surveillance has
been identified as complementary to clinical methods.

∗Corresponding author
chenannie45@gmail.com (C. Chen); yunf.wang@outlook.com (Y.

Wang); fug3aj@virginia.edu (G. Kaur); aa5dw@virginia.edu (A. Adiga);
be8dq@virginia.edu (B. Espinoza); sv8nv@virginia.edu (S.
Venkatramanan); sasw3xp@virginia.edu (A. Warren); bl4zc@virginia.edu
(B. Lewis); justin.crow@vdh.virginia.gov (J. Crow);
rekha.singh@vdh.virginia.gov (R. Singh);
alexandra.lorentz@dgs.virginia.gov (A. Lorentz);
denise.toney@dgs.virginia.gov (D. Toney); marathe@virginia.edu (M.
Marathe)

ORCID(s): 0000-0002-7423-0090 (C. Chen)
1In this paper, our primary focus is on the surveillance perspective of

WBE when using the term "WBE". All acronyms that appear more than
once in the paper are summarized in Appendix Table 5.

WBE has been successfully used for monitoring the use
of pharmaceuticals (Bischel et al., 2015), illicit drugs (Zuc-
cato et al., 2008), flu prevalence (Heijnen and Medema,
2011), and polio outbreaks (Brouwer et al., 2018). Recent
research suggests that monitoring the SARS-CoV-2 and
other disease levels in wastewater can be a reliable way to
understand the disease prevalence in addition to the clinical
test results (Safford et al., 2022). Specifically, the wastewater
samples can be collected from manholes in the targeted com-
munities or from the wastewater treatment plants (WWTPs)
in the sewersheds. The collected samples are then tested to
quantify the concentration and the total load of the SARS-
CoV-2 virus. The resulting viral concentration/load can be
viewed as a comprehensive snapshot of disease prevalence
within the community. By collectively analyzing the viral
data from multiple timestamps, the trajectory of the disease
may be estimated, which can be further used for trend
projection. Figure 1 shows the overview of the wastewater-
based epidemic surveillance system.

While a promising tool, wastewater-based COVID-19
surveillance and beyond is subject to some key limitations
and challenges. The first challenge is the variability in viral
shedding rates. Specifically, individuals of different symp-
tom severity and age groups may contribute virus to the
sewage system at significantly different rates, thus mak-
ing it hard to approximate the infected population from
wastewater viral load. Second, the wastewater viral load
may get underestimated due to dilution in the sewer system,
in-sewer transportation loss, degradation of the virus, and
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Figure 1: Overview of Wastewater-based Epidemiology Surveillance System.

also the test procedures used. Such loss is inevitable and
could lead to missed cases or delayed alerts for outbreaks.
On the other hand, the sewershed population, wastewater
flow variations, and sample methods may also affect the
representativeness of the viral level in the test sample to
the disease prevalence of the entire community. Therefore,
approximating the actual viral load that flows into the sewage
system from degraded signals requires careful modeling and
analysis. The last challenge is the integration of wastewater
analysis with conventional surveillance results (e.g. reported
cases, hospitalization). Wastewater-based surveillance data
provides a comprehensive snapshot of disease prevalence
within the whole community but with potentially consid-
erable degradation. In contrast, conventional surveillance
results are accurate but only cover a limited portion of
the infected population. Effectively combining the two data
sources can be problematic as the studied populations are not
well aligned.

In this paper, we survey the current literature that en-
compasses critical facets of wastewater-based surveillance
for COVID-19, including wastewater sampling techniques,
sample testing methodologies, data analysis methods, avail-
able datasets at the global level, and the extension to other
infectious diseases. Furthermore, we highlight the ongoing
challenges in the wastewater-based COVID-19 surveillance
systems and hope to inspire continued innovation and devel-
opment in the domain. It is worth mentioning that the data
analytic methods for COVID-19 can be easily generalized to
the surveillance tasks for other infectious diseases summa-
rized in Kilaru et al. (2023).
Differences with Existing Surveys. Existing surveys on
wastewater-based COVID-19 surveillance are predominantly
focused on sampling methods, virus detection and quan-
tification, and surveillance system design (Sharara et al.,
2021; Polo et al., 2020; Shah et al., 2022; Hamouda et al.,
2021). In Ciannella et al. (2023); Li et al. (2023c), the two
surveys have covered the correlation analysis between viral
concentration and clinical test results, but the studies are not
comprehensive enough to cover all the critical aspects of the
analysis (e.g., sample type, sample frequency, correlation
metrics). To the best of our knowledge, this is a thorough
survey that focuses on summarizing the state-of-the-art
analytical methods used in wastewater-based COVID-19
surveillance and beyond.

Survey Structure. The remainder of this survey is organized
as follows, Section 2 and Section 3 briefly introduce the
current advances in wastewater sampling and sample testing.
Section 4 covers different aspects of wastewater analytic
methods. Section 5 provides a comprehensive list of wastew-
ater datasets for SARS-CoV-2 surveillance. Section 6 dis-
cusses the current limitations and challenges of wastewater-
based COVID-19 surveillance systems, and Section 7 con-
cludes the survey.

2. Literature Collection and Organization
Following the guidance of the Preferred Reporting Items

for Systematic Reviews and Meta-Analyses (PRISMA) method
proposed by Page et al. (2021), we conduct the systematic
literature review (SLR).
2.1. Literature Searching Methods

Before initiating the systematic research collection, we
carried out an unstructured exploration of some commonly
used terms and ideas concerning the topic. Keywords such as
"wastewater", "epidemiology", "WBE", "COVID-19/SARS-
CoV-2", "analysis", "modeling", and "surveillance" were
commonly used to identify records of peer-reviewed articles
in the multidisciplinary literature.

Based on the previous research review, we chose the
following databases for our search:

• Web of Science: www.webofscience.com
• Scopus: www.scopus.com
• Engineering Village: www.engineeringvillage.com
• PubMed: www.pubmed.ncbi.nlm.nih.gov
We divided the wastewater-based COVID-19 surveil-

lance problem into two phases for a full-extent study: data
collection and data analysis. The data collection part in-
cludes sampling, data acquisition and pre-processing, quan-
tification and normalization, etc. The data analysis part
includes the analytical models for the WBE data. We con-
ducted two separate searches on the database, each using
different search phrases as indicated in Table 1. Such search
settings are designed to return as many topic-related results
as possible. After that, we filtered and de-duplicated the
results to do further analysis.
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Table 1
Literature searching settings.

Boolean operator Keywords

Data Collection

COVID OR SARS-CoV-2
AND wastewater sample
AND virus OR viral
AND sampl* OR detect*
AND RNA OR ribonucleic acid OR genet*
AND "procedure" OR "protocol" OR method* OR quantif* OR estimat* OR measur*
AND *pcr*

Data Analysis

COVID OR SARS-CoV-2
AND "wastewater-based epidemiology" or WBE
AND surveill* OR monitor* OR track*
AND predict* OR forecast* OR foreshadow* OR trend
AND analy* OR statisti* OR model* OR correlate* OR relation*

Records
• Web of Science: 597
• Scopus: 528
• Engineering Village: 226
• Pubmed: 189

Records
• Web of Science: 283 
• Scopus: 307
• Engineering Village: 201
• Pubmed: 236

Duplicate: 937 Duplicate: 621

Records remain: 603
Records excluded：
• Non-English: 22
• Unreliable: 129

Records remain: 452

Records remain: 129

Records excluded：
• Title out of scope: 191
• Abstract out of scope: 106
• Unclear Content: 26

Records remain: 406
Records excluded：
• Non-English: 19
• Unreliable: 98

Records remain: 289

Records remain: 95

Records excluded：
• Title out of scope: 109
• Abstract out of scope: 71
• Unclear Content: 14

Records collected: 224 Duplicate: 87

Finally records: 137

Phase 1: Data collection Phase 2: Data analysis
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Figure 2: Publication selection process: PRISMA-based flowchart.

2.2. Filtering and Selection
The criteria provided in Table 1 were used to search the

four literature databases in the time range from January 2020
to October 2023. From an initial total of 2,567 discovered
literature records, we first utilized Zotero to detect duplicate
records individually for each search. Next, we applied lan-
guage filters to choose only English publications. To ensure
the reliability of the selected studies, we only keep original,
peer-reviewed articles in our results, leaving out other pub-
lishing forms like reviews, short communications, technical
reports, letters, notes, abstracts, and surveys. Any work that
was accessible yet unpublished was also disqualified. After
that, we screened the content and selected the literature that
is closely related to the perspective of this study based on
the article titles and abstracts, and finally, we got 137 related
articles. The detailed process and outcome are shown in
Figure 2.

3. Wastewater Sampling
Sampling is a critical step for wastewater-based COVID-
19 surveillance, which defines the surveillance scope for
the disease. In particular, sampling through the sewage can
effectively monitor the viral level at a community level or
building level; while sampling at the wastewater treatment
plant can estimate the infection level at the sewershed level.
In addition to the sample location, sample frequency, sample
type, and sample method may also affect the effectiveness of
disease surveillance and prevalence estimation. This section
summarizes the key findings for the above three aspects of
wastewater sampling.
Sample Frequency. WBE is an important tool in moni-
toring the prevalence of SARS-CoV-2 in the community.
Depending on the goal of surveillance, sampling frequency
can vary. To screen for the presence of the virus, sampling
once per week may be sufficient. To identify infection trends,
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Table 2
Comparison between sampling methods.

Advantages Limitations
Grab Sampling
(One-time sample)

• Fast and simple data gathering satisfies
the time-sensitive surveillance needs.

• Unable to capture temporal variations and
may lead to misrepresentation.

• Easy to implement due to its simplicity.
Composite Sampling
(Pool of samples)

• Collecting and averaging multiple samples
over a period provide a more representative
picture of viral load.

• Complexity of implementation due to its
requirement of sophisticated equipment and
more human efforts.

• Reducing the risk of missing short-term
fluctuations leading to more reliable esti-
mates.

• The degradation of the virus RNA over
time can affect the accuracy of the results.

Passive Sampling
(Accumulation)

• Less labor-intensive and more cost-
effective. Easy to deploy and retrieve, suit-
able for remote or difficult-to-access loca-
tions.

• Careful calibration and standardization
are needed to eliminate the errors caused
by the difference in sampling devices and
environmental conditions.

• Time-integrated sampling can give a more
comprehensive picture of viral prevalence.

• The flow rates and other physical factors
can result in potential bias.

at least three sampling points within a trend period of interest
are needed. The National Wastewater Surveillance System
(NWSS) suggests using a 15-day surveillance window for
trend reporting (CDC).
Sample Type. Wastewater can be sampled both from sewer
systems such as sewage networks and wastewater treatment
facilities, and non-sewered systems such as rivers and canals.
As the virus concentration in non-sewered systems can be
strongly affected by environmental factors, it is hard to
make meaningful comparisons between samples collected
under different environmental conditions. Therefore, most
of the existing wastewater studies tend to focus on samples
collected from treatment facilities as shown in Table 4. The
wastewater samples collected from sewer systems can be cat-
egorized into two different types: (1) untreated wastewater
from upstream sewage networks like manholes or treatment
plant influent, and (2) treated wastewater from primary
sludge in the treatment plant after the first solids removal
stage. The advantage of using untreated wastewater from
the upstream network or influents is that it can reflect fine-
grained viral levels in targeted communities (Layton et al.,
2022; Cohen et al., 2022; Rondeau et al., 2023). However,
most untreated wastewater samples need to be concentrated
prior to viral extraction. For the treated wastewater samples
from primary sludge, the concentration step can be elimi-
nated but the viral level in the sample can only be used to
evaluate the disease prevalence in the entire sewershed.
Sample Method. To collect wastewater samples, there are
three commonly used methods: grab, composite and pas-
sive sampling. The grab method collects a fixed amount of
wastewater at a certain time. The composite method collec-
tively pools multiple grab samples over a certain period of
time. While the passive sampling method places devices in
wastewater streams to accumulate contaminants without the
need for continuous manual intervention.

In Gerrity et al. (2021), a wastewater study in Southern
Nevada showed that the SARS-CoV-2 concentration in the
composite sample is 10× higher than the early-morning

grab samples. In Augusto et al. (2022), a similar study
was conducted to evaluate the variability of SARS-CoV-
2 RNA concentration in grab and composite samples from
both wastewater treatment plants and sewer manholes in
Brazil. Their study showed no significant difference between
the viral concentrations of the grab and composite sam-
ples. In particular, the concentrations of composite samples
showed greater agreement with concentrations of grab sam-
ples collected between 8 a.m. to 10 a.m. The low variability
between the two types of samples was also observed in
a study at a wastewater treatment plant in Norfolk, Vir-
ginia (Curtis et al., 2020). However, the variability may get
amplified when calculating the daily viral load (viral load =
viral concentration× daily influent flow) from the viral con-
centrations. Based on previous studies’ experience, we sum-
marize the advantages and limitations of different sample
methods in Table 2. Moreover, according to the literature we
reviewed, we provide a sampling method selection guideline
by considering different factors in real applications as shown
in Figure 3.

4. Sample Testing
Sample testing aims to estimate the viral concentration from
the wastewater samples, which directly affects the useful-
ness of downstream data analytic models. Generally, the
testing step includes sample pre-processing and virus de-
tection/quantification. To account for the viral loss in the
testing step, some lab control methods were introduced to the
process. Recent studies suggest that the tested viral concen-
tration should also be normalized with the population served
by the sewer system. Correspondingly, different normaliza-
tion methods were incorporated into the virus quantification
model. In this section, we summarize the key advances in
sample pre-processing, virus detection and quantification,
lab control methods, and normalization methods.
Sample Pre-processing. The wastewater samples need to
be properly processed before being tested. The purpose

Chen et al.: Preprint submitted to Elsevier Page 4 of 33



DRAFT
Wastewater-based epidemiology survey

Data Accuracy 
and Reliability

Resource 
Availability

Population Size 
and Diversity

Objective of 
the surveillance

• Normal demand• More resources 
needed • Small

• Rapid situation assess-
ment;

• Short-term forecasting
Grab

• Higher demand• More resources 
needed • Large

• Understanding spatial, 
social and temporal 
variability; 

• Long-term monitoring

Composite

• Normal demand• Limited• Large

• Variant detection; 
• Broadly detecting the 

early occurrence; 
• Long-term monitoring

Passive

Factor
Method

Figure 3: The guidance of sampling method selection. Each column represents a condition to be considered and each box indicates
which sampling method we should choose under given circumstances.

of sample pre-processing is to remove solids (Jmii et al.,
2021) and inactivate virus/bacteria (Reynolds et al., 2022).
To remove the solids from the sample, centrifugation, and
filtration can be performed. Specifically, the filtration needs
to be done with large pore sizes (5𝜇𝑚 or larger) per CDC’s
guidance (CDC). In Yanaç et al. (2022), the authors sug-
gested that SARS-CoV-2 RNA might predominate in solids.
Therefore, concentration methods focusing on both super-
natant and solid fractions may perform better for virus recov-
ery. For the viral inactivation, effective procedures include
thermal treatment (Calderón-Franco et al., 2022; McMinn
et al., 2021), UV light (Castiglioni et al., 2022; Pellegrinelli
et al., 2022) or chemical treatment (Tomasino et al., 2021).
Another key step before sample testing is sample concen-
tration, which can help with the detection of SARS-CoV-
2 RNA. The concentration step is particularly helpful for
untreated wastewater samples as compared to the treated
samples as mentioned in the previous section. Effective con-
centration approaches include ultrafiltration (Dumke et al.,
2021; Hasing et al., 2021), filtration through electronegative
membrane (Barril et al., 2021; Jmii et al., 2021), centrifugal
ultrafiltration (Anderson-Coughlin et al., 2021), ultracen-
trifugation (Zheng et al., 2022), polyethylene glycol (PEG)
precipitation (Alexander et al., 2020; Farkas et al., 2021),
skim milk flocculation (Pino et al., 2021; Philo et al., 2021),
and aluminum flocculation (Pino et al., 2021; Salvo et al.,
2021).
Virus Detection and Quantification. With proper pre-
processing and concentration, the wastewater sample is then
ready to be tested for SARS-CoV-2 RNA detection and
quantification. The key step for the method is to quantify
the targeted genetic materials (i.e., SARS-CoV-2 N1, N2
and E genes (Lu et al., 2020; Corman et al., 2020)) with
the polymerase chain reaction (PCR). The main step for the
PCR test is using special chemicals and enzymes to amplify
the targeted genetic materials in cycles. Once the target
genes are amplified, they become detectable by lab methods
and can be further interpreted to get the viral concentration

in the sample. The most common way for RNA detection
and quantification is polymerase chain reaction (PCR)-based
quantification (Ni et al., 2021). In practice, there are different
PCR procedures used for SARS-CoV-2 RNA quantification,
including RT-LAMP (reverse transcription loop-mediated
isothermal amplification) (Amoah et al., 2021), RT-qPCR
(reverse transcription-quantitative polymerase chain reac-
tion) (Ahmed et al., 2020a), variations of RT-qPCR (La Rosa
et al., 2020; Navarro et al., 2021), and RT-ddPCR (RT-
droplet digital PCR) (Flood et al., 2021). In addition to the
viral concentration, the number of amplification cycles used
to detect the target genes (i.e., the 𝐶𝑡 value) can also be
used as a criterion to quantify the viral load. Specifically,
the lower the 𝐶𝑡 value, the greater the amount of viral RNA
present in the original sample and vice versa.
Calibration. The amount of SARS-CoV-2 virus in the
wastewater sample is subject to loss during the sample pre-
processing and testing steps. The lost amount may vary
by sample quality and testing methods. To assess the lost
amount during the process, a frequently used calibration
method is matrix recovery control. A matrix recovery con-
trol is a virus that is biologically similar to SARS-CoV-
2. Some commonly used control viruses include murine
coronavirus (also called murine hepatitis virus), bacterio-
phage phi6, Pepper Mild Mottle virus (PMMoV), bovine
coronavirus, bovine respiratory syncytial virus, and human
coronavirus OC43 (Ahmed et al., 2020b; Torii et al., 2022;
Hata et al., 2020; LaTurner et al., 2021; Nagarkar et al.,
2022). Specifically, the matrix recovery control is spiked into
the wastewater sample at a known concentration prior to the
pre-processing step. The concentration of the control virus
will be tested again after the testing step. The ratio of the
virus concentrations before pre-processing and after testing
can be used to estimate the recovery rate of the SARS-
CoV-2 virus during the entire procedure. PaNormalization.
To enable the comparison of viral concentrations across
locations and over time, the raw concentrations often need
to be normalized by the daily wastewater flow and the
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population served by the sewer system. As the number of
people contributing to the sewershed may vary over time due
to factors like tourism and commuting, it is critical to utilize
human fecal normalization to account for such changes.

Human fecal normalization aims to estimate the hu-
man fecal content by targeting the organisms that are spe-
cific to human feces. Commonly used fecal indicator viral
molecular targets include Pepper Mild Mottle virus (PM-
MoV) and crAssphage (Rosario et al., 2009; Wilder et al.,
2021). In D’Aoust et al. (2021b), it was shown that PM-
MoV RNA is relatively stable under different environmental
conditions and therefore can boost the correlation between
viral signals and COVID-19 cases. The bacterial molecu-
lar targets include Bacteroides HF183 and Lachnospiraceae
Lachno3 (Seurinck et al., 2005; Feng et al., 2018).
Quality Control and Quality Assurance Quality control
(QC) and quality assurance (QA) are critical for ensuring
the reliability and accuracy of WBE data for COVID-19
surveillance, which should be employed at every step of the
process. Standardized sample collection techniques are the
first step in the protocol, which could reduce variability and
eliminate contamination. Every sample batch is subjected to
stringent quality control measures, such as the use of non-
template controls to identify contamination, positive con-
trols to verify assay sensitivity, extraction controls to verify
the effectiveness of nucleic acid isolation, and processing
blanks to monitor for procedural contamination (Flood et al.,
2021; de Freitas Bueno et al., 2022; Flood et al., 2023).
In (WRF, 2020), the Water Research Foundation (WRF)
provided a checklist for QC and QA during the method de-
velopment process. In particular, the validation of the assay
should include (1) initial precision and recovery controls; (2)
matrix spike; (3) estimate of the limit of detection and limit
of quantification; and (4) reporting of the equivalent volume
of sample analyzed. Once an assay has been developed and
validated, the minimally acceptable QA/QC standards for
every assay include (1) detection assay controls; (2) ongoing
precision recovery; (3) reporting of the equivalent volume of
sample analyzed; and (4) periodic matrix control spikes. On
the other hand, to maintain data consistency throughout the
analytical phase, routine proficiency testing, calibration, and
maintenance should be conducted for all equipments. What
is more, comprehensive training programs for personnel,
detailed documentation of procedures, and continuous mon-
itoring and evaluation to facilitate ongoing improvements
should be included in the QC/QA framework to make sure
that the WBE data is reliable and robust.

5. Data Analytics for Wastewater-based
COVID-19 Surveillance
In this section, we review the current literature on

wastewater data analytic methods from four perspectives,
which include viral shedding studies, correlation analysis,
estimation models, and uncertainty analysis. Specifically
for the estimation models, we divide the current methods

into model-driven methods and data-driven methods. The
organization of this section is illustrated in Figure 4.
5.1. Viral Shedding Studies

The existing viral shedding studies are focused on quan-
tifying the amount of SARS-CoV-2 virus in different types
of human waste from infected individuals2 and the shedding
duration of the virus.
Shedding Amount. Gupta et al. (2020) reviewed the liter-
ature describing COVID-19 patients tested for fecal virus.
The review shows that only 53.9% of the infected individuals
tested for fecal RNA were positive. A more detailed study
was conducted in Jones et al. (2020), which suggests that
the SARS-CoV-2 RNA can be detected not only in feces
but also occasionally in urine. The likelihood of SARS-
CoV-2 being transmitted via feces or urine appears much
lower due to the lower relative amounts of virus present in
feces/urine. Consequently, the likelihood of infection due
to contact with sewage-contaminated water (e.g. swimming,
surfing, angling) or food (e.g. salads, shellfish) is extremely
low or negligible based on very low abundances and limited
environmental survival of SARS-CoV-2. Similar findings
were also discovered in Wölfel et al. (2020), where a vi-
rological assessment of hospitalized patients with COVID-
19 was conducted. Their study indicates that the infectious
SARS-CoV-2 virus is exclusively derived from throat or
lung samples, but never from blood, urine, or stool samples.

To calibrate the shedding rate of infected individuals,
Schmitz et al. studied the WBE for SARS-CoV-2 by enu-
merating the asymptomatic COVID-19 cases in a university
campus (Schmitz et al., 2021). The study found that 79.2% of
SARS-CoV-2 infections were asymptomatic and only 20.8%
were symptomatic. To calculate the shedding rate, positive
detected cases from the day before, day-of, and four days
after sampling were included in the count of infected indi-
viduals contributing to viral shedding. The results showed
that the mean fecal shedding rate by the N1 gene was 7.30 ±
0.67 log10 gc/g-feces (log gene copies per gram-feces).

In addition to the general shedding study on infected in-
dividuals, a later study was conducted to explore the associ-
ation between patient ages and viral shedding amount based
on the data from two wastewater sites in Massachusetts (Omori
et al., 2021). Specifically, the viral load in wastewater was
modeled as a combination of viruses contributed by different
age groups. By incorporating the case count delay, the
wastewater viral load was fitted with the daily case count
by different age groups. The results indicate that the virus
contribution rate of patients from the 80+ yr age group can
be 1.5 times larger than the corresponding rate of patients
from the 0–19 yr age group.
Shedding Duration. A study from Gupta et al. (2020)
suggests that the duration of fecal viral shedding mostly
ranges from 1 to 33 days after a negative nasopharyngeal
swab. Similar findings were also reported in Wu et al.
(2020). Moreover, Wölfel et al. (2020) reveals that fecal

2In the context of this paper, "cases" and "infected individuals" have
the same meaning and can be used interchangeably.
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Figure 4: The overview of wastewater data analytics.

virus shedding peaks in the symptomatic period, and de-
clines in the post-symptomatic phase. Miura et al. (2021)
modeled the viral shedding kinetics with the collected data
under the Bayesian framework. In particular, the duration
of viral shedding and the concentration of virus copies in
feces over time are jointly estimated. The results showed that
the median concentration of SARS-CoV-2 in feces was 3.4
(95% CrI3: 0.24–6.5) log gc/g-feces over the entire shedding
period, and the duration of viral shedding is 26.0 days (95%
CrI: 21.7–34.9) from symptom onset date.
5.2. Correlation Analysis

The correlations between the wastewater viral level and
the clinical data (e.g. cases, hospitalization, death) are ex-
tensively studied in the current literature. A detailed sum-
marization of correlation studies can be found in Appendix
Table 4. To evaluate the correlation between viral data and
clinical data, several different correlation metrics are used
in the current literature, which include Pearson correlation,
𝑅2 for the linear regression model, Spearman’s rank corre-
lation, and Kendall’s 𝜏 correlation. Specifically, the Pearson
correlation evaluates the strength and direction of the linear
relationship between the clinical data and wastewater level,
which can be sensitive to noisy data points or outliers. The
𝑅2 is used to illustrate how much of the variance in the
dependent variable can be predicted from the independent
variables. Particularly, higher 𝑅2 values indicate that the
clinical data can be well-fitted by wastewater viral data with
a linear relationship. To relax the correlation from linear
constraints, Spearman’s rank correlation is used to evaluate
the rank consistency between the two data series. Similarly,
Kendall’s 𝜏 correlation is also occasionally used to solve
the small sample size problem and the tied values problem,
which is defined by the concordance of data pairs. Here, we
summarize the key findings from the correlation analysis.
Influential Factors for Correlation. The correlation strength
between wastewater viral data and clinical data can be
affected by many factors. Li et al. (2023c) conducted a sys-
tematic review and meta-analysis on the correlation between
SARS-CoV-2 RNA concentration and COVID-19 cases.
The review suggested that the correlation coefficients are
potentially affected by environmental factors (e.g. tempera-
ture, humidity), epidemiological conditions (e.g. vaccination

3CrI: Credible Interval.

rate, clinical test coverage), WBE sampling design (e.g.
sampling method and frequency), and catchment population
(e.g. human mobility, demographics of inhabitants) (Li et al.,
2023c; Jiang et al., 2022; Rasero et al., 2022; Kuhn et al.,
2022; Pillay et al., 2021). In particular, larger variations
in air temperature and clinical testing coverage, and the
increase of catchment size have strong negative impacts on
the correlation between viral concentration and COVID-19
cases. The sampling techniques have a negligible impact
on the correlation but increasing the sampling frequency
can improve the correlation. Moreover, extensive correlation
studies suggested that the correlation between viral concen-
tration and new cases (either daily new or weekly new cases)
is stronger than that of active cases and cumulative cases.
Also, as the shedding duration of the SARS-CoV-2 virus
can be as long as several weeks, the correlations between
wastewater viral data and reported cases are often stronger
in the pre-peak phase than in the post-peak phase (Róka
et al., 2021). Normalizing viral data with fecal indicators
can also improve the analysis (Róka et al., 2021; Scott et al.,
2021; Tandukar et al., 2022; Nagarkar et al., 2022; D’Aoust
et al., 2021a,b; Perez-Zabaleta et al., 2023; Mohapatra
et al., 2023). In addition to the aforementioned factors, the
availability of home test kits has significantly affected the
correlation between wastewater viral data and clinical data.
Varkila et al. (2023) analyzed the time series of 268 counties
in 22 states from January to September 2022. The study
showed that SARS-CoV-2 wastewater metrics accurately
reflected high clinical rates of disease in early 2022, but this
association declined over time as home testing increased.
Varying Lag Time. Aside from the correlation strength,
many existing correlation studies also investigated the lag
time between clinical data and wastewater viral load. In most
cases, the viral load in wastewater is a leading indicator for
clinical data, with leading time ranging from 1 day to 2
weeks during peak times considering the time-lag between
infection and test confirmation, and asymptomatic infec-
tions (Yanaç et al., 2022; Lemaitre et al., 2020). However,
the viral load may become a lagging indicator during the
infection declining phase due to prolonged viral shedding
duration (Gerrity et al., 2021). On the other hand, the lag
time for different clinical data types may follow different dis-
tributions as well. In general, the lag times of positive tests
are shorter than the hospitalization admissions. The lag of
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hospitalization is further shorter than the death cases (Peccia
et al., 2020; D’Aoust et al., 2021a; Krivoňáková et al., 2021).

It is worth mentioning that the lag time may vary signif-
icantly by time, location, and catchment population due to
the variant accessibility of testing resources and epidemio-
logical conditions of the population (Zhao et al., 2022; Kuhn
et al., 2022; Bertels et al., 2023; Acosta et al., 2022; López-
Peñalver et al., 2023; Belmonte-Lopes et al., 2023). For
example, as the pandemic progressed, many countries have
improved their testing infrastructure and reporting systems,
leading to more rapid and reliable clinical data. Conse-
quently, the reduction in report delays effectively shortened
the lag time observed in WBE studies. However, in the
endemic stage, where cases may be underreported due to the
availability of home-test kits and reduced report efforts, the
correlation between viral loads in wastewater and reported
clinical cases has become less robust.
Correlation with Estimated Prevalence. In some areas,
the wastewater viral data was used to estimate the dis-
ease prevalence in the sewersheds by leveraging the per-
sonal shedding rate and Monte Carlo simulations (Wang
et al., 2021; de Freitas Bueno et al., 2022). The estimated
prevalence was found to be significantly higher than the
reported clinical cases in the area due to asymptomatic
cases and unreported cases. To thoroughly understand the
gap between disease prevalence and reported cases, Lay-
ton et al. performed randomized door-to-door nasal swab
sampling events in different Oregon communities to infer
the community COVID-19 prevalence (Layton et al., 2022).
The estimated prevalence data was then compared with the
reported positive cases and the wastewater concentration in
the community. Statistical results show that the wastewater
viral concentrations were more highly correlated with the es-
timated community prevalence than with clinically reported
cases. Similar results were also observed in Claro et al.
(2021); Pillay et al. (2021); González-Reyes et al. (2021);
de Sousa et al. (2022); Saththasivam et al. (2021).
5.3. Estimation Models
5.3.1. Model-driven Methods

Shedding Model-based Methods. The key idea for shed-
ding model-based estimation methods is to directly use viral
concentration/load and human shedding profiles to estimate
the total infected population. The pioneer work was proposed
in Ahmed et al. (2020a, 2021), which studied the WBE
for SARS-CoV-2 in Australia. In particular, the prevalence
of SARS-CoV-2 in the sewershed was estimated using the
following formula:

𝐼 =
𝑐 ∗ 𝑓
𝑝 ∗ 𝑠

(1)

with
𝑐 =

𝑅𝑁𝐴 𝑐𝑜𝑝𝑖𝑒𝑠
𝑙𝑖𝑡𝑒𝑟 𝑤𝑎𝑠𝑡𝑒𝑤𝑎𝑡𝑒𝑟

𝑓 = 𝑙𝑖𝑡𝑒𝑟 𝑤𝑎𝑠𝑡𝑒𝑤𝑎𝑡𝑒𝑟
𝑑𝑎𝑦

(2)

𝑝 =
𝑔𝑟𝑎𝑚 𝑓𝑒𝑐𝑒𝑠
𝑝𝑒𝑟𝑠𝑜𝑛 𝑝𝑒𝑟 𝑑𝑎𝑦

𝑠 =
𝑅𝑁𝐴 𝑐𝑜𝑝𝑖𝑒𝑠
𝑔𝑟𝑎𝑚 𝑓𝑒𝑐𝑒𝑠

where the infected population 𝐼 is derived from the viral
concentration 𝑐, wastewater flow rate 𝑓 , fecal production
rate 𝑝, and fecal shedding rate 𝑠. The uncertainty and the
variability of the independent variables were approximated
using a Monte Carlo approach, which yielded a reasonable
result that agrees with the clinical observations. Similar
analysis was also applied in Brazil (Claro et al., 2021;
de Sousa et al., 2022), South Africa (Pillay et al., 2021),
Mexico City (González-Reyes et al., 2021), Tehran (Amereh
et al., 2022), Winnipeg (Yanaç et al., 2022), Southern
Nevada (Gerrity et al., 2021), Denmark (Nauta et al., 2023),
and Qatar (Saththasivam et al., 2021). The simple shedding
model in Equation 1 can be easily modified to account for the
viral decay (Yanaç et al., 2022), the variability on shedding
load, the infection-to-confirmation case delay (Fernandez-
Cassi et al., 2021), and urine viral shedding (Pillay et al.,
2021) scenarios. In de Sousa et al. (2022), the model
is further developed into a user-friendly web application,
pySewage (de Sousa et al.), to predict the number of infected
people based on the detected viral load in wastewater sam-
ples, which may be applied to monitor ongoing outbreaks.
Epidemic Model-based Methods. Another line of model-
driven methods is to fit the wastewater data into epidemi-
ological models like the susceptible-exposed-infectious-
recovered model (SEIR-model (Anderson and May, 1979))
to infer the dynamics of the disease. The framework was
first proposed in McMahan et al. (2021). Specifically, the
framework assumes that the spread of COVID-19 follows the
SEIR model and that the viral load in wastewater is solely
contributed by the infected population as illustrated in the
left panel of Figure 5. Let 𝑉𝑖𝑗(𝑡) denote the virus shed by
individual 𝑖 on day 𝑡, who become infected on day 𝑗, then
𝑉𝑖𝑗(𝑡) can modeled by a simple equation below

𝑉𝑖𝑗(𝑡) = 𝛿𝑖𝑗{10
𝜙𝑖𝑗 (𝑡−𝑗)

5 𝐼(𝑗 < 𝑡 ≤ 5 + 𝑗) (3)

+ 10𝜓
−
(𝜙𝑖𝑗−𝜓𝑖𝑗 )(𝑡−5−𝑗)

5
𝑖𝑗 𝐼(𝑡 > 5 + 𝑗)}

where 𝛿𝑖𝑗 is the number of grams of feces contributed by the
𝑖th individual who was infected on the 𝑗th day, 𝜙𝑖𝑗 is the
log10 maximum RNA copies per gram of feces being shed,
and 𝜓𝑖𝑗 is the log10 RNA copies per gram of feces being
shed 25 days after being infected. To further account for
viral decay in the sewage system, a holding time and system
temperature-dependent decay model is applied to 𝑉𝑖𝑗 to
approximate the viral loss in the collected samples. The pro-
posed framework was fitted into the wastewater surveillance
data in South Carolina from May 2020 to August 2020. The
model prediction reveals that the rate of unreported COVID-
19 cases was approximately 11 times than that of confirmed
cases, which aligns well with the independent estimation
of the ascertainment rate in South Carolina. Following the
same framework, McMahan et al. propose to calibrate the
SEIR model within a small community for fine-grained
analysis (McMahan et al., 2022). The study was carried out
on a university campus by analyzing the viral RNA copy
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Figure 5: The SEIR model and extended SEIR model used in the current literature.

rates in sewage and the number of SARS-CoV-2 saliva-test-
positive individuals among students (McMahan et al., 2022).
A strong correlation was observed between the RNA copy
rates and the number of infected individuals. The study also
suggested that the most sensitive parameter in calibrating the
SEIR model is the maximum shedding rate. Regressing the
saliva-test-positive infected individuals on predictions from
the SEIR model based on the RNA copy rates yielded a
slope of 0.87, which further demonstrated the effectiveness
of the proposed framework. In Phan et al. (2023), Phan et al.
extended the framework to incorporate the effect of temper-
ature on viral loss into the model. The extended model was
tested on the wastewater data in the Greater Boston Area
from October 2020 to January 2021. The results showed
that the model can successfully recapitulate the temporal
dynamics of viral load in wastewater and predicted the true
number of cases peaked earlier and higher than the number
of reported cases by 6–16 days during the second wave of
the pandemic in the area.

Directly inferring the SEIR model from the viral load
in wastewater may yield unstable results due to noisy viral
fluctuations. To address this issue, some statistical models
were explored to reconstruct the epidemic model. Fazli et al.
(2021) proposed to utilize the partially observed Markov
processes model (POMP (King et al., 2016)) to infer the
population in 𝑆,𝐸, 𝐼, 𝑅 compartments respectively from
the observed viral load and reported cases. Depending on
the usage of observed data, three different variants were
derived from the framework, which includes "SEIR-VY",
"SEIR-V" and "SEIR-Y". Specifically, model "SEIR-VY"
uses both viral load and case counts to fit the parameters,
whereas model "SEIR-Y" and "SEIR-V" utilizes only case
counts and viral load, respectively. The evaluation results
demonstrated that a simple SEIR model based on viral load
data can reliably predict the number of infections in the near
future. Another direction of the study was to use the extended
Kalman filter (EKF (Kalman, 1960)) to reconstruct the SEIR
model (Proverbio et al., 2022). The proposed framework

was used to infer shedding populations, the effective re-
production number, and future epidemic projections. The
framework was tested on the wastewater data from different
regions. The results showed that the inferred case number is
well correlated with the true detected case numbers with cor-
relation coefficients ranging between 0.7 and 0.9. The study
also validated that frequent sampling improves the model
calibration and the subsequent reconstruction performance.

The limitation of the previously mentioned SEIR-based
framework is that it assumes all the infected individuals
follow the same shedding model. In reality, the shedding
models of asymptomatic infections and hospitalized infec-
tions may vary significantly from each other. To address this
issue, Nourbakhsh el al. presented an extended SEIR model
as illustrated in the right panel of Figure 5 (Nourbakhsh
et al., 2022). Specifically, the infected individuals are further
categorized into four subgroups: infection (I), infectious
and later admitted to hospital (J), asymptomatic infectious
(A), and hospitalized (H). Furthermore, considering some
recovered cases may still shedding virus through feces, the
recovered group is also divided into two subgroups: non-
infectious but still shedding virus (Z) and recovered (R). The
model was fitted by the clinical data (both hospitalization
and confirmed cases) from three Canadian cities and has
provided good estimation on actual prevalence, effective
reproduction number, and future incidences. In addition, the
model was also used to perform exploratory simulations
to quantify the effect of surveillance effectiveness, public
health interventions, and vaccination on the discordance
between clinical and wastewater data.

The aforementioned frameworks are predominately based
on single-strain epidemic analysis, which cannot effectively
deal with the spread dynamics of multiple strains. Pell et al.
(2023) presented a four-dimensional modified SIR model
to study disease dynamics when two strains are circulating
in the population. The study was applied to understand
the emergence of the SARS-CoV-2 Delta variant in the
presence of the Alpha variant using the wastewater data from
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Massachusetts. In the model, a time delay is incorporated to
account for temporary cross-immunity induced by the previ-
ous infection with the established (or dominant) strain. The
study finds that the time delay does not influence the stability
of equilibrium and is hence a harmless delay. However, the
equilibrium is governed by the basic reproduction numbers
of the two strains in nontrivial ways due to the inclusion of
cross-immunity.
5.3.2. Data-driven Methods

Time Series-based Methods. In exploiting the predictive
power of the wastewater data from a data-driven perspective,
some time series-based methods have demonstrated their
effectiveness in short-term forecast tasks. Karthikeyan et al.
(2021) experimented with the multivariate autoregressive
integrated moving average (ARIMA) model to predict the
number of new positive cases from the historical case data,
wastewater data, and sample collection date in San Diego
from July to October 2020. Specifically, the model was used
for 1-week to 3-week advance case predictions. To evaluate
the model, the Pearson correlation 𝑟 between the observed
cases and predicted cases and the Root Mean Squared Error
(𝑅𝑀𝑆𝐸) of predicted cases were calculated. For the 1, 2,
and 3-week advance forecast tasks, the correlation coeffi-
cient and𝑅𝑀𝑆𝐸 were 𝑟= 0.79, 0.69, and 0.47 and𝑅𝑀𝑆𝐸
= 50, 59, and 70, respectively.

In Cao and Francis (2021), a vector autoregression
(VAR) model was utilized to predict new cases from histori-
cal cases and viral concentration in Indiana (PA) from April
2020 to February 2021. The Mean Average Percentage Error
(MAPE) for 1-3 week case predictions were 11.85%, 8.97%
and 21.57%, respectively. The study suggests that short time
series can reliably predict cases 1-week ahead but are not
adequate for predicting cases 3 weeks ahead. To improve the
robustness of long-term prediction tasks, a longer time series
is needed. Moreover, the paper also studied whether different
representations of viral data would affect the prediction
results. Their study shows that the log-scaled representation
of viral concentration has the best interpretation ability of
the data, while the original viral concentration has a stronger
forecasting ability under the VAR model framework.

The ARIMA model and VAR model were systematically
compared in a wastewater surveillance study in Detroit from
September 2020 to August 2021 (Zhao et al., 2022). The
study showed that the autoregression model with seasonal
patterns (SARIMA) and the VAR model are more effective
in predicting COVID-19 incidence compared to the ARIMA
model. Specifically, the correlation between VAR predicted
cases and observed cases is around 0.95 to 0.96 for the 1-
week advance forecast task. Similarly, the correlation for
the SARIMA-model is around 0.94 to 0.95. While for the
ARIMA model, the correlation is only around 0.4 to 0.67.

Another line of time series-based methods is derived
from the spatiotemporal methods, which take both spatial
information of sewersheds and temporal information of vi-
ral load into account in the estimation model. Li et al.

(2023a) proposed a spatially continuous statistical model
that quantifies the relationship between viral concentration
and a collection of covariates including socio-demographics,
land cover and virus-associated genomic characteristics at
the sewersheds while accounting for spatial and temporal
correlation. The model is used to predict the weekly viral
concentration at the population-weighted centroid of the
32,844 Lower Super Output Areas (LSOAs) in England,
then aggregate these LSOA predictions to the Lower Tier
Local Authority level (LTLA). In addition, the model is also
used to quantify the probability of change directions (de-
crease or increase) in viral concentration over short periods.
Non-time Series-based Methods. A wide range of regres-
sion models have been applied to the wastewater data for
case prediction due to the ease of implementation and ex-
planability. The simplest regression model assumes that the
number of cumulative cases at time 𝑡 + 𝜏 is linearly related
to the viral concentration at time 𝑡, and has demonstrated its
effectiveness for short-term case prediction (Joseph-Duran
et al., 2022). Li et al. (2023b) applied the random forest
model to predict COVID-19-induced weekly new hospi-
talizations in 159 counties across 45 states in the United
States of America (USA). In particular, different models
were established to predict three different hospitalization in-
dicators: weekly new hospitalizations, census inpatient sum,
census inpatient average. For each hospitalization indicator,
a variety of features, such as Community Vulnerability In-
dex (Smittenaar et al., 2021), vaccination coverage, popula-
tion size, weather, viral concentration, and wastewater tem-
perature, were fed into the model. The study showed that the
model can accurately predict the county-level weekly new
admissions, allowing a preparation window of 1-4 weeks. In
addition, it also suggests updating the training model period-
ically to ensure accuracy and transferability, with mean abso-
lute error within 4-6 patients/100k population for upcoming
weekly new hospitalization numbers. Aberi et al. (2021)
compared eight different regression models for COVID-19
surveillance with the wastewater data from four treatment
plants in Austria from May to December 2020. The tested
models include Linear Regression (LR), Polynomial Regres-
sion (PL), 𝑘 Nearest Neighbor (KNN), Multilayer Percep-
tron (MLP), Support Vector Regression (SVR), Generalized
Additive Models (GAM), Decision Tree (DT) and Random
Forest (RF). The study showed that simple models like PL
and KNN outperform more complex models such as GAM,
SVR, and MLP with slight differences. Similarly, Vallejo et
al. applied linear regression, generalized additive model and
locally estimated scatterplot smoothing model (LOESS) for
COVID case prediction in Northwest Spain (Vallejo et al.,
2022). In addition to the wastewater data, some relevant
atmospheric variables (e.g. rainfall, humidity, temperature)
are also considered in the models. The results showed that
the LOESS model yields the least prediction error with𝑅2 =
0.88. The 𝑅2 for the linear and GAM model are 0.85 and
0.87, respectively. By changing the prediction period, the
study found that the reliability of the model predictions could
change by time due to different causes such as the change of
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Figure 6: The uncertainty of wastewater-based COVID-19 surveillance.

SARS–CoV–2 variants. In Anneser et al. (2022), the linear
and the GAM model were compared with Poisson model
and Negative Binomial model to predict the cases from
the wastewater data in the three New England regions. The
models that fit the data best were linear, GAM, and Poisson
model with very small differences on 𝑅2 and 𝑅𝑀𝑆𝐸. The
same set of models were tested on the wastewater data in
Oklahoma city from November 2020 to March 2021, with
some sociodemographic factors (e.g. age, race and income)
considered in the models (Kuhn et al., 2022). The best results
were obtained using a multivariate Poisson model. Consis-
tent with the finding in Vallejo et al. (2022), the performance
of the Poisson model varies by the time of study. Specifically,
its accuracy decayed from 92%, during November 2020 until
the end of January 2021, to 59% during February and March
2021. In Morvan et al. (2022), the shedding model in (1) and
gradient boosted regression trees (GBRT) were combined to
estimate the COVID prevalence in England with the wastew-
ater data from 45 sewage sites. The estimated prevalence was
within 1.1% of the estimates from representative prevalence
survey (Morvan et al., 2022). In Xiao et al. (2022), the chang-
ing dynamics between the reported cases and wastewater
viral load were explicitly studied. Specifically, the clinical
reported cases were modeled as the convolution between the
scaled wastewater data and an unknown transfer function. It
was hypothesized that the transfer function could be fit by
a beta distribution. The model was fit into the wastewater
surveillance data in the Boston area from March 2020 to
May 2021. The results showed that the transfer function has a
broad peak and long tail before mid August 2020, indicating
that the process of infected individuals getting counted as
cases has a broad distribution, with some individuals getting
reported very quickly but others taking up to weeks. In
this case, wastewater viral load can be used as an early
indicator of disease dynamics before clinical test results
come back positive. After mid August, the transfer function
becomes more sharply peaked, indicating that wastewater
and reported cases track each other closely. Consequently,
wastewater viral load have less utility as an early warning
signal as increased clinical testing capacity effectively cap-
tures new infections in a timely manner.

In addition to the aforementioned simple regression
models, some deep learning-based models are also explored
for the wastewater-based epidemic surveillance tasks (Zhu
et al., 2022; Jiang et al., 2022; Li et al., 2021a; Galani

et al., 2022). Specifically, the artificial neural network model
(ANN) and adaptive neuro fuzzy inference system (ANFIS)
have proven effective in different studies for case prediction
tasks when compared with linear models and random for-
est (Li et al., 2021a). By incorporating the catchment infor-
mation, weather, clinical testing coverage, and vaccination
rate features into the ANN model, the effective reproduction
rate can be estimated as studied in Jiang et al. (2022).

Aside from the effectiveness of learning models, the
features used to feed the learning models may also have
an impact on the prediction results. In Li et al. (2021a),
the study indicated that the air and wastewater tempera-
ture played a critical role in the prevalence estimation by
data-driven models. Also, normalizing and smoothing the
wastewater data (Aberi et al., 2021) or transforming the viral
load into log scale (Vallejo et al., 2022) can help in fitting
the models as well. To better understand the spread of the
disease and the effect of public health response, Xiao et
al. proposed to monitor the ratio between wastewater viral
load and clinical cases (WC-ratio) and the time lag between
wastewater and clinical reporting in addition to viral load
alone (Xiao et al., 2022). Specifically, when the WC ratio
is high, it implies that the existing testing capacity has not
kept pace with exponentially rising new cases, which never-
theless are detected in wastewater surveillance. Conversely,
a low WC ratio indicates that clinical tests are capturing
the majority of infections reflected in wastewater viral load.
When this ratio is stable and low, it implies that the existing
testing capacity is sufficient to assess the extent of new
infections. The time lag, on the other hand, may reflect the
accessibility of test facilities. Kuhn et al. (2022) showed the
lag was significantly lower for areas with a higher household
income and a higher proportion of the population aged 65 or
older, but higher for areas with a high proportion of Hispanic
inhabitants.
5.4. Uncertainty Analysis

The accuracy of wastewater-based COVID-19 surveil-
lance is limited by the uncertainty and inevitable viral loss
introduced in each process step. Wade et al. (2022) ana-
lyzed different sources of uncertainty, which include (1)
serving population, which may change by the population
immigration across regions; (2) fecal shedding rate, which
varies among individuals and over the infection course; (3)
sewage network characteristics, such as the percentage of
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gravity or pressurized pipes, the size of the network, and
retention capacity; (4) sampling strategies; and (5) sample
testing methods. In Figure 6, we summarize the possible
uncertainties introduced in each key steps of the WBE
system.

Li et al. (2021b) systematically studied the uncertainty
in estimating SARS-CoV-2 prevalence by WBE. The study
suggested that the uncertainty caused by the excretion rate
can become limited for the prevalence estimation when
the number of infected persons in the catchment area is
more than 10. As for the sampling methods, grab sampling
contributed the highest uncertainty (around 30% on aver-
age) while a continuous flow-proportional sampling method
showed <10% uncertainty. The uncertainty introduced at
the testing stage was the dominant factor. Therefore, it is
important to use surrogate viruses as internal or external
standards during the virus test process. Overall, WBE can be
considered as a reliable complementary surveillance strat-
egy for SARS-CoV-2 with reasonable uncertainty (20–40%).

It is worth mentioning that the missing values and out-
liers in the collected WBE data may also impact the output
of estimation models. Unfortunately, the remedy strategies
are not frequently discussed in most of the literature. In gen-
eral, the missing values within a short time interval can be
effectively imputed by leveraging the observed nearby data
points. Some useful methods include mean imputation, sim-
ple interpolation methods (e.g., linear interpolation, spline
interpolation), or even some time-series based methods as
introduced in Fang and Wang (2020). While to detect the
outliers, we can utilize some well-established time-series
abnormally detection methods as introduced in Shaukat et al.
(2021).

6. Case Study
This section presents the application of WBE and its in-

fluence on public health initiatives through case studies from
different regions. Additionally, it discusses the possibility of
expanding and maintaining WBE as a regular surveillance
technique for COVID-19 and other infectious diseases.
6.1. NWSS in the U.S.

In the United States, the CDC led the National Wastew-
ater Surveillance System (NWSS) in September 2020 to
respond to the COVID-19 epidemic. CDC developed NWSS
to track the presence of SARS-CoV-2 in wastewater samples
collected across the country (CDC, 2023).

The CDC uses the following procedures for surveillance:
(1) collect wastewater samples from treatment plants in the
sewersheds; (2) send samples to environmental or public
health labs for SARS-CoV-2 testing; (3) submit testing data
to CDC through the online NWSS Data Collation and Inte-
gration for Public Health Event Response (DCIPHER) por-
tal; (4) analyze the reported data with the NWSS DCIPHER
system and report the findings to the health department for
COVID-19 response; (5) publish the results through the
CDC’s COVID Data Tracker.

Figure 7: Current Viral Activity Levels Given by CDC (2024a)

The NWSS is implemented in all 50 states, 3 territories,
and 5 tribal organizations as shown in Figure 7, which
provides early detection of changes in disease trends before
trends are seen in clinical cases. This information can be
used to prepare healthcare providers and hospital systems
for upcoming increases in clinical visits, hospitalizations,
and demands from other public health prevention efforts.
Such wastewater monitoring data is complementary to other
public health surveillance data, which enables better variants
tracking and outbreak detection. The monitoring system is
fast and efficient due to its independence from the medical
systems, which makes it able to circumvent the potential
delay caused by healthcare accessibility, test availability, and
also the incubation period.

In addition to COVID-19, the CDC also uses the NWSS
to monitor the Mpox and Influenza A as shown in Figure8
and Figure9 (CDC, 2024c). In particular, the Mpox virus
detection in wastewater is tracked in a rolling window of 4
weeks. The detection results are classified into 4 categories,
which include “Consistent Detection” when the Mpox virus
was detected in more than 80% of samples in the past 4 weeks
AND the most recent detection was within the past 2 weeks;
“Intermittent Detection” when the virus was detected in 1%
to 80% of samples in the past 4 weeks AND the most recent
detection was within the past 2 weeks; “No Detection” when
the virus was not detected in any samples from the site in the
past 4 weeks OR the most recent detection was more than 2
weeks ago; and “No Recent Data” when too few samples
were submitted (fewer than 3) in the past 4 weeks. On the
other hand, in the Influenza A monitoring program, sampling
sites are categorized based on the current level of influenza A
compared to the past levels at the same site during the 2023-
2024 influenza season. When influenza A virus levels are
at the 80𝑡ℎ percentile or higher, CDC will start collaborate
with relevant partners to understand the factors that could be
contributing to these levels.
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Figure 8: Mpox Virus Detection in Wastewater (CDC, 2024d)

According to the working experience of the CDC, wastew-
ater surveillance data are most useful when used with other
data, such as overall levels of the virus in wastewater,
historical wastewater data for that location, geographical
context, and clinical cases. These data can be used to
refine the wastewater monitoring results and help to gain
a more comprehensive analysis. The key limitation of the
wastewater surveillance system is bounded by the detection
limits of the testing methods. In particular, when the viral
concentration is lower than the limits of detection, the viral
level can not be effectively approximated by the testing
methods. Consequently, low levels of infection in a commu-
nity would not be captured by the wastewater surveillance
method.
6.2. Surveillance in Other Countries

Since early 2020, the UK has been analyzing wastewater
for SARS-CoV-2 RNA. The Environmental Monitoring for
Health Protection (EMHP) SARS-CoV-2 wastewater mon-
itoring program is led by the UK Health Security Agency
(UKHSA) and runs in partnership with multiple government
agencies, water companies, and universities. The program
provides coverage for approximately 74% of the popula-
tion in England (EMHP, 2022). The first detections of the
SARS-CoV-2 virus in the UK were made in wastewater
samples that were originally taken for polio surveillance.
Since then, separate wastewater surveillance initiatives in
England, Scotland, and Wales starting in the early summer
of 2020 have demonstrated their effectiveness in COVID-
19 surveillance (Wade et al., 2020). As the epidemic began
to decline after 2022, the EMHP monitoring program was
scaled down and paused at the end of March 2022.

In China, urban sewage surveillance program was added
to the Program for Prevention and Control of Novel Coro-
navirus Infections issued in 2023. Through community
sewage monitoring, areas where infected persons may present
are identified on time. Possible infected persons can then
be traced and found with the help of other surveillance
methods. The sewage surveillance at treatment plants is

Figure 9: Wastewater Data for Influenza A (CDC, 2024b)

therefore used as a key auxiliary method in assessing the
epidemiological trends of COVID-19 infections in available
areas in China (NDCPA, 2023).

In Canada, the government has created a wastewater
dashboard that allows people to track and compare COVID-
19, Influenza A, Influenza B, and RSV levels over time in
some communities in Canada. The data is from 62 sites,
representing 49.58% of the Canadian population (Canada.ca,
2022). In South Africa, the wastewater surveillance is con-
ducted by the National Institute for Communicable Diseases
(NICD) to support the government’s response to infectious
disease threats, including COVID-19, Meningococcal dis-
ease, Typhoid, Shigellosis and Viral Hemorrhagic Fevers
(VHF) (NICD, 2023). In New Zealand, the Institute of En-
vironmental Science and Research (ESR) tested wastewater
for the presence of SARS-CoV-2 across the country, which
helped the government to identify outbreaks from 2020 to
2022. This surveillance is now used to understand disease
trends in communities and to monitor variants. In their
surveillance system, most wastewater samples are collected
by autosamplers, which greatly reduces human efforts in
the process. For places where such passive sampling is not
available, grab sampling are used as an alternative (ESR,
2023).

Wastewater-based surveillance of COVID-19 has been
successfully used in many countries around the world. Such
surveillance methods can be further scaled up to become a
routine surveillance tool. To do so, we should make more
efforts on (1) developing automated sampling and testing
techniques to reduce labor costs; and (2) conducting ex-
tensive research on broad-spectrum surveillance methods to
monitor multiple virus simultaneously.

7. Datasets
This section summarizes the global wastewater datasets

that are publicly available in Table 3. The data were collected
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up to September 1, 2024. For each dataset, the country,
data granularity, area covered, time granularity, time span,
current status, and corresponding website are listed. The data
granularity represents the aggregation level of wastewater
signals, which could range from building-level to country-
level. The area covered column shows the monitoring area
of the dataset. Time granularity is used to indicate the
sampling frequency of the wastewater data. Specifically, for
the datasets labeled with ‘>1/week’, more than one data
point were observed in one week overall, but the actual
weekly samples may vary along the course. The time span
specifies the sampling period of the dataset, while the ’live’
column indicates whether the data on the website is still
getting updated or not. Lastly, the ’website’ column gives
the link to the dataset.

8. Future Directions and Challenges
Wastewater-based epidemiology has been used as an

effective tool to complement conventional clinical testing
methods for COVID-19 and other infectious disease surveil-
lance. Although substantial efforts have been made in the
area, there are still many challenges to be addressed in future
research. These important problems that are worth exploring
are identified as follows.
Shedding Variability. Current studies predominantly as-
sume that the infected individuals follow a uniform shedding
model with only a few works to account for the variability
of the shedding profile. In fact, the shedding amount and
duration of SARS-CoV-2 in feces can vary widely between
individuals and over time. Factors such as the stage of infec-
tion, disease severity, vaccination condition, and individual
health condition may all affect the shedding profile. As
the shedding model is often directly used to estimate the
disease prevalence together with the total viral load in the
wastewater, it is therefore crucial to construct customized
shedding profiles for different infected individuals.
Sample Testing and Virus Quantification. Long-term
wastewater-based COVID-19 surveillance is an economical
way to detect the outbreak of disease and emerging vari-
ants (Karthikeyan et al., 2022; Lamba et al., 2022). One
critical problem for the surveillance systems is the allocation
of test resources. To be specific, given a limited budget for
sample test resources, it is important to choose the sampling
locations and frequency by considering the catchment size,
and serving population in the area so that potential outbreaks
can be detected as early as possible. On the other hand, the
virus quantified in the wastewater sample may not reflect the
actual amount of virus entering the sewage system because
of the limited sensitivity of lab methods and viral decay in
the sewage system. Therefore, it is crucial to improve the
lab testing methods and understand the virus decay model
under various environmental parameters (e.g., temperature,
wastewater pH, etc.). In addition, it is essential to extend
the current COVID-19 surveillance framework to other
infectious diseases, so that it can be reused as a general
disease monitoring and early warning system.

Data Analytics. The majority of the existing literature takes
the wastewater data as a standalone signal for epidemic
analysis from site to site, while little effort has been made
to study the wastewater data from multiple sites collectively
for spatial-temporal pattern analysis. Compared to the stan-
dalone analysis, the spatial-temporal analysis is more use-
ful for reconstructing the epidemic process at a panoramic
scale. In particular, for some large metropolitan areas that
can be divided into multiple sewersheds, local residents
may contribute to different sites due to the commute from
residential areas to commercial areas. In this way, it is
hard to recover the disease spread process without tackling
the interdependency across sites. The main obstacle to this
research direction is the comparability of the data from
different sites. Specifically, the sample collection methods,
testing methods, and sewage system structure may vary
by site. Correspondingly, the same viral load from differ-
ent sewersheds may represent different epidemic conditions
in reality. To this end, how to effectively compile those
data into a uniform framework can be a challenging task
to address. Moreover, the uncertainties introduced in the
wastewater analytic pipeline are not negligible as explained
in Section 5.4. Therefore, it is important to quantify the
uncertainty together with the prediction results to ensure the
reliability of the results.
Multimodality Data Integration The accuracy and time-
liness of COVID-19 prevalence estimates can be greatly
improved by integrating WBE data with other modality data,
such as clinical test data, mobility data, demographic data,
and environmental data (Hopkins et al., 2023). Numerous
previous studies have demonstrated a strong correlation be-
tween WBE data and clinical data. Based on this correlation
and the rapidity of WBE, wastewater monitoring data is
often used as an early warning signal (D’Aoust et al., 2021a).
In turn, clinical data and hospitalization data can be used
as truth values to correct the analytical model of WBE. As
the model continues to get corrected, the predictions would
become more accurate. Another factor affecting the accuracy
of surveillance is population distribution, as the serving
population size can have a direct impact on the wastewater
viral level. In addition, static demographic information, in-
cluding age, sex, and socioeconomic status, can also help
contextualize the WBE data. On the other hand, population
movements across sewersheds should also be considered in
the analytical model as they could affect regional population
size and thus viral loads. In this scenario, mobility data
from mobile phones and transportation systems can provide
insights into population movement patterns, helping to iden-
tify potential hotspots and transmission routes. Integrating
this data with WBE can therefore enhance the understanding
of viral spread within and between different communities.
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Table 3: Current Wastewater Publicly Available Datasets for COVID-19 Surveillance.

Country Data Granularity Area Covered Time Granularity Time Span Live Websites

USA Country/Region/
County

Nationwide
(240 counties) Weekly Jan 2020 - Current Yes https://biobot.io/data/

USA County/State/
WWTP Nationwide Weekly Aug 2022 - Current Yes https://covid.cdc.gov/covid-data-tracker/#wastewater-surveillance

USA Country/Region/
WWTP Nationwide >1/week Jul 2020 - Current Yes https://data.wastewaterscan.org/

USA WWTP Gilbert, AZ >1/week Jun 2020 - May 2022 No https://tog.maps.arcgis.com/apps/dashboards
USA WWTP Flagstaff, AZ Weekly Oct 2021 - Current Yes https://pathogen-intelligence.tgen.org/VECTRSurveillance/flagstaff/
USA Community Tempe, AZ Weekly Mar 2020 - Current Yes https://wastewater.tempe.gov/pages/biomarker-covid19#COVID-19-Dashboard
USA WWTP California >1/week Dec 2020 - Current Yes https://www.cdph.ca.gov/Programs/CID/DCDC/

Pages/COVID-19/CalSuWers-Dashboard.aspx
USA WWTP Davis, CA Daily Nov 2020 - Current Yes https://healthydavistogether.org/wastewater/
USA Community UC Davis, CA Daily Sept 2021 - Current Yes https://campusready.ucdavis.edu/testing-response/dashboard
USA Community Marin, CA 1-3/week Sept 2021 - Current Yes https://coronavirus.marinhhs.org/surveillance
USA County/WWTP/

Community Central valley, CA 3/week Nov 2020 - Current Yes https://healthycvtogether.org/data-main/covid/
USA WWTP Santa Clara, CA Daily Oct 2020 - Current Yes https://covid19.sccgov.org/dashboard-wastewater#3925188384-738865471
USA WWTP San Luis Obispo, CA Daily May 2022 - Current Yes https://www.slocounty.ca.gov/COVID-19/Data.aspx#Wastewater
USA WWTP Santa Barbara, CA Weekly May 2021 - Current Yes https://www.sbcwastewater.org/dashboard
USA WWTP San Bernardino, CA Weekly Sept 2020 - May 2023 No https://lookerstudio.google.com/u/0/reporting/

430e67c8-acaf-4574-a2d4-48d0b665ab05/page/jMhOC
USA WWTP Palm Springs, CA Weekly Jan 2022 - Jul 2023 No https://www.palmspringsca.gov/government/departments/community-economic

-development-department/wastewater-treatment-plant-covid-19-test-reports
USA WWTP UC San Diego, CA Daily Feb 2021 - Current Yes https://blink.ucsd.edu/safety/resources/public-health/covid-19/dashboard.html
USA WWTP San Diego, CA Daily Feb 2021 - Current Yes https://searchcovid.info/dashboards/wastewater-surveillance/
USA WWTP Colorado >1/week Aug 2021 - Current Yes https://cdphe.maps.arcgis.com/apps/dashboards/d79cf93c3938470ca4bcc4823328946b
USA WWTP 4 cities in CT Daily Aug 2022 - Current Yes https://yalecovidwastewater.com/sars-cov-2/
USA WWTP/Building UConn, CT >1/week Apr 2023 - Current Yes https://covid-testing.uconn.edu/dashboard/
USA WWTP/Community New Castle, DE Weekly May 2020 - Sept 2023 No https://techimpact.shinyapps.io/ncco_wastewater/
USA WWTP St. Augustine, FL Weekly Apr 2020 - Mar 2021 No https://data-staug.opendata.arcgis.com/apps/STAUG::

covid-19-wastewater-testing-dashboard/explore
USA County/WWTP Georgia 2/week Apr 2022 - Current Yes https://wastewatersurveillance.s3.amazonaws.com/

ExternalNWSS_20231011.html#summary-report
USA Community/Building Georgia Tech, GA >1/week Aug 2022 - Current Yes https://health.gatech.edu/coronavirus/monitoring-covid/
USA County Hawaii Biweekly Sept 2022 - Current Yes https://health.hawaii.gov/coronavirusdisease2019/

what-you-should-know/covid-19-data-reports/
USA City Boise, ID Daily-3/week May 2020 - Current Yes https://www.cityofboise.org/departments/mayor/

covid-19-information/wastewater-testing/
USA County/WWTP Idaho >1/week Jun 2021 - Current Yes https://public.tableau.com/app/profile/idaho.division.of.public.health/

viz/DPHIdahoCOVID-19Dashboard/Home
USA WWTP Illinois >1/week Nov 2021 - Current Yes https://iwss.uillinois.edu/wastewater-treatment-plants/?page=1
USA WWTP Kendall, IL >1/week Nov 2020 - Jun 2022 No https://portal.rjngroup.com/arcgisportal/apps/opsdashboard/

index.html#/594d4b1b2dd840958cedb50b1381982b
USA WWTP/Community Chicago 2/week Mar 2022 - Current Yes https://www.chicago.gov/city/en/sites/covid-19/

home/covid-19-wastewater-surveillance.html
USA State/WWTP Indiana >1/week Feb 2020 - Current Yes https://www.coronavirus.in.gov/

indiana-covid-19-dashboard-and-map/wastewater-dashboard/
USA WWTP Cedar Rapids, IA >1/week Oct 2021 - Current Yes https://www.cedar-rapids.org/residents/utilities/covid-19.php
USA City Louisville, KY Weekly Sept 2022 - Current Yes https://louisville.edu/envirome/thecoimmunityproject/dashboard
USA WWTP Maine Weekly May 2020 - Aug 2023 No https://www.maine.gov/dhhs/mecdc/infectious-disease/

epi/airborne/coronavirus/wastewater-reports.shtml
USA WWTP/Community Montgomery, MD 2/week Oct 2022 - Current Yes https://montgomerycountymd.gov/covid19/data/wastewater-surveillance.html
USA WWTP/Community Eastern MA Daily Mar 2020 - Current Yes https://www.mwra.com/biobot/biobotdata.htm
USA Community Boston, MA 2/week Jan 2023 - Current Yes https://www.boston.gov/government/cabinets/boston-public-health-commission/

covid-19-boston#wastewater-reports
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USA WWTP Massachusetts >1/week Feb 2020 - Current Yes https://www.mass.gov/info-details/wastewater-surveillance-reporting
USA Community Cambridge Weekly Oct 2020 - Current Yes https://cityofcambridge.shinyapps.io/COVID19/#shiny-tab-wastewater
USA WWTP Southeast Michigan Daily Jul 2021 - Current Yes https://um.wastewatermonitoring.dataepi.org/
USA WWTP Michigan Weekly Jun 2021 - Current Yes https://www.michigan.gov/coronavirus/stats/wastewater-surveillance/dashboard/

sentinel-wastewater-epidemiology-evaluation-project-sweep
USA WWTP/Community Michigan >1/week Apr 2020 - Dec 2020 No https://storymaps.arcgis.com/stories/f2996168197c4bbfa05e76b893fd9a8e
USA WWTP/Community/

Building Michigan Weekly Apr 2020 - Current Yes https://gisportal.state.mi.us/portal/apps/insights/index.html#/
view/52bbb104ed574887918f990af9f3debe

USA WWTP Twin Cities, MN Daily Nov 2020 - Aug 2023 No https://metrotransitmn.shinyapps.io/metc-wastewater-covid-monitor/
USA State/WWTP Minnesota >1/week Jan 2023 - Current Yes https://umn.maps.arcgis.com/apps/dashboards/fd0350c812334c5f9733ca5b6186db0d
USA State/WWTP Missouri Weekly Jul 2020 - Current Yes https://storymaps.arcgis.com/stories/f7f5492486114da6b5d6fdc07f81aacf
USA City Montana >1/week Mar 2020 - Dec 2022 No https://www.healthygallatin.org/coronavirus-covid-19/wastewater-data/
USA WWTP Grand Island, NE Weekly Feb 2022 - Current Yes https://cdhd.ne.gov/how-do-i/find/covid-wastewater-reports.html
USA City/Community/

Building Southern Nevada Weekly/Monthly Aug 2020 - Aug 2023 Yes https://empower.unlv.edu/
USA County/City Nevada Weekly May 2020 - Oct 2022 No https://thenevadaindependent.com/coronavirus-data-nevada
USA WWTP New Hampshire Weekly Oct 2022 - Current Yes https://wisdom.dhhs.nh.gov/wisdom/dashboard.html?topic=covid-19&

subtopic=recurring-updates&indicator=covid-19-wastewater#tabnavbarid
USA WWTP New York >1/week Aug 2020 - Current Yes https://mbcolli.shinyapps.io/SARS2EWSP/#
USA WWTP North Carolina >1/week Jan 2021 - Current Yes https://covid19.ncdhhs.gov/dashboard/wastewater-monitoring
USA WWTP Western NC >1/week Jan 2021 - Jul 2022 No https://wastewater.covid19.mathematica.org/
USA WWTP Huron, OH 2/week Aug 2023 - Oct 2023 No https://www.huroncohealth.com/public-information
USA WWTP Ohio >1/week Aug 2020 - Sept 2023 No https://www.neorsd.org/ohio-coronavirus-wastewater-monitoring-network-

data-for-northeast-ohio-regional-sewer-district/
USA State/County/

City Oklahoma Weekly Jul 2021 - Current Yes https://www.tulsa-health.org/community-health/illness-disease/
coronavirus-disease-2019-covid-19/tulsa-county-covid-19-data

USA City Oregon >1/week Sept 2020 - Current Yes https://public.tableau.com/app/profile/oregon.health.authority.covid.19/viz/
OregonsSARS-CoV-2WastewaterMonitoring/WastewaterDashboard

USA County/WWTP Pennsylvania >1/week Jul 2022 - Current Yes https://www.arcgis.com/apps/dashboards/ee27ed0a3a9f4ddbb380ec0eb1369a84
USA County Indiana, PA Weekly Aug 2020 - Sept 2023 No https://www.indianaboro.com/news/categories/wastewater-surveillance
USA County Allegheny, PA >1/week Nov 2021 - Current Yes https://mcba.autonlab.org/covidashboard/public
USA County Chattanooga, TN Weekly May 2020 - Mar 2023 No https://connect.chattanooga.gov/covid-biobot-analysis-reports/
USA WWTP Houston, TX Weekly Jul 2020 - Current Yes https://covidwwtp.spatialstudieslab.org/?data_id=dataSource_14-b3436880c1ff47efb6

0e44ac78851c5e%3A20055%2CdataSource_18-WWTP_List%3A6&page=page_0
USA WWTP Utah >1/week Mar 2020 - Current Yes https://udwq.shinyapps.io/sarscov2_surv/
USA WWTP Burlington, VT Weekly Jul 2022 - Current Yes https://www.burlingtonvt.gov/covid-19/wastewater
USA WWTP Virginia >1/week Sept 2021 - Current Yes https://www.vdh.virginia.gov/coronavirus/see-the-numbers/

covid-19-data-insights/sars-cov-2-in-wastewater/
USA WWTP Spokane, WA Weekly Dec 2021 - Current Yes https://covid.srhd.org/topics/spokane-county-case-data
USA WWTP Washington >1/week Oct 2021 - Current Yes https://doh.wa.gov/data-and-statistical-reports/diseases-and-chronic-conditions/

communicable-disease-surveillance-data/respiratory-illness-data-dashboard#WasteWater
USA State/WWTP West Virginia Weekly Oct 2022 - Current Yes https://wvuvectors.shinyapps.io/WaTCH-WV/
USA State/WWTP Wisconsin >1/week Sept 2020 - Current Yes https://www.dhs.wisconsin.gov/covid-19/wastewater.htm
USA WWTP Wyoming >1/week Oct 2020 - Dec 2021 No https://covidwastewatermonitor.wyo.gov/

Canada Region/WWTP Nationwide >1/week Oct 2020 - Current Yes https://health-infobase.canada.ca/covid-19/wastewater/
Canada WWTP Eastern Ontario >1/week Aug 2023 - Current Yes https://eohu.ca/en/covid/covid-19-status-update-for-eohu-region
Canada WWTP Kingston, ON 3-5/week Nov 2022 - Current Yes

https://app.powerbi.com/view?r=eyJrIjoiMzg5ZGFmNTAtZDcxNC00N2NiLTg0Y
mUtMGY2ZmM5ODZkOTVjIiwidCI6Ijk4M2JmOTVjLTAyNDYtNDg5My05MmI
4LTgwMWJkNTEwYjRmYSJ9&pageName=ReportSection56a7adbd9a3e98e0661d

Canada WWTP Windsor-Essex, ON 5/week Dec 2020 - Current Yes https://www.wechu.org/reports/local-covid-19-surveillance
Canada WWTP London, ON 3-5/week Oct 2021 - Current Yes http://www.519covid.ca/
Canada WWTP Waterloo, ON >1/week Jan 2021 - Apr 2023 Yes https://www.regionofwaterloo.ca/en/health-and-wellness/

covid-19-wastewater-surveillance.aspx#
Canada Region/City Wellington, Dufferin,

and Guelph, ON Daily Sept 2021 - Current Yes https://bi.wdgpublichealth.ca/respiratory-dashboard/
Canada WWTP Halton, ON 3-5/week Jan 2023 - Current Yes https://www.halton.ca/For-Residents/Immunizations-Preventable-Disease/

Diseases-Infections/COVID-19
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Canada WWTP Toronto >1/week Feb 2021 - Current Yes https://www.toronto.ca/community-people/health-wellness-care/health-programs-advice/

respiratory-viruses/covid-19/covid-19-pandemic-data/covid-19-wastewater-surveillance/
Canada Province/Region Ontario 3-5/week Oct 2022 - Current Yes https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/

COVID-19-Data-Surveillance/Wastewater
Canada WWTP York, ON Daily Nov 2020 - Current Yes

https://www.york.ca/health/covid-19/covid-19-york-region#.Yd3nnYjMK3A?
utm_source=newmarkettoday.ca&utm_campaign=newmarkettoday.ca%3A%20

outbound&utm_medium=referral
Canada WWTP Peterborough, ON 5/week Jul 2022 - Current Yes

https://app.powerbi.com/view?r=eyJrIjoiMDRhYWQ1NzktNjlkMi00YTQ2LWI0
NDItOTQ0ZDU2MDk3YTllIiwidCI6IjQ4OTJlODVlLTM1NzEtNGUzNy1hZjU1LT

E4NTU3MjA2NDBjOCJ9&pageName=ReportSectionb42f1cb240c9ad8780d8
Canada WWTP Greater Sudbury, ON 3-5/week Jan 2021 - Current Yes https://www.greatersudbury.ca/live/covid-19-coronavirus/

measuring-sars-cov-2-in-wastewater-covid-19/
Canada WWTP Thunder Bay, ON 3-5/week Dec 2021 - Current Yes https://www.tbdhu.com/datadashboard
Canada City Alberta >1/week Jul 2023 - Current Yes https://covid-tracker.chi-csm.ca/
Canada WWTP British Columbia 2-3/week Jan 2022 - Current Yes https://bccdc.shinyapps.io/respiratory_wastewater/#Viral_Load_Summary
Brazil City 6 cities Daily Jun 2021 - Mar 2022 No

https://app.powerbi.com/view?r=eyJrIjoiNzMxYjdiZGYtZDVjNy00NTMwLWIwZ
mItYmQwOWJhNzk3YmU1IiwidCI6Ijc1NmU3MTc4LTA1ZmYtNGVmYy05OTY
2LTU2ODFlNjE2MjA3MCJ9&pageName=ReportSectiond497bb36400a320db4c7

Brazil City 2 cities Monthly Apr 2020 - Aug 2022 No https://coronavirus.saude.mg.gov.br/transparencia/monitoramento-covid-esgotos
New Zealand Region/City 16 regions Weekly Jul 2022 - Current Yes https://esr-cri.shinyapps.io/wastewater/#region=Wellington

&log_or_linear=linear&period=twelveMonthsButton
Australia WWTP Perth Weekly Jul 2022 - Current Yes https://www.health.wa.gov.au/articles/a_e/coronavirus/covid19-wastewater-surveillance
Australia Region/City Queesland Daily Jul 2020 - Sept 2022 No https://www.data.qld.gov.au/dataset/queensland-wastewater-surveillance-for-sars-cov-2
Australia Region/City Sydney Biweekly Feb 2022 - Current Yes https://www.health.nsw.gov.au/Infectious/covid-19/Pages/reports.aspx

South Africa Province/District/
WWTP

9 Province/16 District/
85 WWTP Weekly Feb 2021 - Dec 2022 No https://wastewater.nicd.ac.za/

South Africa Province 5 Province/10 District/
76 WWTP Weekly Nov 2021 - Apr 2023 No https://www.samrc.ac.za/wbe/

Austria WWTP 10 regions in Austria Daily Jan 2022 - Current Yes https://abwassermonitoring.at/dashboard/
Belgium WWTP/Regions 206 Municipalities

in Belgium 2/week Sep 2020 - Current Yes https://wastewater.sciensano.be/dashboard/covid19/en/
Czech Republic WWTP 4 regions

in Czech Republic Weekly Apr 2020 - Jan 2023 No https://heis.vuv.cz/data/webmap/datovesady/
projekty/covmon/default.asp?lang=cs&tab=6&wmap=

Cyprus WWTP Cyprus Weekly Oct 2021 - Oct 2022 No https://covid-pulse.cy/
Denmark Region 5 regions in Denmark Weekly Aug 2022 - Current Yes https://www.ssi.dk/sygdomme-beredskab-og-forskning/

sygdomsovervaagning/c/covid-19—spildevandsovervaagning
Germany WWTP/City Berlin Weekly Apr 2022 - Current Yes https://data.lageso.de/lageso/corona/corona.html#abwasser
Germany Region Bavarian municipalitie Weekly Nov 2022 - Current Yes https://www.bay-voc.lmu.de/abwassermonitoring
Greece City Athens Daily Apr 2020 - Nov 2022 No http://trams.chem.uoa.gr/covid-19/
Filand City 13 Cities/Regions

in Finland Weekly/Monthly Oct 2022 - Current Yes https://www.thl.fi/episeuranta/jatevesi/wastewater_weekly_report.html
Lithuania WWTP/City 3 regions

in Lithuania Weekly Nov 2022 - Current Yes https://nvsc.lrv.lt/lt/informacija-visuomenei-apie-covid-19/covid/
sars-cov-2-stebejimas-nuotekose/stebesenos-rezultatai

Luxembourg WWTP Luxembourg Weekly May 2020 - Current Yes https://www.list.lu/en/covid-19/coronastep/
Netherlands Regions Netherlands 3/week Sep 2020 - Current Yes https://coronadashboard.rijksoverheid.nl/landelijk/rioolwater

Norway WWTP/City 5 areas in Norway Weekly May 2022 - Current Yes https://www.fhi.no/en/in/surveillance/wastewater-surveillance-of-infectious-diseases/
results-from-wastewater-surveillance/

Poland WWTP Warsaw Weekly Mar 2022 - Current Yes https://www.mpwik.com.pl/view/monitoring-wirusa-sars-cov-2
-w-sciekach-w-aglomeracji-warszawskiej#S.embed_link-K.C-B.1-L.4.zw

Slovakia Region 7 regions in Slovakia Weekly May 2021 - Current Yes https://www.uvzsr.sk/sk/web/uvzen
Slovenia Country 12 regions in Slovenia Weekly Mar 2020 - Current Yes https://covid-19.sledilnik.org/en/stats

Spain Region 5 regions in Spain Weekly Apr 2020 - Mar 2022 No https://edarbens.es/covid19/
Spain Region Catalonia Weekly Jun 2020 - Current Yes https://sarsaigua.icra.cat/
Spain Region Madrid Weekly Feb 2021 - Current Yes https://www.canaldeisabelsegunda.es/sistema-vigia

Sweden WWTP/City 26 WWTPs in Sweden Weekly/Monthly Feb 2020 - Current Yes https://www.pathogens.se/dashboards/wastewater/
Switzerland WWTP/City Switzerland Daily/Weekly Mar 2020 - Current Yes https://sensors-eawag.ch/sars/lugano.html
Switzerland

& Lichtenstein WWTP/City Switzerland
& Lichtenstein Daily/Weekly Feb 2022 - Current Yes https://www.covid19.admin.ch/en/epidemiologic/waste-water
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Switzerland WWTP/City 14 Regions

in Switzerland Daily/Weekly Jan 2020 - Current Yes https://cov-spectrum.org/story/wastewater-in-switzerland
United Kingdom Region Scotland Daily/Weekly Jun 2020 - Current Yes https://informatics.sepa.org.uk/RNAmonitoring/
United Kingdom Region Scotland Daily/Weekly May 2020 - Current Yes https://scotland.shinyapps.io/phs-respiratory-covid-19/
United Kingdom Region England Weekly Jul 2021 - Mar 2022 No https://www.gov.uk/government/collections/monthly-statistics-for-the-environmental

-monitoring-for-health-protection-emhp-wastewater-program-england#latest-report
United Kingdom Region Wales 5/week Feb 2022 - Jul 2023 No https://www.gov.wales/wastewater-monitoring-reports-coronavirus

Bangladesh Region 6 regions
in Bangladesh Nov 2021 - Aug 2023 No https://erin-wettstone.shinyapps.io/Dashboard_V6/

China Region Hongkong Weekly May 2022 - Current Yes https://www.chp.gov.hk/en/resources/29/100148.html
India WWTP/City Bangalore Weekly Aug 2021 - Jun 2023 No https://storymaps.arcgis.com/stories/c42be68c85634d19a5d92873a10bda66
India City Jodhpur 4/week Feb 2023 - Jun 2023 No https://storymaps.arcgis.com/stories/d376cf3e75204234a9dc6541ecad5a98
India City Pune Daily/Weekly Aug 2021 - Current Yes https://www.pkc.org.in/pkc-focus-area/health/

waste-water-surveillance/wws-covid-dashboard-pune/
Israel Region Israel Weekly May 2022 - Jul 2023 No

https://app.powerbi.com/view?r=eyJrIjoiOTYwNDQ3NzItMTk5Ni00NzNmLThh
MmEtMzk3NmI1NmFkZjhjIiwidCI6ImIzYzdlZDM0LWQxZjAtNDg5Zi05YzllLW

E0YmNlYTk0YmJlNCIsImMiOjl9&pageName=ReportSection0f78f45a748a997ecd43
Japan Region Komatsu City Weekly Dec 2022 - Current Yes https://www.city.komatsu.lg.jp/soshiki/jougesuidoukanri/surveillance/14588.html
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Ethical Concerns. WBE data may pose ethical or even
legal concerns if not implemented properly. Although WBE
data typically cannot identify individuals, when combined
with other data sources, there are potential risks for privacy
breaches. Therefore, ensuring anonymization and secure
handling of data is essential to protect individual privacy.
On the other hand, it is necessary to communicate with the
public about how WBE data is used, its benefits for public
health, and measures to protect privacy, so that implementa-
tion of WBE is well accepted by the general public. Lastly,
developing legal frameworks that govern the use of WBE
data is important to address potential liabilities and ensure
ethical use. Effective measures along this direction include
regulations on data collection, sharing, and usage rights.

9. Conclusion
Wastewater-based epidemiology has been demonstrated

as a powerful tool for COVID-19 surveillance and trend
projection within communities. This survey summarizes the
wastewater sampling techniques, sample testing methods,
data analytical models, and the existing wastewater datasets
at a global level. In particular, this survey provides a new
taxonomy of data analytical models to help the researcher
and practitioner form a systematic view of the area. Most im-
portantly, the reviewed data analytical models can be easily
generalized to many other infectious diseases, which can be
referred to as guidance to build general disease surveillance
systems. Moreover, the comprehensive wastewater datasets
at different granularity can serve as a benchmark for validat-
ing new surveillance models at various scales. Last but not
least, the challenges in the area are discussed, which may
help inspire researchers in their future research directions.
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Appendix A

Table 4: Summarization of Correlation Studies between Viral Data and Clinical Data.
Location Sampling Correlation Ref.

Site/Pop. Sample
methods/Freq.

Study
Period

Total
Samples

Corr.
Type

Corr.
Var. 1

Corr
Var. 2

Corr.
Strength

Var. 2
Lag

Sendai
Japan

1 WWTP
360,000

Grab
2/week

(Tue & Thu, 10am)
Aug 2020
- Feb 2021 51 Spearman

2 week
positive sample

percentage
2 week

cumulative cases
0.4996

(𝑝 < 0.05) 9 days Zhu et al. (2022)
4 week

positive sample
percentage

4 week
cumulative cases

0.7598
(𝑝 < 0.05)

Detroit
USA

3 WWTPs
492,000

-1,482000
24h composite

weekly
Aug 2021
- Feb 2022 407 Pearson

Sum of
viral conc. from

3 WWTPs by N1 gene
7-day moving

avg. of
COVID-19 cases

0.62 5 weeks Zhao et al. (2022)
Sum of

viral conc. from
3 WWTPs by N2 gene

0.64
San Diego

USA
1 WWTP

2.3 million
24h composite

daily
Jul 2020

- Oct 2020 90 Pearson Viral conc. Daily hospital cases 0.75 Karthikeyan et al. (2021)

Budapest
Hungary

3 WWTPs
1.8 million

24h composite
& grab
weekly

(8 am-10 am)
Jun 2020

- Nov 2020 65
𝑅2 of
linear

regression
Sum of

viral load from
3 WWTPs

7-day rolling avg.
active cases

0.589
(𝑝 < 0.001) 1 week

Róka et al. (2021)Daily new cases 0.67
(𝑝 < 0.001) 0

Hospital cases 0.36
(𝑝 < 0.01) 1 week

Death cases 0.235
(𝑝 < 0.05) 1 week

Netherland
7 WWTPs
234,500

- 980,000
24h composite

8 days
Feb 2020

- Mar 2020 30
𝑅2 of
linear

regression

log10 (viral load)
by N1 gene

log 10 (reported cases)
0.66

(𝑝 < 0.01)
Medema et al. (2020)log10 (viral load)

by N2 gene
0.59

(𝑝 < 0.05)
log10 (viral load)

by N3 gene
0.79

(𝑝 < 0.001)
𝐶𝑡

0.77
(𝑝 < 0.001)

Seville
Spain

8 WWTPs
10,719

- 49,124
Grab

weekly
(9am-11am)

July 2020
- Jan 2021 199 Pearson log10(population normalized

viral load)
Active cases 0.52 4 days Rasero et al. (2022)0.51 6 days

Oklahoma
City
USA

13 manholes
3,729

- 52,323
Grab

2/week
(10am-1pm)

Nov 2020
- Mar 2021

𝑅2 of
linear

regression

Avg. viral conc.
from all locations

Reported cases
in all areas

0.87
(𝑝 < 0.01) 7 days Kuhn et al. (2022)

Viral conc. Reported cases
in sewershed 0.41 - 0.95 4 - 10

days
Los Angeles

USA
5 WWTPs
150,000

- 4 million

24h composite
weekly

(1WWTP
2/week)

May 2020
- Mar 2021 250 Pearson Viral conc.

by N1 gene New cases 0.88
(𝑝 ≪ 0.01) Wang et al. (2021)

Viral conc.
by N2 gene

0.88
(𝑝 ≪ 0.01)

Smoothed viral conc.
by N1 gene

0.94
(𝑝 ≪ 0.01)

Smoothed viral conc.
by N2 gene

0.94
(𝑝 ≪ 0.01)

1 WWTP 24h composite
daily

Aug 16-22
2020 ∼7

Smoothed viral conc.
by N1 gene

0.96
(𝑝 < 0.005) 5 days

Smoothed viral conc.
by N2 gene

0.96
(𝑝 < 0.005) 5 days
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Brazil

16 WWTPs
& manholes
1,555,626

- 3,094,325

24h composite
at WWTP

4h semi-composite
at manhole

Jan 2021
- Jan2022 Spearman Viral conc. 7-day cumulative

new cases
0.41 - 0.63
(𝑝 < 0.005) de Freitas Bueno et al. (2022)

Tulan
University

USA
Manholes
<14,062

Grab
weekly

10:30 am-11:30 am
Aug 2020
- Dec 2020 117 Spearman

Viral conc.
by N1 gene Reported cases 0.5067

(𝑝 < 0.0001) Scott et al. (2021)
Viral conc.
byN2 gene Reported cases 0.479

(𝑝 < 0.0001)
Durham
Canada

2 WWTPs
135,556

- 170,071
24h composite Oct 2020

- Apr 2021 115 Pearson Daily flow
normalized pp1ab

Reported cases
by onset date

0.4949
(𝑝 < 0.0001) 5 days Lara-Jacobo et al. (2022)

Oregon
USA

6 WWTPs
22 pump stations
10,853 - 258,910

24h composite
1-3/week

Apr 2020
- May 2021 52 Pearson log10(viral conc.)

log10(reported cases/10,000)
0.71

(𝑅2 = 0.5) Layton et al. (2022)
log10(estimated prevalence/10,000)

0.96
(𝑅2 = 0.91)

North
Carolina

USA
19 WWTPs

3,500
- 550,000

24h composite
1-2/week

Jan 21
- Mar 22 1,783 Spearman

Arithmetic mean
conc. of N1 & N2 genes
normalized by flow rate

and population

7-day rolling
average of cases
at the sewershed

0.47 - 0.88 Keshaviah et al. (2022)

7-day rolling
average of cases

at the county
0.55 - 0.9

Bratislava
Slovak

2 WWTPs
0.6 million

24h composite
weekly

Sep 2020
- Mar 2021 52

𝑅2 of
linear

regression

√total viral load
(from both WWTPs)

√daily positive tests 0.5265 12 days
Krivoňáková et al. (2021)√daily death cases 0.6189 27 days

ln(total viral load)
(from both WWTPs)

√weekly positive test 0.8378 2 weeks
√weekly death cases 0.8321 4 weeks

Mendoza
Argentina

2 WWTPs
1.2 million

Grab
weekly/biweekly

(11am-1pm)
Jul 2020

- Jan 2021 Pearson
Viral conc.
by N1 gene Weekly reported

cases
0.3185 - 0.5468,

(𝑝 ∈ [0.0069, 0.1386]) Giraud-Billoud et al. (2021)
Viral conc.
by N2 gene

0.389 - 0.6282,
(𝑝 ∈ [0.1514 − 0.3946])

Nepal 2 WWTPs, river,
hospital, sewer Grab Jul 2020

- Feb 2021 84 Pearson Viral conc. Weekly new
cases

0.47 - 0.5
(𝑝 < 0.05) Tandukar et al. (2022)

Porto
Portugal

2 WWTPs
370,000

24h composite
weekly

Sep 2020
- Mar 2021 81 𝑅2 with

linear
regression

Viral conc.
in liquid phase 7-day moving

avg. of new cases
0.2935 - 0.4223
(𝑝 ∈ [4.6 × 10−7
, 4.2 × 10−5]) Tomasino et al. (2021)

Viral conc.
in solid phase

0.1831 - 0.1865
(𝑝 = 1.4 × 10−3)

Calgary
Canada

3WWTPs
6 sewers

1,441,268
24h composite

∼3/week at WWTP
biweekly at sewers

Jun 2020
- May 2021

222 from
wwtp,

192 from
neighborhood

Pearson Viral conc. 5-day rolling
avg. of new cases

0.33 - 0.82
(𝑝 < 0.0001/𝑝 = 0.19)

-4 - 4
weeks Acosta et al. (2022)

Ohio
USA

9 WWTPs
14,000

- 900,000
24h composite

2/week
Jul 2020

- Jan 2021 250

Pearson Viral conc. Reported cases
on sampling date 0.38 - 0.89

Ai et al. (2021)
Spearman

Viral conc. Reported cases
on sampling date 0.48 - 0.87

Avg. viral conc.
from all WWTPs

Reported cases
on sampling date 0.7

3-day rolling
avg. of reported cases 0.75

5-day rolling
avg. of reported cases 0.77

7-day rolling
avg. of reported cases 0.76
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Basel

Switzerland
1 WWTP
273,075

24h composite
during weekdays
48h composite

during weekends
6/week

Jul 2021
- Dec 2021 179 Spearman 7-day median

viral conc.
7-day median
reported cases 0.9395 1 day Bagutti et al. (2022)

Buenos
Aires

Argentina
3 WWTPs
1 manhole

3,500
- 35,407

Grab
weekly

(morning)
Jun 2020

- Apr 2021 172 Spearman Viral conc.
10-day

cumulative cases
0.476 - 0.795

(𝑝 ∈ [1.98 × 10−10
, 0.001]) Barrios et al. (2021)

15-day
cumulative cases

0.443 - 0.807
(𝑝 ∈ [6.23 × 10−11

, 0.003])
20-day

cumulative cases
0.499 - 0.812

(𝑝 ∈ [4.085 × 10−11
, 0.001])

Scotland
28 WWTPs

4,128
- 605,569

24h composite
weekly

May 2020
- Jan 2021 989 Spearman

Viral conc.
Reported cases

in the previous week 0.79
Fitzgerald et al. (2021)Positive test rate 0.83

Viral load Reported cases 0.91
Postive test rate 0.77

Attica
Greece

1 WWTP
3,652,013

Composite
daily

Aug 2020
- Mar 2021 203

𝑅2 of
linear

regression
Normalized

viral load/100k
inhabitants

4-day avg.
positive cases 0.947 3 - 4

days Galani et al. (2022)4-day avg. new
hosp. admissions 0.888
4-day avg. new
ICU admissions 0.877

New York
City
USA

14 WWTPs
120,000

- 1.2million
24h composite

1-2/week
Aug 2020
- Jan 2021 ∼770 Spearman Viral load 7-day avg.

new cases 0.38 - 0.81 Hoar et al. (2022)

Northern
Nevada,

USA
3 WWTPs
390,750

Grab
3-5/week,

(9am-12pm)
24h composite in

1 WWTP
7/week

(Jul 2021-Sept 2021)

Jun 2020
- Sep 2021 614 Spearman

Viral conc. Reported cases
on sampling date 0.353 - 0.615

Li et al. (2022)7-day avg.
viral conc.

7-day avg.
reported cases 0.472 - 0.79

Viral conc. Lagged
reported cases 0.232 - 0.635 7 days

7-day avg.
viral conc.

Lagged 7-day
avg. reported cases 0.415 - 0.793 7 days

Hamilton
USA

2 WWTPs
1 sewer
34,000

- 488,000

24h composite
/3h composite

weekly
May 2020
- Oct 2020 69 Pearson

Raw viral conc.
by N1 gene

New cases

0.14 - 0.71

Nagarkar et al. (2022)

Raw viral conc.
by N2 gene 0.22 - 0.71

Raw viral load
by N1 gene -0.063 - 0.7

Raw viral load
by N2 gene 0.014 - 0.7

Raw PMMoV
normalized N1 gene 0.1 - 0.63

Raw PMMoV
normalized N2 gene 0.15 - 0.61

OC43 recovery
adjusted viral conc.

by N1 gene
0.31 - 0.63

OC43 recovery
adjusted viral conc.

by N2 gene
0.31 - 0.68

OC43 recovery
adjusted viral load

by N1 gene
0.16 - 0.58

OC43 recovery
adjusted viral load

by N2 gene
0.17 - 0.64
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OC43 recovery

adjusted PMMoV
normalized N1 gene

0.25 - 0.64
OC43 recovery

adjusted PMMoV
normalized N2 gene

0.28 - 0.7

Utah
USA

10 WWTPs
9,095

- 515,494
24h composite Apr 2020

- May 2020 126 Spearman Viral load
/person/day

Daily new cases 0.54
(𝑝 < 0.001) Weidhaas et al. (2021)

Weekly cases/100k 0.82 - 0.96
(𝑝 < 0.003/𝑝 < 0.05)

Lagged weekly cases/100k 0.8
(𝑝 < 0.01) 1 week

Dublin
Ireland

1 WWTP
1.9 million

24h composite
2/week

Jun 2020
- Aug 2021 99 Spearman

First order
difference in
N1 viral load

First order
difference in cases

0.5
(𝑝 < 0.001) 0 Reynolds et al. (2022)

First order
difference in

N1 viral conc.
0.49

(𝑝 < 0.001)

Catalonia
Spain

10 WWTPs
7,000

- 1.5million
24h composite

Mar 2020
- Nov 2020

185
𝑅2 of
linear

regression

log(viral conc.)
log(cumulative cases

in the following 7 days) 0.3839

Rusiñol et al. (2021)

log(cumulative cases
in the previous 7 days) 0.2524

log(viral load)
log(cumulative cases

in the following 7 days) 0.731
log(cumulative cases

in the previous 7 days) 0.7092
log(cumulative cases

in rolling 15 days) 0.6004

Jul 2020
- Nov 2020

log(viral conc.)
log(cumulative cases

in the following 7 days) 0.2839
log(cumulative cases

in the previous 7 days) 0.1354

log(viral load)
log(cumulative cases

in the following 7 days) 0.7515
log(cumulative cases

in the previous 7 days) 0.7293
log(cumulative cases

in rolling 15 days) 0.6691

Germany
9 WWTPs
120,000

- 2.4million
24h composite Apr 2020

𝑅2 of
linear

regression
Viral load

Cumulative cases 0.9730
Westhaus et al. (2021)Acute cases 0.9661

Creatinine corrected
cumulative cases 0.9603

Creatinine corrected
acute cases 0.9467

Marseille
France

Sewer
359,123

- 614,623
24h composite

∼every
1.4days

Jul 2020
- Dec 2020 117 Cross

correlation Viral load Reported cases 0.68
(𝑝 < 0.01) 0 Wurtz et al. (2021)

Frankfurt
Germany

2 WWTPs
470,000

- 1.35 million
24h composite

2/week
Apr 2020

- Aug 2020 44 Spearman
Sum of viral

load from
both WWTPs

Reported
cases/100k

0.7464
(𝑝 = 0.00217) Agrawal et al. (2021)

Riyadh
Saudi Arabia 3 WWTPs Grab

1/month
Jun 2020

- Aug 2020 9 Spearman
𝐶𝑡 by N1 gene Hospital reported

cases 2 week
after sampling

0.42
Alahdal et al. (2023)𝐶𝑡 by N2 gene 0.37

𝐶𝑡 by E gene 0.42
Ottawa
Canada

1 WWTP
1million

24h composite,
every 2 days

Jun 2020
- Aug 2020 Pearson PMMoV normalized

viral load with N1 Daily new cases
0.673

(𝑝 < 0.001) D’Aoust et al. (2021a)
PMMoV normalized

viral load with N2 gene
0.648

(𝑝 < 0.001)
PMMoV normalized

viral load with N1 gene Positive test rate
0.468

(𝑝 < 0.001)
PMMoV normalized

viral load with N2 gene
0.404

(𝑝 < 0.001)
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PMMoV normalized

viral load with N1 gene Lagged daily
new cases

0.703
(𝑝 < 0.001) 2 days

PMMoV normalized
viral load with N2 gene

0.721
(𝑝 < 0.001)

PMMoV normalized
viral load with N1 gene Lagged

hospital cases
0.741

(𝑝 < 0.001) 4 days
PMMoV normalized

viral load with N2 gene
0.767

(𝑝 < 0.001)

Ottawa &
Gatineau
Canada

2 WWTPs
280,000

- 1.1million

Grab
every 2 weeks
24h composite

every 2 days-1/week
Apr 2020
- Jun 2020 Pearson

Viral conc.
Daily cases -0.209 - 0.399

(𝑝 < 0.00*/𝑝 = 0.003)

D’Aoust et al. (2021b)
Active cases -0.233 - 0.95

(𝑝 < 0.001/𝑝 = 0.003)
7-day rolling avg.

positive rate
0.378 - 0.55

(𝑝 < 0.001/𝑝 = 0.003)

Viral load
Daily cases -0.48 - 0.05

(𝑝 < 0.001/𝑝 = 0.01)
Active cases -0.289 - 0.125

(𝑝 < 0.001/𝑝 = 0.298)
7-day rolling avg.

positive rate
-0.274 - 0.178

(𝑝 ∈ [0.001, 0.008])
PMMoV normalized

viral load
Daily cases -0.48 - 0.05

(𝑝 < 0.001/𝑝 = 0.01)
Active cases -0.144 - 0.383

(𝑝 ∈ [0.003, 0.049])
7-day rolling avg.

positive rate
-0.022 - 0.639

(𝑝 ∈ [0.003, 0.123])
University of

North Carolina
Charlotte

USA
building plumb

& manholes
24h composite

3/week
Sep 2020

- Nov 2020 332 Pearson
Total number of

positive wastewater
samples

Daily new cases
in the county 0.769 Gibas et al. (2021)

Bozeman
USA

1 WWTP
49,831 24h composite Mar 2020

- Apr 2020 17 Pearson Viral conc.
Lagged cases by

symptom onset date 0.972 - 0.995 -8 days Nemudryi et al. (2020)
Lagged

positive tests 0.911 - 0.988 2 days

Japan 2 WWTPs
1 manhole

Grab
1/week

Jun 2020
- Aug 2020 32 Spearman Viral conc.

Number of case
by report date

0.71
(𝑝 < 0.01) Kitamura et al. (2021)

Number of cases by
symptom onset date

0.87
(𝑝 < 0.001)

France 10 WWTPs
50,000

- 560,000
24h composite

2/week - 2/month
Jul 2020

- Dec 2020 138 Spearman Viral conc. log10 (7-day moving
avg. incidence rate)

0.32 - 0.82 Lazuka et al. (2021)Viral load
/100k inhabitant/day 0.3 - 0.87

Bangkok
Tailand 19 WWTPs 24h composite Jan 2021

- Apr 2021 132 Spearman
Positive rate of

wastewater samples
Lagged 5-day
avg. new cases 1 22 days Sangsanont et al. (2022)

log10(viral load) Lagged new cases 0.85 23 - 24
days

Cape Town
South Africa 23 WWTPs

Grab
1/week

(Monday)
Jul 2020

- Aug 2020 138 Spearman Viral conc. Reported cases 0.83
(𝑝 = 0.0416) Street et al. (2021)

Stockholm
Sweden

3 WWTPs
377,500

- 862,100
24h composite
daily-1/week

Oct 2020
- Jan 2021
(Wave 2)

600 Pearson

PMMoV normalized
total viral load

from all WWTPs
Positive cases 0.84

(𝑝 < 0.0001)

Perez-Zabaleta et al. (2023)
Number of

patients in ICU
0.83

(𝑝 < 0.0001)
Number of death 0.88

(𝑝 < 0.0001)
Feb 2021

- May 2021
(Wave 3)

PMMoV normalized
total viral load

from all WWTPs
Positive cases 0.88

(𝑝 < 0.0001)
Number of

patients in ICU
0.64

(𝑝 = 0.0008)
Apr 2020
- Jun 2022

(Entire Period)

PMMoV normalized
total viral load

from all WWTPs Positive cases
0.86

(𝑝 < 0.0001)
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Raw total viral load
from all WWTPs

0.84
(𝑝 < 0.0001)

PMMoV normalized
viral load

Positive cases
in sewershed

0.85 - 0.88
(𝑝 < 0.0001)

Valencia
Spain

3 WWTPs
29,459

Grab
1/week

(10am-11am)

Nov 2020
- May 2021

(Wave 3)

195 Pearson

Sum of viral conc.
from all 3 WWTPs

14 day
cumulative incidences 0.86 0

López-Peñalver et al. (2023)

Positive cases 0.85 0
Hospital cases 0.76 0

Critical
hospital cases 0.65 -3 days
Death cases 0.04

Jun 21
- Jul 21

(Wave 5 )
Sum of viral conc.
from all 3 WWTPs

14 day
cumulative incidences 0.95

Positive cases 0.88
Hospital cases 0.64

Critical
hospital cases 0.45
Death cases 0.29

Nov 21
- Jan 22
(Wave 6)

Sum of viral conc.
from all 3 WWTPs

14 day
cumulative incidences 0.79 -1 day

Positive cases 0.88 -2 days
Hospital cases 0.66 -1 day

Critical
hospital cases 0.64 -1 day
Death cases 0.38

Eastern upper
Peninsula

USA

13 WWTPs
3 sewers

280
- 19,668

Grab
1/week

Jun 2021
- Dec 2021 Spearman Viral load Clinical cases 0.48 - 0.89 0 - 7

days Jarvie et al. (2023)

Curitiba
Brazil

5 WWTPs
276,778

- 969,987
4h composite
8am -12pm

Mar 2021
- Apr 2021
(Gamma

wave)
458 Spearman

Viral load
Positive tests 0.819

(𝑝 < 0.01) 3 days

Belmonte-Lopes et al. (2023)
Reported cases 0.786

(𝑝 < 0.01) 8 days
Active cases 0.747

(𝑝 < 0.01) 15 days
Apr 2021

- Nov 2021
(Delta
wave)

Viral load
Positive tests 0.93

(𝑝 < 0.01) 3 days
Reported cases 0.938

(𝑝 < 0.01) 11 days
Active cases 0.936

(𝑝 < 0.01) 18 days
Nov 2021

- Nov 2022
(Omicron

wave)
Viral load

Positive tests 0.927
(𝑝 < 0.01) 3 days

Reported cases 0.929
(𝑝 < 0.01) 5 days

Active cases 0.901
(𝑝 < 0.01) 10 days

California
USA

21 WWTPs
5 pump stations

/manholes
2,200

- 4million

24h composite
1-5/week

Oct 2020
- Mar 2022 2,480 Kendall’s

𝜏-b
Viral conc. 7-day moving

avg. cases
0.57

Schill et al. (2023)Flow normalized
viral conc. 0.58

PMMoV normalized
viral conc. 0.47

United
Arab

Emirates

50 WWTPs
/pump stations,

150 schools/sewers,
(453 locations)

24h composite

Aug 2020
- Jan 2021
(Wave 1)

16,858 Pearson

Positive rate of
wastewater samples

Positive rate of
clinical tests 0.7 0

Wadi et al. (2023)
Jan 2021

- May 2021
(Wave 2)

Positive rate of
wastewater samples

Positive rate of
clinical tests

-0.768
(𝑝 < 0.0001) 0

Total viral load
across the county Weekly cases -0.2

(𝑝 = 0.3999)
May 2021
- Dec 2021
(Wave 3)

Positive rate of
wastewater samples

Positive rate of
clinical tests

0.841
(𝑝 < 0.0001) 0



DRAFT
Total viral load

across the county Weekly cases 0.88
(𝑝 < 0.0001)

Dec 2021
- Apr 2022
(Wave 4)

Positive rate of
wastewater samples

Positive rate of
clinical tests

0.504
(𝑝 = 0.01) 0

Total viral load
across the county Weekly cases 0.671

(𝑝 = 0.001)
May 2020
- Jun 2022

(Entire Period)
Total viral load

across the county Weekly cases 0.334
(𝑝 = 0.004)

Cape Town
South Africa

Pump station
at Cape Town,
International

Airport

Grab,
1/week

(Monday)

Dec 2020
- Feb 2021
(Alert L3) 55 Spearman log(viral conc.) Reported cases

in Cape Town
0.54

(𝑝 = 0.0084) Nkambule et al. (2023)
Oct 2021

- Dec 2021
(Alert L4)

0.69
(𝑝 = 0.0046)

Dec 2020
- Jan 2022

0.52
(𝑝 = 0.0001) -1 week

Michigan
USA

2 WWTPs
25,000

- 110,267
24h composite,

1/week
Apr 2020

- Feb 2022 186 Pearson

Viral load
/person/day

with N1 gene

7-day avg.
zipcode-level cases

by symptom
onset date

0.71 - 0.81
(𝑝 < 0.0001)

Flood et al. (2023)7-day avg.
zipcode-level cases

by referral date
0.62 - 0.72

(𝑝 < 0.0001)
7-day avg.

county-level cases
0.53 - 0.59

(𝑝 < 0.0001)
Viral load

/person/day
with N2 gene

7-day avg.
zipcode-level cases by
symptom onset date

0.6 - 0.66
(𝑝 < 0.0001)

7-day avg.
zipcode-level cases

by referral date
0.51 - 0.6

(𝑝 < 0.0001)
7-day avg.

county-level cases
0.46 - 0.56

(𝑝 < 0.0001)
Northeastern

Japan
2 WWTPs
200,000

- 500,000
Grab,

1/week-
every 2 weeks

Aug 2020
- Nov 2021 81 Spearman Viral conc. New cases 0.61

(𝑝 < 0.0001) Kitakawa et al. (2023)

Shenzhen
China

2 WWTPs
from hospital
(emergency

quarantine &
whole hospital)

Grab
3/day

(8am, 1pm, 6pm)
Aug 2022

- Sept 2022 Pearson
Emergency area

viral conc.
Reported cases 0.76

(𝑝 = 2.9 × 10−6)
Ou et al. (2023)New cases 0.57

(𝑝 = 1.6 × 10−3)
Emergency area

10-day avg.
viral conc.

Reported cases 0.99
(𝑝 = 1 × 10−13)

New cases 0.99
(𝑝 = 8.4 × 10−12)

Whole hospital
viral conc. Reported cases 0.64

(𝑝 = 2.7 × 10−4)
National

University
of Singapore

7 sites divided
into 28 discharge

chambers
9,090

6h composite
/12h composite

Jan 2021
- Mar 2022 Spearman

Aggregated weekly
viral conc.
at each site

Weekly reported cases
at each site

0.5 - 0.76
(𝑝 < 0.05) 2 - 9

days Mohapatra et al. (2023)
aggregated weekly

viral conc.
over the campus Weekly reported cases

0.76
(𝑝 < 0.05)

PMMoV normalized
viral conc.

0.78
(𝑝 < 0.05)
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Table 4 summarizes the correlation studies by their study location, sampling information (i.e., sampling site, method,

frequency, and sampling period), and correlation details (i.e., correlation types, correlation variables, correlation strength,
and time lag between the two variables). Specifically, the ‘Var. 2 lag’ column represents the lag of clinical data (i.e., 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 2)
to viral levels (i.e., 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 1). Therefore, a negative lag time means the corresponding clinical data is leading the wastewater
viral data. A positive lag time means the clinical data is lagging the viral data.
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Appendix B
Table 5
Glossary of Terms

Name Description

ANN Artificial Neural Network model
ARIMA AutoRegressive Integrated Moving Aver-

age
LOESS Locally Estimated Scatterplot Smoothing

model
LSOAs Lower Super Output Areas
NWSS National Wastewater Surveillance Sys-

tem
PCR Polymerase Chain Reaction
PMMoV Pepper Mild Mottle virus
QA Quality Assurance
QC Quality Control
RMSE Root Mean Squared Error
SARIMA AutoRegression Model with Seasonal

Patterns
SEIR model Susceptible Exposed Infectious Recov-

ered model
VAR Vector Autoregression
WBE Wastewater-Based Epidemiology
WC ratio the Ratio between Wastewater Viral

Load and Clinical Cases

Appendix C
Correlation Metrics Details
This section will introduce the details of correlation

metrics mentioned in section 5.2. Assume that the time
series for wastewater viral data and clinical data are 𝑋 =
{𝑥1, 𝑥2,… , 𝑥𝑛} and 𝑌 = {𝑦1, 𝑦2,… , 𝑦𝑛} where the data
pairs (𝑥𝑡, 𝑦𝑡) are aligned at timestamp 𝑡. The correlations
between the two time series under different metrics are
defined as follows:
Pearson correlation: the Pearson correlation 𝑟𝑋𝑌 between
time series 𝑋 and 𝑌 is defined as

𝑟𝑋𝑌 =
∑𝑛
𝑖=1(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)

√

∑𝑛
𝑖=1(𝑥𝑖 − �̄�)2

√

∑𝑛
𝑖=1(𝑦𝑖 − �̄�)2

(4)

where �̄� = 1
𝑛
∑𝑛
𝑖=1 𝑥𝑖 and �̄� = 1

𝑛
∑𝑛
𝑖=1 𝑦𝑖 are the mean of

the two series. The correlation score has a value between -1
and 1, which reflects the linear correlation of variables. One
practical problem of Pearson correlation is its sensitivity to
noise and outliers.
𝑅2 for linear regression model: assume that the clinical data
𝑌 can be fitted by the wastewater viral data 𝑋 with linear
regression model (e.g., 𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖), then the coefficient of
determination 𝑅2 can be calculated as

𝑅2 = 1 −
∑𝑛
𝑖=1(𝑦𝑖 − 𝑦𝑖)

2

∑𝑛
𝑖=1(𝑦𝑖 − �̄�)2

(5)

The 𝑅2 for the linear regression model can be used as a
complementary metric for Pearson correlation as it provides

a clear interpretation in terms of variance explained by the
model. Moreover, it can be extended to multiple regression
scenarios where multiple sources of clinical data are inte-
grated into the regression model, which can improve the
robustness of the model under noisy settings.
Spearman’s rank correlation: The Spearman’s rank correla-
tion is used to evaluate the rank consistency between two
data series. To calculate the correlation between 𝑋 and
𝑌 , the two time series need to be converted into series of
ranks𝑅𝑋 and𝑅𝑌 . The correlation coefficient would then be
calculated as the Pearson correlation between 𝑅𝑋 and 𝑅𝑌 .
The advantage of Spearman’s correlation is that𝑋 and 𝑌 can
be related by any monotonic function rather than the linear
correlation as in Pearson correlation.
Kendall’s 𝜏 correlation: The Kendall’s 𝜏 correlation is de-
fined by the concordance of data pairs. Specifically, for any
pairs of data (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗), the two pairs are considered
concordant if the sort order of (𝑥𝑖, 𝑥𝑗) and (𝑦𝑖, 𝑦𝑗) agrees.
Based on that, the correlation can be calculated as

𝜏 =
#concordant pairs − #disconcordant pairs

total pairs (6)

The Kendall’s 𝜏 correlation is similar to Spearman’s rankcorrelation but is generally preferred when the sample size is
small and when there are many tied values in the time series.
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