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Abstract 
Comprehending the mechanism behind human diseases with an established heritable 
component represents the forefront of personalized medicine. Nevertheless, numerous 
medically important genes are inaccurately represented in short-read sequencing data analysis 
due to their  complexity and repetitiveness or the so-called ‘dark regions’ of the human genome. 
The advent of PacBio as a long-read platform has provided new insights, yet HiFi whole-
genome sequencing (WGS) cost remains frequently prohibitive. We introduce a targeted 
sequencing and analysis framework, Twist Alliance Dark Genes Panel (TADGP), designed to 
offer phased variants across 389 medically important yet complex autosomal genes. We 
highlight TADGP accuracy across eleven control samples and compare it to WGS. This 
demonstrates that TADGP achieves variant calling accuracy comparable to HiFi-WGS data, but 
at a fraction of the cost. Thus, enabling scalability and broad applicability for studying rare 
diseases or complementing previously sequenced samples to gain insights into these complex 
genes.   

TADGP revealed several candidate variants across all cases and provided insight into LPA 
diversity when tested on samples from rare disease and cardiovascular disease cohorts. In both 
cohorts, we identified novel variants affecting individual disease-associated genes (e.g., IKZF1, 
KCNE1). Nevertheless, the annotation of the variants across these 389 medically important 
genes remains challenging due to their underrepresentation in ClinVar and gnomAD. 
Consequently, we also offer an annotation resource to enhance the evaluation and prioritization 
of these variants.  

Overall, we can demonstrate that TADGP offers a cost-efficient and scalable approach to 
routinely assess the dark regions of the human genome with clinical relevance.  
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Introduction 

Hybrid capture based DNA sequencing is a popular and cost-effective method to target genomic  
regions of interest. Exome sequencing (ES), for example, was heavily used to characterize 
variations in coding regions of the genome1. ES is a widely used tool in clinical genomics that 
has facilitated the identification of numerous deleterious mutations associated with diseases, 
including Robinow syndrome, Miller syndrome, and Fowler syndrome2–4. Additionally, ES has 
enabled the identification of causal mutations for conditions of previously unknown etiology5,6.  

Despite its significant contributions to genetic research, ES has limitations that preclude it from 
definitively resolving all genetic diagnoses7. Over 50% of individuals suspected of having a 
genetic disorder remain undiagnosed even after thorough ES clinical assessment8. Moreover, 
approximately 98-99% of non-coding genomic regions are not covered by ES9–11. Additionally, 
ES prioritizes the detection of small variants (typically < 50bp) and copy number variants12, but 
frequently misses tandem repeats13, structural rearrangements14 and epigenetic modifications7. 
Most limitations stem from the use of short-read (SR) sequencing technologies, which can 
encounter mapping difficulties in regions with high sequence homology, such as SMN1, CBS, 
and CYP21A215. Additionally, genes in GC/AG-rich regions16, those with extensive repetitive 
elements, or containing structural variants14,17 pose significant molecular and analysis 
challenges for ES18,19. Limitations of ES hinder our understanding of disease mechanisms and 
potentially lack of diagnosis. 

Long read (LRs) sequencing methods can effectively capture structural rearrangements within 
single reads, simplifying analysis14,20 overcoming a key limitation of SR sequencing. The 
accuracy and length of long reads enable the more comprehensive characterization of ‘dark 
regions’ that are inaccessible to SR methodologies21–23. For instance, the LPA encompasses a 
large Variable Number Tandem Repeat (VNTR) known as KIV-2, which is a two-exon tandem 
duplication ranging from 1 to 40 copies24. The number of KIV-2 repeats correlates inversely with 
its lipoprotein protein A concentration as Lp(a), a predictor of cardiovascular diseases25,26. 
Resolving variants in KIV-2 is important but often hindered due to its complexity27. Additionally, 
genes with high polymorphism and repetitive elements, such as the Human Leukocyte Antigen 
(HLA) genes28,29 benefit from long read clinical HLA typing30,31. Similarly, CYP2D6, which is 
involved in the metabolism of >20% of common drugs, contains structural variations (SVs) that 
impact an individual's response to certain medications32,33.  

Using long reads, it is possible to phase variants in trans34, which is often required to accurately 
interpret functional consequences35 and establish genetic inheritance. For example, in TPMT 
gene, there are two variants impacting the gene's function that are approximately 8 kb apart. If 
physically linked, in trans, these two variants can lead to Loss-of-function (LoF) of TPMT36. The 
consequences could lead to a complete knockout of TPMT, an important drug metabolizer, with 
potentially severe implications for patients37. The benefits of long reads make them attractive to 
large projects aimed at rare diseases and population diversity, such as the All of Us Research 
Program20, Genomics Research to Elucidate the Genetics of Rare diseases (GREGoR)7, and 
the Human Genome Structural Variation Consortium (HGSVC)38. Similarly, initiatives like 
Genome in a Bottle (GIAB) have leveraged long reads to improve benchmark datasets39. In the 
GIAB study, researchers investigated nearly 400 medically relevant genes that were previously 
inaccessible due to their highly repetitive and polymorphic nature, as well as the presence of 
segmental duplications and complex variants affecting these genes39.  

In the GIAB benchmark study, they characterized 273 challenging medically relevant autosomal 
genes using a haplotype resolved whole-genome assembly. However, a limitation of LR 
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technology is its higher cost compared to both SR whole-genome sequencing (SR-WGS) and  
ES8. This cost factor of long reads poses challenges for small labs, projects aiming for larger 
cohort sizes, or those operating in clinical settings, making it difficult to adopt long-read whole-
genome sequencing (LR-WGS) as an initial screening approach. 

We address the limitations of long read costs by developing a capture panel that targets ‘dark’ 
genomic regions, which are medically relevant, but difficult to resolve using ES or SR-WGS 
alone. We present the Twist Alliance Dark Genes Panel (TADGP) together with an analytical 
workflow. The panel design captures 389 complete autosomal genes, including both intronic 
and exonic regions, spanning a total of 22.20 megabase pairs (Mbp). The selection of the 389 
genes was based on our prior efforts aimed at resolving challenging, medically relevant genes 
(CMRG)39. We have added three additional genes given their clinical importance, namely, GBA 
(associated with Gaucher disease), CYP2D6 (linked to variation in drug metabolic rates), and 
SBDS (implicated in Shwachman-Diamond syndrome)40–43. The TADGP leverages the 
capabilities of PacBio HiFi reads, resolving repetitive and complex genes. TAGDP identifies and 

phases SNVs, Indels (<50bp) and SVs (≥50pb) with high accuracy. The analysis is self-
contained within a workflow which combines read mapping and assembly techniques to 
generate the best possible variant calls. The workflow reports a comprehensive list of variant 
classes, including pharmacological impact where appropriate. We accurately identified variants 
within these 389 complex genes, achieving a high F-score of 97.00% for SNVs and 93.50% for 
SVs. The TADGP provides equivalent variant calling accuracy when compared to LR-WGS at a 
fraction of the cost. We illustrated the utility of the panel across cell lines and patient samples, 
encompassing cardiovascular and rare disease cases. This panel is a cost effective solution for 
routine examination of these complex genes with high accuracy. 

Results 

Capture design and variant characterization approach 
We developed a capture panel and analysis workflow for HiFi long read data called the TADGP, 
targeting 389 complex clinically relevant genes (listed in Table S1). These genes are only fully 
characterized using long reads, which are required for accurate variant calling20,39. We extended 
the 386 CMRG gene for the GRCh38 list to include GBA, CYP2D6, and SBDS. Furthermore, 
our gene panel encompasses five clinically actionable genes (i.e., variants that need to be 
reported if they impact these genes based on ACMG guidelines) associated with a diverse 
range of medical conditions44, as detailed in Supplementary Table S2. TAGDP genes are 
linked to neurological disorders (e.g., GBA-associated Gaucher disease), cardiovascular 
diseases (e.g., LPA-related lipoprotein(a) dyslipidemia), and cancer (e.g., SIGLEC16-positive 
myeloid neoplasms, ESRRA-driven thyroid and endometrial cancers), as shown in Figure 1a. 
As an example, 21.6% of the genes are associated with neurological diseases. TADGP 
encompasses a total of 22.20 Mbp (introns and exons) with 3 kb extensions up and downstream 
of each gene. Out of the 389 genes, four genes—LCE3B, SNORD64, DUX4L1, and TRBV9—
lacked coverage due to the absence of probes. Overall 25% of the 389 genes contain 1,879 
pathogenic ClinVar variants (see methods). We posit that the remaining 75% of the genes in the 
panel lack ClinVar variants due to difficulty of assessment stemming from their inherent 
complexity39. We anticipate that TADGP will facilitate additional discoveries linking genes to 
phenotypes. The number of reported ClinVar variants significantly varies across the genes, with 
GBA exhibiting the highest number of variants (Supplementary Figure 1). We compared the 
percentage of GC/AG content per gene with the average gene coverage obtained from using 
TADGP Figure 1b and Supplementary Figure 2. The TADGP panel has the highest 
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normalized coverage among all methods (Figure 1c), indicating that the GC% has a minimal,
but significant impact on the panel's coverage performance (p-value 9.16e-6, correlation: -0.22).
Additionally, there is a negligible correlation between AG% and average coverage (p-value 0.37,
correlation -0.04). 

 
Figure 1. Characteristics of the 389 TADGP genes and their linked diseases  a) Gene
count per disease, the X-axis is the count of genes associated with each disease, and the Y-
axis is the disease category. b) GC% (in blue) and AG% (in orange) per gene vs. average gene
coverage for sample HG002. The GC% affecting HiFi coverage is minimal, while AG% has no
impact. c) Normalized average gene coverage between the panel (green), LR-WGS HiFi
(orange), and SR-WGS Illumina (blue). TADGP has the highest normalized average coverage.  
  
The computational workflow we developed is shown in Figure 2, which enables the
characterization of variants across these 389 challenging genes. The output of the TADGP
workflow includes phased SNVs, indels, SVs, pharmacogenomics clinical annotation, and
CYP2D6 allele diplotypes accurately assigning. The workflow starts with read alignment to a
modified version of the GRCh38 reference genome as proposed by Behera et al45. The adapted
reference mitigates issues in collapsed and duplicated regions. Next, small variants (SNVs and
indels) are called with DeepVariant46 and structural variants are called with Sniffles247. We
included an assembly approach for 79 genes, due to their complexity. The supplementary
section “Impact of TADGP Assembly over Mapping” summarizes the selection of these genes
for the de novo assembly approach based on the lacking variant calling performance
(Supplementary Table S3). 
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Figure 2. A schematic representation of the bioinformatic workflow implemented for
characterizing complex medical-relevant genes. The mapping approach is shown in a green
line, while the assembly process is shown with a yellow line. The tools used in the workflow are
shown with different color bands, with Pharmcat in purple, Pangu in blue, and Paraphase in
orange. Intermediate steps are marked with open circles, whereas endpoints are annotated with
a dot. The workflow is contained within a snakemake workflow. 
 
Our workflow which enables parallel analysis of multiple samples, implements several new
bioinformatic tools specifically designed to genotype paralogous alleles including, the PacBio
star-typer (Pangu)48 for CYP2D6 and Paraphase49 for other paralogous genes such as
SMN1/SMN2, NCF1/NCF1B/NCF1C, PMS2 and CFC1/CFC1B. Lastly, the workflow
consolidates all variant calls into standardized VCF files per sample (see methods). The
workflow is publicly available on GitHub
https://github.com/PacificBiosciences/HiFiTargetEnrichment under a BSD 3-Clause Clear
license.  

Benchmarking TADGP on GIAB HG002 
To validate our capture panel and bioinformatic workflow, we assessed the variant calling
performance using the NIST Genome in a Bottle standard, HG00239. We sequenced three
replicates of HG002 across three different sequencing runs (using Revio SMRT cells) to assess
reproducibility. We obtained between 402,663 to 967,702 on-target reads for HG002 across
three replicates, with a median read length of 5,244-5,647 bp and N50 size of 5,444-6,404 bp.
The alignment rate ranged from 89.60% to 98.89%, and the median read quality score was
Q35-36 (Supplementary Table S4). We measured the on-target gene coverage and the
adequacy of coverage at individual base pair positions. The three technical replicates had an
on-target rate between 49.69-54.90% (Supplementary Table S5). We achieved a high average
gene coverage from 38.34x to 99.75x. We measured the number of bases that exceeded a
coverage of 8x, which we consider the minimum threshold for confidently identifying SNVs and
indels. Based on our criterion, we found between 93.58% and 96.46% on-target gene bases
that surpassed the 8x coverage threshold at MAPQ>=20. Even when increasing the threshold to
20x, we still observed between 86.55% and 93.63% of bases having >20x coverage across the
22.20 Mbp panel. We found that OR4F5 is not covered in HG002 across all three replicates. For
the first two HG002 replicates DRD4, KISS1R, and TAS2R45 genes were not covered and
IGKV1-5 also was not covered in the second sample (Supplementary Table S5). The TADGP
further captures the pseudogenes if present. To quantify this, we measured the coverage across
pseudogenes for HG002. We identified 28 pseudogene copies across the panel design,
showing an average coverage of 56.73x (Supplementary Table S5) (see methods). This is
illustrated by GBA (49.77x coverage) in contrast to the GBAP1 pseudogene copy with 16.90x
coverage. 
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Figure 3. Performance assessment across samples HG001 to HG007 a) Comparison of
unique and shared variants (SNVs/Indels) represented by Upset: TADGP (three replicate), HiFi
LR-WGS, and Illumina SR-WGS for sample HG002. The blue column signifies the concordance
observed among all datasets, the yellow column represents variants that were not called using
Illumina dataset, and the green column highlights variants exclusive to the panel that are not
present in either HiFi LR-WGS and Illumina SR-WGS. b) Comparison of unique and shared SVs
represented by Upset. In the plot, the blue color represents SVs that are shared across all
datasets, while the yellow color represents SVs that are absent when using the SR-WGS
Illumina dataset. c) Comparison of SVs across the panel (Blue), WGS-illumina (Orange), and
WGS-HiFi (Green), on the X-axis is the Precision, Recall, and F-score and the percentage on
the Y-axis. d) A boxplot displays the F-score for SNVs and indels, for samples HG001, 3, 4, 5, 6
and 7 with the data split into five categories: All (SNPs and Indels), SNPs (substitutions only),
Indels (insertions and deletions), insertions only, and deletions only. The Y-axis represents the
F-score percentage, while the boxplot depicts the median with a solid blue line and the mean
with a dashed red line.  
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We next compared the TADGP to LR-WGS (30x PacBio Revio HiFi) and Illumina SR-WGS 
(32.44x). Across the 389 target genes, the normalized average coverage of the panel was 2.5-
fold higher when compared to LR-WGS (Figure 1c). We used the CMRG benchmark dataset 
that consists of 21,232 SNV and indel calls (i.e. small variants <50bp), along with 217 SVs 
(>50bp) to benchmark the TADGP performance. When considering substitution and indel F-
scores for the TADGP, LR-WGS, and SR-WGS were 94.6% (1,071 missed variants), 97.16% 
(390 missed variants), and 94.2% (1,264 missed variants), respectively (Supplementary 
Figure 3). The concordance of variants among the three technologies, including three panel 
replicates, was high (77.80%) (Figure 3a). The TADGP identified 963 small variants that were 
not captured by SR-WGS. Out of these, the panel uniquely identified 182 small variants (0.70%) 
not detected by either LR-WGS and SR-WGS. On the other hand, LR-WGS has 723 and SR-
WGS has 717 falsely identified small variants. TADGP on the other side reduced this number to 
83 falsely identified small variants. This suggests that the TADGP method offers advantages in 
specific genomic regions, enabling it to effectively address challenges that may be encountered 
with other approaches. 
 
We compared SVs performance amongst the TADGP, SR-WGS, and LR-WGS. The panel 
exhibited an overall F-score of 93.5%, similar to what we achieved using LR-WGS (94.99%), 
with a recall of 91.67% and a precision of 95.41%. For SR-WGS, the F-score was 38.85%, due 
to the missing SV calls (Supplementary Figure 4). Overall 18/217 SVs were missed by 
TADGP, out of these 11 were missed due to insufficient depth of coverage (Supplementary 
Table S6 shows the coverage per SV and the SV type) and TADGP only missed 3/14 SVs 
that intersect exons. Our concordance measures reveal that 127/217 of the SVs can only be 
detected using long reads, either from TADGP or LR-WGS, and remain undetected by SR-WGS 
(Figure 2b), from those 6/217 detected only by the TADGP. Furthermore, TADGP had six false 
positive SV versus 40 from Illumina and 21 from PacBio HiFi-WGS (Figure 3b).  
  
Among the 389 genes covered by our panel, 116 genes were excluded by GIAB for their 
curated benchmark due to their complexity39. To benchmark the performance of TADGP, we 
utilized an existing assembly from the HPRC project to infer variants (see Supplementary 
Table S7) see methods. Over these 116 genes the panel achieved an F-score of 68.00% for 
SNVs and indels, and 68.40% for SVs. LR-WGS demonstrated a 70.89% F-score for SNVs and 
indels, while exhibiting a reduced performance of 56.92% for SVs. SR-WGS resulted in an even 
lower F1 score, achieving 64.86% F-score for SNVs and indels, and 13.18% for SVs 
(Supplementary Figures 5-6). We suspect that this subset of genes results in lower F-scores 
across technologies due to their inherent complexities in these regions and the lack of vetted 
benchmark data; they highlight that the panel performs well compared to WGS approaches from 
PacBio and Illumina. We also assessed the accuracy of Paraphase calls for SMN1/SMN2, 
NCF1/NCF1B/NCF1C, PMS2/PMS2CL, and CFC1/CFC1B against the T2T HG002 assembly. 
The F-score for SNVs and indels is 96.3% excluding the homopolymer regions. 
 
Next, we compared the phasing performance between the TADGP and LR-WGS. The TADGP 
completely phased 63 genes into one phase block, while LR-WGS phased 111 genes. 
Furthermore, TADGP was able to phase 85.21% of the heterozygous variants per gene 
compared to 98.57% for LR-WGS (Supplementary Figures 6 and 7). The difference in 
performance between the TADGP and LR-WGS can be explained by the longer insert size of 
LR-WGS.  
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Figure 4. HG002 titration benchmark, sample HG002 coverage titration and its relation to
the SNVs, Indels, and SVs accuracy a) Compares SNV, indels, and SV F-scores across
titration levels for sample HG002, with the variant type on the X-axis and the F-score
percentage on the Y-axis. The titration values are color-coded: 100 in blue, 70 in orange, 50 in
green, 25 in red, and 10 in purple. b) The boxplot illustrates the SNV F-score per gene across
different titration levels. The X-axis represents the titration levels, while the Y-axis shows the F-
score percentage. The solid blue line indicates the median, and the dashed red line represents
the mean. This indicates that there is no performance difference while lowering the coverage
and thus enables the increase of samples sequenced per run. Only at 10% of the original
coverage (light green) we observe a performance difference.  

 
To increase the throughput of our assay, we have relied on multiplexing samples on a single
Revio SMRT Cell. Our current run has been set up for 12 samples per Revio SMRT cell, which
was conservative and yielded high coverage (38.34x to 99.75x) per sample. We subsampled
(down to 10%) the coverage and assessed variant calling performance on HG002 data. As
expected, the average coverage across the genes declined, but did not dramatically impact the
variant calling performance (Supplementary Figure 8). Only at 10% of the original coverage,
we have identified 15 uncovered genes. We further observed similar performance (F-score)
across SNVs, Indels, and SVs (Figure 4a). Even on a per gene measurement (Figure 4b) we
do not observe a large impact on variant calling. A reduction in accuracy is only observed at
10% coverage (10.92x average gene coverage). This goes in hand with a reduction of the F-
score from 94.81% at the original coverage to 82.71% at the reduced 10% coverage level.
Similarly, for SVs, only in the 10% titration we observed a reduced F-score from 87.57% to
83.99% (Figure 4a). Thus, TADGP could run up to 48 samples per PacBio Revio SMART cell
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which would further reduce the costs per sample and improve the throughput, without sacrificing 
accuracy.  

Systematic evaluation of TADGP across HG001 to HG007 cell lines 
Building upon the performance of the TADGP panel with HG002 and its replicates, our next step 
was to explore how the panel and our analysis workflow would perform across 11 additional cell 
lines, which represent multiple human ethnic populations (HG001, HG003, HG004, HG005, 
HG006, HG007, HG1190, HG2723, NA12877, and NA12879). These samples include two trios 
(HG002-HG004 and HG005-HG007). An inherent challenge in this context is that genes may 
vary in the number of pseudogene copies, making the reference representation less accurate50. 
Thus, variant calling can become more challenging to represent genes correctly from one 
human population to the other. Furthermore, for many of these samples, there are no highly 
curated benchmarks available39,51. 
We observed a high number of reads on target, as seen earlier for sample HG002 
(Supplementary Table S5). The average per-gene coverage was 68.55x, with approximately 
94.39% of bases at a depth greater than or equal to 8x (Supplementary Figure 9). There were, 
on average, 2.45 genes without coverage across the 11 samples (Supplementary Figure 10 
and Table S5). We benchmarked the panel's performance against WGS data (Supplementary 
Table S7) as we did in the previous section. LR-WGS as well as SR-WGS exhibited different 
per-sample coverage, affecting the per-gene average coverage (Supplementary Table S4). 
The TADGP had better coverage compared to LR-WGS and SR-WGS, demonstrating the 
effectiveness of multiplexing samples on one SMRT cell. 
 
We compared small variant calls between the TADGP, LR-WGS, and SR-WGS for samples 
HG001 to HG007 (excluding HG002). For this our analysis only includes 79.93% of these genes 
given limitations in GIAB variant benchmarks across these samples52, as illustrated in 
Supplementary Figure 11. The overall TADGP F-score for SNVs and indels ranged from 
96.94% (HG007) to 98.41% (HG005) (Supplementary Table S8).  
 
Additionally, we analyzed the unique variants identified by each technology compared to the 
available benchmark set, as well as the variants that were shared across the different 
technologies. Across the six samples (HG001 to HG007), we observed that approximately 
14,972.16 (66.35%) of the called variants are shared across all three approaches (TADGP, LR-
WGS, and SR-WGS) and the benchmark set (Supplementary Table S9). Overall, there are on 
average 31 SNVs and indels per sample exclusively called by the panel and even missed by 
LR-WGS and SR-WGS.  Furthermore, the panel reported fewer incorrect calls on average 
548.66 per sample in contrast to e.g., Illumina reported 794.5 per sample. Supplementary 
Figures 12-18 shows all the comparison details per sample for HG001-HG007. The Mendelian 
consistency for TADGP of small variants for both trios HG002 to HG004 and HG005 to HG007 
was 94.94% and 96.19%, respectively (Supplementary Table S11). Likewise, the SV 
Mendelian consistency was high for HG002 (92.76%) and HG005 (94.68%). Furthermore, we 
conducted a phasing analysis across the 11 samples. Our results indicate that on average 
95.94% of the genes were phased by TADGP with 23.43% of them within a single phase block 
(Supplementary Table S10). Overall, we observe that the TADGP performed well across the 
human population panel, discovering and phasing variants across medically relevant complex 
genes. 
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Application of TADGP to unsolved rare disease cases 
We used the TADGP on three trios, totaling nine samples, to investigate unsolved rare disease 
cases. These three families were chosen based on the suspicion of harboring causative variants 
within the TADGP. The samples encompass diverse ethnicities, including Asian and Hispanic, 
and present conditions including hypogammaglobulinemia, thrombocytopenia, lymphopenia, 
arthritis, and sclerosis (Supplementary Table S2). These nine samples further underwent 
microarray and exon sequencing analysis without identification of the causative variant.  
 
We run the samples in the TADGP to investigate whether it would be able to identify pathogenic 
variants in these families with unsolved rare diseases. Since DNA samples from those trios 
were extracted from blood and not from cell lines, we first assessed the coverage and read 
length distribution. We observed an average N50 read length of 6,189.83 bp with an 54.83% on-
target rate, detailed information for each sample is provided in Supplementary Table S4. 
Additionally, we found that 96.40% and 92.71% of the bases exceed a coverage of 8x and 20x, 
respectively (Supplementary Table S5). Our workflow identified on average 73,104.50 SNVs 
and 21,745.08 indels across the samples in addition to on average 1,413 SVs per sample 
(Supplementary Table S12). The workflow was able to phase SNVs and SVs together 
(Supplementary Table S10). Given these variant calls we measured the Mendelian 
consistency of the variants across the three families. We reported a high Mendelian consistency 
for SNVs and indels (96.36%) and SVs (94.36%) (Supplementary Table S11).  
 
Next, we investigated potential de novo variants, which are often associated with sporadic 
inheritance disease patterns. For samples BH7648, BH9319, and BH9703, we observed 2, 1, 
and 3 de novo SNVs, respectively. We also explored SNVs that were homozygous in the 
proband but heterozygous in the parents, which could be deleterious (autosomal recessive 
inheritance: ARI)53. On average, we found that 3.29% of the SNV and indels to be ARI, see 
Supplementary Table S11. We annotated de novo and inherited homozygous SNVs and indels 
in the three families using Annovar54. Among de novo variants, we counted the number with 
Deleterious Annotation of Genetic Variants with Neural Networks (DANN) scores55, but none 
were predicted to be deleterious. Additionally, we identified 20 ARI (17 exonic, 2 intronic, and 1 
in the UTR3) for sample BH7648 across 15 genes. Furthermore, for sample BH7648 we 
identified 13 exonic variants across 10 genes and for sample BH9703, 57 exonic and 7 intronic 
variants across 13 genes Supplementary Table S11. We suspected that specific genes might 
be associated with the phenotype of these progrants. A few of these genes are overlapping with 
the design of the TADGP, which include IKZF1 (BH7648 and BH9703) and CASP10 (BH9319) 
(Supplementary Table S2). In sample BH9703, we identified compound heterozygous exonic 
variants (Figure 5a), where a nonsynonymous paternal variant at position 50,368,335 A>G on 
chromosome seven is inherited in trans position with a maternal synonymous variant C>A at the 
same chromosome's downstream position at 50,400,069. However, these two variants have 
allele frequencies of 0.7555 and 0.1633, respectively, in the gnomAD database. It might still be 
a trans effect as the frequency of both variants together is unclear. Further investigation will be 
needed to assess the potential functional impact of these variants. 
 
We did not identify any de novo SVs (details in Supplementary Table S11). Additionally, we 
analyzed SVs for homozygous SVs present in the proband but heterozygous in the parents (i.e., 
ARI). For samples BH7648, BH9319, and BH9703, we identified 42, 64, and 46 SVs, 
respectively and annotated the SVs using gnomAD56. We identified four ARI inherited SV in the 
intronic regions of BH7648 (DMPK, DPP6, PADI4, and PDLIM3), all categorized as benign or of 
unknown significance (Supplementary Table S11). Additionally, BH9319 harbored a benign 
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intronic SV in PDLIM3, while two other SVs affecting SEC63 and PDSS1 introns were identified,
one benign and one of unknown significance (Supplementary Table S11). 
 
Thus, overall while the panel was not able to convincingly solve one of the three unsolved rare
disease cases it highlighted multiple candidates that have not been observed before. 
 
 

 

Figure 5. Application of TADGP on different rare and cardiovascular samples showing
LPA copy number variant and its relation to lp(a) concentration a) IGV screenshot
displaying compound heterozygous variant in IKZF1 gene affecting the proband, which coils
explain the condition, where a nonsynonymous paternal variant at position 50,368,335 A>G on
chromosome seven is inherited in trans position with a maternal synonymous variant C>A at the
same chromosome's downstream position at 50,400,069. The three panels are proband, mother
and father respectively. b) IGV screenshot displaying haplotype reads across four
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cardiovascular samples. Here the entire LPA gene was phased where reads are assigned to 
Hap1 (brown) and Hap2 (blue). The screenshot also highlights the KIV-2 copy number alteration 
with a distinctive double-humped pattern. c) A Scatter plot with a regression line showing the 
relation between LPA coverage on the X-axis and the concentration of lp(a) secretion on the Y-
axis.  

Cardiovascular TADGP samples analysis 
Given the success of TADGP to resolve complex genes and identify variants, we next applied it 
to a cohort of European and Hispanic descent investigating genomic based cardiovascular 
disease (CVD) risk. Here, we are especially interested in the complex gene LPA as it has a 
profound impact on Low-Density Lipoprotein (LDL) and thus CVD risk. LPA consists of multiple 
sections including KIV-2 that are highly polymorphic in the human population ranging from 5-
50+ copies24,57. These copies include two exons and thus impact the overall length of mRNA 
and also expression of Lp(a) protein. Recent studies often rely on two SNVs (rs10455872 + 
rs3798220) to assess CVD risk as a proxy of the copy number variations57. Indeed, in 
Europeans these SNVs are in linkage with a high-risk copy number variant (CNV) of KIV-2. 
However, in other populations this association is often not the case57,58.  We used TADGP 
across 14 samples of European (12 samples) and Hispanic (2 samples) populations where we 
also had LDL measurements.  
 
All 14 samples showed consistent coverage with 90.82% of bases covered at minimum 20x 
(MQ20) (Supplementary Table S4-5). On average, we identified 73,576.93 SNVs, 22,196.64 
indels, and 1,392.79 SVs across these 14 patient samples (Supplementary Table S12). 
TADGP also phased on average 81.59% of the genes (Supplementary Table S10). We were 
interested in how well TADGP can be used to assess LPA specifically. We first manually 
inspected the LPA gene including the KIV-2 region (Figure 5b). Across these 4 randomly 
selected samples we can clearly see the duplication of the KIV-2 across the samples. 
Furthermore, we see that TADGP was able to phase reads in this region indicated by brown- 
and purple-colored reads (Figure 5b). The phasing of KIV-2 can be highly important as it might 
provide insights to different expression levels per haplotype. To quantify the ability of TADGP to 
recover the CNV state of KIV-2 we estimated the CNV number of this region by comparing it to 
a neighboring region within LPA (see methods for details). Supplementary Table S2 provides 
the detailed CNV estimates. We correlated the CNV estimates with the obtained Lp(a) protein 
measurements. We observed as expected an inverse significant correlation (-0.53, p-value: 
0.0493) of KIV-2 CNV and Lp(a) measurements (Figure 5c)25. 
 
Besides LPA we investigated 70 other genes that are reported to impact CVD risk and are also 
captured by TADGP (Supplementary Table S2). We identified 2,293 (1.87%) of the variants 
across the exons of these genes. These exonic variants are observed in genes (LPA, PDLIM3, 
CALR3, KCNE1, PDLIM3, CALR3) linked to cardiac conditions based on ClinVar annotation. 
We further identified a systematic deletion of 82 bp in chromosome 22 (chr22:50,716,010) 
impacting SHANK3 across 13/15 (86.66%) samples, including the control sample HG002. The 
SV genotypes across these samples were classified into 9 heterozygous variants (including 
HG002) and 4 homozygous variants. This specific deletion independent of the zygosity, is 
annotated to be related to Phelan-McDermid syndrome, which can cause cardiac problems. 
Interestingly, we identified this SV in only one individual within the gnomAD-SV database, 
suggesting its extreme rarity in the general population. However, it is unlikely that this deletion is 
indeed related to Phelan-McDermid syndrome as its prevalence is reported to be 2.5–10 per 
million births59. Thus, the lack of SV calling ability in these regions might lead to a 
misconception of the rarity of the particular deletion. Further analysis of the samples uncovered 
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one sample exhibiting three deletions within intronic regions flanking exon 8 and 9 of SHANK3. 
Notably, previous studies in mice demonstrated that partial deletion of SHANK3 exons 4-9 
(SHANK3 Δexon 4–9+/−) led to significant thickening of both the anterior and posterior walls of 
the left ventricle (LV), while complete deletion (SHANK3 Δexon 4–9−/−) solely affected the 
anterior wall thickness compared to wild-type controls60. While additional functional validations 
are crucial to conclusively establish the impact of the identified variants, these findings show the 
potential of TADGP in capturing and analyzing notoriously challenging genes. 

Uniquely identified variants by the panel that evaded public db 
Over this work, we demonstrated the reliability and utility of the TADGP in sequencing and 
analysis of 389 medically relevant yet challenging genes. To further investigate the significance 
of this approach, we examined how many of the variants discovered in this work are actually 
present in public databases. This could reflect the lack of knowledge about the diversity of these 
389 genes and thus the importance of studying them to better understand what mutations might 
have an actual impact on these genes. To start this investigation, we started with HG002 to set 
the expectations. Here we actually first used the published SNVs and indels from GIAB directly 
and annotated them. First, to have a reference point, the genome wide SNVs and indels from 
GIAB overlapped to 99.16% with gnomAD directly. Next, for CMRG (273/389 genes) we saw 
that the percent of covered variants from gnomAD reduced to 97.66%.  
 
Applying this analysis to our dataset of 34 samples (excluding the two HG002 replicates), we 
identified 155,653 variants (121,376 SNVs and 34,277 indels) present in at least four samples 
within the merged set. This threshold corresponds to an approximate minor allele frequency 
(MAF) of ≥12% across the entire dataset and thus clearly common variants. Notably, we were 
only able to annotate 80.59% of these common variants (89.22% of SNVs and 50.06% of 
indels) using the gnomAD database Supplementary Table S14. Interestingly, among the 
unannotated variants, exonic variants represented only 1.21% of SNVs and 0.19% of indels. For 
the 6,764 SNVs and indels that are shared across all samples, the number of variants that we 
can annotate increases to 82.82% (92.93% SNVs and 6.80% indels). 
 
Next, we performed the same analysis for SV, which is harder to characterize14,39. Again, 
genome wide GIAB SV benchmark (v0.6) revealed only a 22.80% overlap with gnomAD-SV 
highlighting the larger challenge of capturing SV with short-read data in population databases. 
Extending this to the 217 GIAB CMRG SV benchmark, we did not find any SV annotated in 
gnomad-SV. For SV that are shared across a minimum of four samples in our collection (MAF 
>12%) we only identified 7.99% of them in gnomAD-SV (Supplementary Table S14). This 
highlights the need for improved annotation resources for SNV and SV calling across the 389 
medically relevant genes. Even with the low number of samples we studied, here we could 
provide an annotation resource for future studies to provide limited but usable annotations in 
terms of population frequencies. We are thus releasing the alleles with population frequencies 
at: https://doi.org/10.5281/zenodo.10806570.  

Discussion 
We introduced TADGP, a gene-targeted approach specifically designed for the cost-effective 
application of long-read sequencing in the investigation of 389 medically relevant genes known 
for their complexity. Throughout this study, we characterized the efficacy of TADGP across 
seven benchmark samples, including HG002 plus samples HG001 to HG007. In addition, we 
used the TADGP on a cohort of 23 patient samples, unveiling its efficacy in the identification 
and phasing of variants. Notably, this approach proved effective in the analysis of legacy 
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samples (comprising 9 Mendelian cases) as well as blood samples (including 14 cardiovascular 
samples). TADGP consistently exhibited high coverage across all samples for the targeted 
genes and effectively captured other paralogous gene copies associated with the targeted 
genes. In conjunction with this targeted approach, we developed a new analytical workflow that 
integrates mapping, assembly, and targeted callers. This workflow aims to generate a 
harmonized and phased VCF file, simultaneously addressing both SNVs and SVs. We 
demonstrated a high accuracy and concordance across three replicates of HG002 GIAB 
samples. This accuracy was consistently observed across other samples and yielded new 
insights into the 389 medically relevant genes, even often outperforming whole genome 
sequencing approaches.  
 
The design of TADGP is based on a previous study where we identified 386 challenging 
medically relevant genes in addition to 3 other genes (GBA, CYP2D6, and SBDS)39. This set of 
genes have been highlighted because of their repetitiveness and complexity of the regions they 
are located at. Moreover, reference errors in both GRCh38 and GRCh37 have been identified, 
posing obstacles to obtaining detailed characteristics for these genes45. The overall design 
across the autosomes includes 22.20 Mbp of sequence as we included the entire gene body 
along with the 3kb flanking region, which makes it possible to phase variants across the gene. 
To evaluate this, we used TADGP across 36 samples, with 12 samples per SMRT cell, resulting 
in high variant accuracy and phasing rates. To determine the cost benefit of TADGP, we 
conducted a subsampling experiment demonstrating the feasibility of using 48 samples per 
Revio SMRT cell, thus further reducing costs. 
 
It should be noted that for a few genes the panel design did not work properly, whereas for four 
genes, the  average sequence coverage was <1x in all our 36 samples. The overall assessment 
of coverage is occasionally complicated by the highly repetitive nature of several of these 
genes, including Variable Number Tandem Repeats (VNTRs).  
Even with long reads, these challenging genes in the TADGP may not map well to the reference 
genome. To address this, we used a hybrid strategy to integrate mapping-based methods, 
targeted caller, and an assembly method to accurately identify variants. In certain cases, this 
hybrid strategy even outperforms whole genome sequencing. 
 
TADGP can be used either independently or in conjunction with previously sequenced samples 
to enhance resolution across the 389 medically relevant genes. These genes were reported to 
exert a significant impact across diseases (Figure 1a). 
However, only 25% of the genes have published ClinVar variants and thus show the need for 
more routine assessments of these medically important genes. This is also shown by the lack of 
gnomAD and gnomAD-SV annotations available for the variants we identified here. Only 
80.59% of SNV and 7.99% of SV that are common across our samples (AF ≥ 12%) can be re-
identified in gnomAD overall. It is surprising that numerous variants remain uncaptured by 
standard annotation databases such as gnomAD, underscoring the necessity for adopting the 
approach presented here to systematically evaluate variants within these complex medically 
relevant genes. To promote this, we provide the variants identified in this study as an annotation 
resource for further studies at https://doi.org/10.5281/zenodo.10806570.  
 
TADGP establishes a cost-efficient and comprehensive approach for characterizing 389 
medically relevant genes, thereby providing additional insights into multiple diseases and 
affected individuals on a large-scale. 
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Methods 
For the rare disease cases, all individuals provided consent under the BH-CMG (GREGoR) IRB 
protocol H-29697. Regarding the cardiovascular samples, the study was approved by the Baylor 
College of Medicine (BCM) Institutional Review Boards (protocol number: H-43884). Written 
informed consent was obtained from all study participants. 

Capture panel description  
In brief, double-stranded DNA probes were designed to GRCh38 regions using a sparse tiling 
approach which is supplemented by a repeat screen and GC content optimization. The panel 
was further optimized by shifting and adding probes to poor-performing regions based on the 
first round of experiments. The total target size covered is 22.20 Mbp with 24,363 probes. A 
total of 389 regions were targeted, except LCE3B, SNORD64, DUX4L1, and TRBV9, which 
were not covered due to high off-target rate. We used a probe length of 120 bp.  

Pipeline description 
We built our analysis workflow using snakemake v7.22.061 running on a python v3.9 interpreter. 
Multiplexed samples were first demultiplexed and adapters were trimmed using lima 
(https://github.com/PacificBiosciences/barcoding ) v2.5.0.  
For each sample, HiFi reads were marked for PCR duplicates with pbmarkdup v1.0.2 
(https://github.com/PacificBiosciences/pbmarkdup ) and aligned with pbmm2 v1.7 
(https://github.com/PacificBiosciences/pbmm2 ) to the reference using GRCh38 fixed reference.   
Aligned reads were further processed through DeepVariant v1.5.046 and Whatshap62 v1.1 for 
SNV calling and phasing of reads and variants, respectively.  Structural variants were called 
from haplotagged reads by sniffles63 v2.0.5. 
In a separate pathway, HiFi reads were assembled using hifiasm64 v0.15, followed by alignment 
to the reference using minimap265 v2.17.  Variants of all sizes were called from the aligned 
assemblies using htsbox (https://github.com/lh3/htsbox ) build r346.   
After all variants were called from aligned reads and assemblies, we used bcftools66 v1.13 to 
annotate each intermediate VCF file according to calling source by including the INFO/V field as 
indicated by the appended header lines: 

##INFO=<ID=GENE,Number=1,Type=String,Description="Gene Name"> 
##INFO=<ID=V,Number=1,Type=Integer,Description="V=1 Assembly V=2 HiFi_Reads"> 

Labeled variants were filtered according to the user input defined in the target BED (see below) 
and combined to form the final output VCF files.   
Input to the workflow includes a target BED file with 6 columns: CHROM, FROM, TO, GENE, 
SNV, SV.  The “gene” column is a unique target name, typically the gene, while the last two 
columns define which variant-calling pathway to take for SNV and SV, respectively.  A value of 
1 indicates variants should be sourced from the aligned assembly, and a value of 2 indicates 
variants sourced from aligned HiFi reads (see also INFO fields above).  The workflow generates 
calls for both variant classes for all targets using both mapped HiFi reads and assemblies, and 
then filters and combines variant calls based on the BED. Output SNV VCF files contain all 
variants for which the INFO/GENE and INFO/V values correspond to the GENE, SNV columns 
of the BED, while the output SV VCF contains variants with values according to columns GENE, 
SV as described above. 
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Sample DNA extraction and sequencing  
Genomic DNA (gDNA) samples were obtained from the Coriell Institute. Around 500-1000 ng of 
gDNA were sheared using Covaris g-TUBE. Fragmented gDNA were subjected to the Twist 
Long-Read Capture Protocol. After end-repair and a-tailing, truncated Y- shaped adapters were 
ligated onto the adapted gDNA. A pair of 10-bp unique dual indices (UDIs) for sample barcoding 
were added during PCR. 4-8 samples were pooled in a single tube for overnight hybridization. A 
custom panel (now manufactured as Twist Alliance Dark Genes Panel) from Twist Bioscience 
was used to perform targeted capture of the regions of interest. The post-capture libraries then 
underwent SMRTbell library preparation using SMRTbell® prep kit 3.0 and sequencing on a 
PacBio Revio instrument (150pM, 24-hour movie) according to the manufacturer’s protocol 
using the High Fidelity (HiFi) sequencing protocol67. Up to 4 samples were multiplexed and 
sequenced in one Sequel SMRT Cell or 12 samples in one Revio SMRT Cell with HiFi read 
length of 5-10 kb. 
The data generated underwent initial processing onboard the Sequel IIe/Revio instrument, using 
the PacBio SMRT Link software. Subsequently, the onboard analysis included base calling, HiFi 
read generation Following this stage, the files are transmitted to the HGSC compute cluster for 
further post-processing. 

Variant calling for PacBio WGS 
For SNVs, indels, and SVs calling and phasing we used PRINCESS68 version 2 with the default 
parameters and subcommand all, with the  `--ReadType` set to `ccs`. 

SNVs and SVs calling for Illumina 
For Illumina whole genome sequencing, we aligned the reads using BWA-MEM69 version 
0.7.17-r1188 with default parameters. Subsequently, SNVs and indels were called using the 
GATK HaplotypeCaller70 version 3.6-0-g89b7209 workflow, and for structural variants, we used 
Manta version 1.6.0 with default parameters. 

Benchmarking SNVs and SVs 
We conducted SNV benchmarking separately by using the gene coordinates as input for RTG 
vcfeval version 3.12.1 (https://github.com/RealTimeGenomics/rtg-tools) Supplementary section 
“QC Pipeline''. For benchmarking the entire gene set, we followed the same process. The 
benchmarking process was carried out using the default parameters of RTG vcfeval. The input 
BED regions and SNPs were sourced from GIAB CMRG version 1.052 (https://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/CMRG_v1.00/G
RCh38/SmallVariant/ ). For samples HG001, HG003, HG004, HG005, HG006, and HG007, we 
used GIAB data available at https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/ . To ensure 
accuracy, we filtered both the BED regions and SNV regions using `bedtools intersect`71, with 
the input being the BED regions from CMRG. To benchmark SVs, we used `truvari bench` 
version 3.2.072 with the default parameters and used the following flags: `--passonly`, `--
pctsim=0`, and `--multimatch`. We used a BED input file input and an SVs VCF file sourced from 
CMRG consortia version 1.0. 
 
To benchmark genes that were not available from GIAB, we first selected them using the 
`bcftools intersect` tool with the `-v` option. The `-a` argument was set to the 389 genes, and `-
b` was set to the 273 genes available from the GIAB consortium. Next, we used the variants 
called by HTSbox from the HG002 assembly (accession ID PRJNA727430) and intersected 
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them with the BED file for the 116 genes. We filtered out multiallelic variants using the `bcftools 
view -M2` option and indexed the variants with `tabix` version 1.1273. 
To validate variant calls made by Paraphase in SMN1/SMN2, PMS2/PMS2CL, 
NCF1/NCF1B/NCF1C and CFC1/CFC1B, we compared per haplotype VCF files against the 
HG002 T2T assembly v1.0 (https://github.com/marbl/HG002) (variants called by HTSbox). 

QC of the workflow results  
We used nanoplot74 version 1.40.0 with default parameters and included the flags `--N50 --
alength --no_supplementary` to calculate whole genome coverage. For normalized coverage, 
we divided the average gene coverage by the maximum average gene coverage, thereby 
scaling all coverages to a maximum of one. To identify on-target coverage, we used samtools75 
(version 1.12). Initially, we determined the total reads in the aligned BAM file using the 
command `samtools view -c -F 3076`.  
Subsequently, we ascertained the number of reads on target using the same command but after 
extracting the on-target reads with a buffer of 10,000 bp. To achieve this buffer, we used 
bedtools (version 2.30.0) with the command `bedtools slop -b 10000`. The intersections were 
computed using `bedtools intersect`. 
 
To determine the base pairs on target, we used samtools and AWK. This involved extracting 
reads with the flag `3076` and then summing the lengths of the 10th field. The same procedure 
was applied to the on-target region. Average gene coverage was calculated using mosdepth76 
(version 0.3.2) with the `--by` option to support gene coordinates and a `--mapq 20` threshold. 
 
To calculate the bases with 8x, 10x, and 20x coverage, we used the per-base coverage output 
from mosdepth along with bedtools and AWK Supplementary section “Gene coverage”. Initially, 
we intersected the per-base coverage with gene coordinates using `bedtools intersect`. 
Subsequently, we used AWK to sum the values that exceeded 8x, 10x, and 20x coverage. 
For the whole genome sequencing (WGS) data from both Illumina and HiFi, we determined 
genome coverage using nanoplot77. This involved dividing the total bases aligned by 
`3,088,286,401`, which is the estimated count of the human genome bases. The method for 
calculating average gene coverage was identical to that used for the panel, as explained earlier. 
 

Pseudogene identification 
We expanded the gene regions by one kilobase using `bcftools slope`, followed by selecting the 
sequence for each gene using `bedtools getfasta`. Subsequently, we masked the genome using 
`bedtools maskfasta` and aligned the gene fasta file to the masked genome using `minimap2` 
with the `-c` flag to incorporate the `CIGAR` number. From the resulting PAF file, we extracted 
aligned genes with a minimum alignment block length of 2 kilobases and calculated the identity 
by dividing the number of residue matches by the query sequence length. We retained only 
those genes with an identity of at least 0.90. Finally, we identified the genomic regions to which 
these genes align and utilized them to compute coverage during the alignment of the total 
reads, both with and without the fixed GRCh38 reference, using `mosdepth` with `by` set to the 
genomic region the genes aligned to. 
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Sample titration 

To generate titrations representing 70%, 50%, 25%, and 10% of the total run from the 
multiplexed BAM file, we used `samtools view`. The `-s` parameter was assigned the values of 
`11.7`, `11.5`, `11.25`, and `11.10` to perform this titration process, where the see set to `11`. 

Merging and identifying unique variants 
We merged the SNVs and indels using `bcftools merge -Oz -o`, combining the data from the 34 
samples obtained in the three SMRT cell runs. We selected variant that are shared with at lear 4 
samples by using `bcftools view -i 'count(GT!="mis")>3'`. 
Regarding SVs, we used SURVIVOR merge with the following parameters: SVs_merge.txt 1000 
0 1 0 0 50.  

● SVs_merge.txt denotes the file containing paths to the input SVs files 
● 1000 bp represents the maximum distance between two SVs 
● The maximum number of supporting callers is set to 0 
● SV type is considered during merging 
● Strand information is disregarded 
● And distance estimation based on SV length is not conducted, and the minimum SV size 

is set to 50. 
To select SVs that are shared within at least four samples we used `bcftools view -i 'SUPP!="1" 
&& SUPP!="2" && SUPP!="3" `. 

Number of genes that intersects with variants from ClinVar 
We used the ClinVar VCF file available at 
https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/archive_2.0/2023/clinvar_20230107.vcf.gz. 
Subsequently, we filtered variants using bcftools with the following criteria: `bcftools view -i 
'CLNSIG="Pathogenic" & CLNREVSTAT="criteria_provided" & 
CLNREVSTAT="_multiple_submitters" & CLNREVSTAT="_no_conflicts" & CHROM!="X" & 
CHROM !="MT" & CHROM!="Y"' clinvar_20230107.vcf.gz`. This filtering retained only 
pathogenic variants where the criteria were provided, supported by multiple submitters, and had 
no conflicts. Additionally, we excluded mitochondrial variants as well as those located on 
chromosome X and Y. 

Variants annotation  
We annotated SNVs and indels using Annovar54 latest version table_annovar.pl with reference 
build hg38 and the following protocols: gnomad312_genome (20221228), dbnsfp30a, 
clinvar_20221231. Additionally, we applied filters f, f, f for these annotations. For SVs, we used 
SVAFotate version 0.0.1 with gnomAD database annotation from the SVAFotate GitHub 
repository SVAFotate_core_SV_popAFs.GRCh38.bed.gz, which used gnomAD-SV_v2.1 and 
AnnotSV78 version 3.3.6. 

CNV detection in KIV exon II 
To compute the ratio between KIV-2 coverage and other regions within the LPA gene, we 
designated the region chr6:160,638,526-160,639,526 (GRCh38) as the KIV-2 region and the 
region chr6:160,531,482-160,532,482 as the control region. using samtools view, we tallied the 
number of reads in each region. Subsequently, we calculated the ratio by dividing the read 
counts from the KIV-2 region by those from the control LPA region. 
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Identifying variants intersecting with suspected genes for rare sample 
cases 
We intersected a list of suggested genes, which could potentially explain some of the diseases 
in the Mendelian rare cases. The gene coordinates were obtained from the Biomart website for 
human genome GRCh38, and we carried out this operation using bedtools version 2.30.0 with 
the default `intersect` options. 

Mendelian consistency for SNVs and SVs  
For Mendelian consistency assessment of both SNVs and SVs, we used the bcftools plugin 
+mendelian with default parameters, and specified the relationship using the -t flag. 

Data availability 
Supplementary Table S7 lists the raw reads were downloaded from SRA  
The GIAB benchmark is downloadable here:  
HG001: 
 SNVs and Indels: https://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/NA12878_HG001/latest/GRCh38/ 
HG002: 

SNVs and Indels: https://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/
CMRG_v1.00/GRCh38/SmallVariant/ 

SVs: https://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/
CMRG_v1.00/GRCh38/StructuralVariant/  
HG003: 
 SNVs: https://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG003_NA24149_fath
er/latest/GRCh38/ 
HG004: 
 SNVs: https://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/AshkenazimTrio/HG004_NA24143_mot
her/latest/GRCh38/ 
HG005:  
 SNVs: https://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/ChineseTrio/HG005_NA24631_son/late
st/GRCh38/ 
HG006: 
 SNVs: https://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/ChineseTrio/HG006_NA24694_father/lat
est/GRCh38/ 
HG007: 
 SNVs: https://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/ChineseTrio/HG007_NA24695_mother/l
atest/GRCh38/  
 
ClinVar VCF file is available here:  
https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/archive_2.0/2023/clinvar_20230107.vcf.gz   
Variant calling VCF files are available at: https://doi.org/10.5281/zenodo.10806570  
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Code availability 
The pipeline is available at https://github.com/PacificBiosciences/HiFiTargetEnrichment  
The QC pipeline for the panel is available at 
https://github.com/MeHelmy/HiFiTargetEnrichmentQC   
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