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Abstract 40 
A major challenge in neuroscience is to visualize the structure of the human brain at 41 
different scales. Traditional histology reveals micro- and meso-scale brain features, but 42 
suffers from staining variability, tissue damage and distortion that impedes accurate 3D 43 
reconstructions. Here, we present a new 3D imaging framework that combines serial 44 
sectioning optical coherence tomography (S-OCT) with a deep-learning digital staining 45 
(DS) model. We develop a novel semi-supervised learning technique to facilitate DS model 46 
training on weakly paired images. The DS model performs translation from S-OCT to 47 
Gallyas silver staining. We demonstrate DS on various human cerebral cortex samples with 48 
consistent staining quality. Additionally, we show that DS enhances contrast across cortical 49 
layer boundaries. Furthermore, we showcase geometry-preserving 3D DS on cubic-50 
centimeter tissue blocks and visualization of meso-scale vessel networks in the white matter. 51 
We believe that our technique offers the potential for high-throughput, multiscale imaging 52 
of brain tissues and may facilitate studies of brain structures. 53 

 54 
 55 
Introduction 56 

The human brain consists of an estimated 86 billion neurons (1), which form intricate 57 
connections and networks that underlie the complex functions. To gain new insights into 58 
the brain, major efforts have recently been made to develop multiscale imaging technologies 59 
for visualizing anatomical structures with microscopic resolution across cubic centimeters 60 
of tissue. The most widely used techniques for visualizing anatomical and neuronal 61 
structures are based on histological staining. Gallyas silver staining is used to characterize 62 
myelin content and neuronal structures, as well as to identify pathological features of 63 
neurodegenerative diseases in human brain tissue (2, 3). To create a high-resolution 3D 64 
model of the cytoarchitecture, the BigBrain project (4) reconstructed a whole human brain 65 
with more than 7000 histological sections, which involves slicing the tissue into 20-μm 66 
sections, staining with silver halide to reveal cellular and fiber structures, and registering 67 
the slices in 3D. However, these histological staining processes are generally complex, 68 
labor-intensive, time-consuming, and prone to experimental error and staining variability. 69 
Furthermore, the slicing, mounting, dehydration, and staining inevitably cause tissue 70 
damage and slice-specific distortions, which can limit the accuracy of 3D alignment and 71 
reconstruction of structures at the micron scale (5, 6). Therefore, there is a growing need for 72 
developing 3D pathology imaging techniques, especially label-free techniques that can 73 
provide high-resolution 3D visualizations of brain tissues with minimal tissue damage and 74 
distortion, and that can reduce the need for physical staining (PS) (7–10). 75 

Optical coherence tomography (OCT) is a label-free imaging technique that allows high-76 
resolution 3D visualization and quantification of intrinsic optical properties of tissue, such 77 
as the scattering coefficient and back-scattering coefficient (11, 12). Recently, OCT has 78 
shown great promise in brain imaging applications, such as visualizing single neurons (13), 79 
fiber tracts (14), and the laminar structure of the cerebral cortex in the human brain (15, 16). 80 
While traditionally limited by light penetration, serial sectioning OCT (S-OCT) integrates 81 
OCT with a vibratome slicer to enable 3D imaging of cubic centimeters of tissue (17). S-82 
OCT permits straightforward and accurate 3D high-resolution reconstruction of large-scale 83 
brain anatomy, microstructures, and tractography (17–19) with minimal tissue distortion. 84 
This is achieved through the use of a serial imaging protocol (20), where OCT imaging of 85 
the top ~150 µm thick tissue is alternated with the slicing off of the superficial tissue, thus 86 
reducing cutting-induced distortion after imaging. This enables accurate reconstruction of 87 
the complex 3D structures of brain tissues without requiring sophisticated inter-slice 88 



registration algorithms. Despite its ability to routinely generate large-scale volumetric brain 89 
imaging data, S-OCT still requires considerable expertise to identify and annotate 90 
anatomical and neuronal features for further analysis (11, 14, 17, 21). Our goal is to augment 91 
S-OCT with a digital staining (DS) technique that enables straightforward 3D histology on 92 
large-scale human brain tissues. 93 

In the past few years, deep learning methods have revolutionized the field of DS, which 94 
aims to transform label-free images into histological staining-like images using a 95 
computational model (22). DS offers a fast and low-cost alternative to conventional PS 96 
methods. Several DS models have been developed that transform different pairs of input-97 
output imaging modalities. However, most existing DS methods rely on supervised learning 98 
methods, which requires paired images of the tissue slice with and without staining for 99 
model training. To ensure accurate DS results, cross-modal registration between the image 100 
pairs with pixel-level accuracy is crucial (23–26). However, obtaining such image pairs is 101 
difficult and often involves sophisticated image registration procedures (22, 24). To 102 
overcome this challenge, some recent studies have explored unsupervised image translation 103 
models for DS, which only need unpaired collections of images from the two modalities for 104 
model training (8, 27–30). The most popular unsupervised method is CycleGAN (31), 105 
which comprises two sets of generators and discriminators that enforce cycle consistency 106 
and content preservation for the image translation task. A recent improvement over 107 
CycleGAN is Contrastive Unpaired Translation (CUT) (32), which uses contrastive learning 108 
to achieve better structural and content preservation with only one set of generator and 109 
discriminator, and has demonstrated superior performance in DS tasks (28). However, these 110 
unsupervised models still lag behind supervised models in terms of accuracy (22). 111 

Here we present a new semi-supervised learning framework for DS using a limited amount 112 
of weakly paired image data. As a proof-of-concept demonstration, we use our DS model 113 
to translate S-OCT images to Gallyas silver staining. Our DS model consists of two novel 114 
modules that address several challenges in our technique. Our main model is based on the 115 
CUT framework to perform DS using unpaired training data. This module combines 116 
contrastive learning and adversarial learning to address the lack of paired imaging data since 117 
the physically stained images were obtained from unordered adjacent brain tissue sections 118 
to the OCT-imaged sections and were confounded by tissue damage and distortion during 119 
the staining process.  120 

To improve the accuracy of the unsupervised model, we augment it with semi-supervision 121 
from two auxiliary tasks. Firstly, we devise a pseudo-supervised learning module by training 122 
the DS network on a pseudo-paired training dataset that is generated using our previously 123 
established biophysical model. Our previous work has revealed a linear correlation between 124 
the OCT scattering coefficients (SC) and the optical density (OD) computed from the 125 
Gallyas silver stained image (21). Based on this similarity prior, this module learns to 126 
translate the generated OD back to the Gallyas silver stain, acting as a proxy supervision for 127 
learning the translation from OCT-SC to Gallyas silver stain. This naturally pixel-aligned 128 
pseudo supervision augments the training data, enabling training the DS model effectively 129 
despite the limited data available to our task due to the scarcity of the human brain samples. 130 
Additionally, when combined with the adversarial learning component in the CUT 131 
backbone, the domain gap between the OCT-SC images and OD maps are effectively 132 
mitigated by the mechanism of domain-adversarial training (33). Secondly, we develop an 133 
unsupervised cross-modality image registration module that aligns the adjacent Gallyas 134 
image with the OCT-SC image. This module enables the DS model to utilize the geometric 135 



similarity information provided by the adjacent slices, thereby guiding the image translation 136 
process. To train the registration network effectively, we introduce a novel two-stage, 137 
multiscale training strategy. It allows the network to learn image registration at the “global” 138 
whole slide image (WSI) scale, while simultaneously learning image translation at the 139 
“local” image patch scale. Furthermore, this novel training strategy facilitates collaborative 140 
training between the DS model and the registration model, leading to more effective 141 
enforcement of high-quality DS results.  142 

 143 
Fig. 1. Overview of the proposed OCT DS technique. (A) Data acquisition and DS model. 144 
S-OCT alternates between 3D imaging and tissue sectioning to acquire a stack of block-face 145 
OCT images, which are then processed to compute the scattering coefficient (OCT-SC) map 146 
stack. Sectioned sample slices are physically stained and imaged. The DS neural network is 147 
trained from a few weakly-aligned pairs of OCT-SC and Gallyas silver-stained images. (B) 148 
After the DS model is trained, it can perform inference on completely new slices of OCT-149 
SC images for volumetric DS. 150 

We present our DS pipeline for data acquisition and deep learning model training in Fig. 151 
1A. We use S-OCT to obtain label-free volumetric data of human brain samples. We then 152 
process the OCT data to calculate the SC maps (11) (see details in Methods). Next, we 153 
develop a deep learning DS model that transforms OCT-SC images into Gallyas silver stain 154 
images. We choose OCT-SC as the input for the DS model instead of the raw OCT 155 
measurements because SC measures the intrinsic optical properties of the tissue and 156 
eliminates the inhomogeneity in the raw OCT intensity by using a nonlinear model-fitting 157 
process (11). Moreover, a biophysical model from our previous work showed that OCT-SC 158 
mainly depends on the contribution of myelin content, which is captured by the OD of the 159 
Gallyas silver staining (21). We hypothesize that the correlation between these two 160 
modalities can be leveraged to create a more accurate image-to-image mapping using a deep 161 
learning model. During S-OCT, we also collect a few unordered tissue slices that are 162 
physically stained for DS model training and evaluation. The deep learning model is trained 163 
on a few weakly-aligned pairs of OCT-SC and Gallyas silver stained WSIs. The inference 164 
stage of the DS model is shown in Fig. 1B. After the model is trained, it can be applied on 165 
any OCT-SC maps to enable 3D neurohistology on cubic centimeters of brain tissue and 166 
visualize mesoscopic brain structures. 167 

First, we present the OCT DS results on single-section tissues from various cerebral cortex 168 
samples and compare them with PS results from adjacent sections. We demonstrate that DS 169 
exploits the quantitative nature of OCT-SC and thus can produce consistent staining quality 170 
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across different samples. Compared to PS, DS reveals comparable mesoscopic (~10 µm) 171 
structures in different tissue regions without introducing staining variability across samples 172 
and experiments. In addition, we show that DS enhances contrast across cortical layer 173 
boundaries and can consistently differentiate cortical layers IV, V and VI. Next, we show a 174 
3D-rendered volumetric DS result on a cubic centimeter-scale tissue block that was not used 175 
for training the DS model. The result shows geometry-preserving 3D staining on large-scale 176 
brain tissue and visualization of vessel structure in the white matter region. Finally, we 177 
showcase a pilot study on the generalization performance of our method - we apply the DS 178 
model trained on cortex regions to samples from other anatomical regions acquired from 179 
different OCT setups.  180 

In summary, we present a novel deep learning technique for DS of OCT images for large-181 
scale human brain imaging. Our method allows direct visualization of important mesoscopic 182 
3D brain features, including myeloarchitecture of the cerebral cortex and main 3D blood 183 
vessel network in the white matter, with contrast that closely resembles Gallyas-silver 184 
staining. Our method has several advantages over traditional PS, such as reducing staining 185 
variability, preserving complex brain 3D geometry and facilitating volume generation 186 
across cubic centimeters of tissue. Our method also improves the interpretability of the 187 
label-free OCT modality for brain imaging. However, our method also faces some 188 
limitations that originated from our current S-OCT system, such as artifacts from image 189 
stitching (12, 14), uneven tissue sectioning, speckle noise, and limited lateral and axial 190 
resolution due to the SC model fitting. Although our technique is sensitive to fiber structures 191 
in the gray matter, the speckle noise and limited resolution resulted in discontinuities and 192 
grainy artifacts in the DS results. We expect that these issues will likely be overcome by 193 
future generations of high-resolution S-OCT systems (34, 35) and improved processing 194 
algorithms. Despite current limitations, we believe that our semi-supervised learning-based 195 
DS framework is broadly useful to other bioimaging modalities and DS applications. 196 
Furthermore, our work has significant implications for quantitative volumetric 197 
neuropathology. The integration of DS techniques with S-OCT has great potential for high-198 
throughput, multiscale human brain imaging. The data generated from this technique could 199 
help better understand the meso- and micro-structure of brain tissues and their role in disease 200 
development, and ultimately enhance our knowledge of the brain's structure and function. 201 

  202 



 203 
Results  204 
 205 

Digital staining by semi-supervised learning using weakly-paired images  206 
We formulate the DS task as a weakly-paired image translation problem because we do not 207 
have access to pixel-aligned image pairs of OCT-SC and PS images. To achieve better 208 
performance than fully unsupervised methods, we exploit the side information provided by 209 
the structural and content similarity between the adjacent sections in the imaging data, as 210 
well as a biophysical model for linking OCT-SC and the contrast in Gallyas silver stain in 211 
a semi-supervised deep learning framework. 212 

213 
Fig. 2. The training framework of our DS neural network model. (A) The backbone of 214 
the DS network 𝐺 is built on the CUT framework, which combines contrastive learning and 215 
adversarial learning. The input is a 2D OCT-SC map 𝑋 and the output is a digitally stained 216 
image 𝐺(𝑋) that is compared with a PS image 𝑌 from an adjacent slice. (B) Auxiliary 217 
pseudo-supervised learning task. The biophysical module computes the optical density 218 𝑂𝐷(𝑌) of the PS image 𝑌, which is fed as an input to 𝐺. The digitally stained OD image 219 𝐺(𝑂𝐷(𝑌)) is compared with the original PS image 𝑌 during training. (C) Auxiliary 220 
unsupervised cross-modality image registration task. We alternate between optimizing 𝐺 221 
and a registration network 𝑅 under different image scales. We fix 𝑅 while updating 𝐺, which 222 
provides more informative supervision for 𝑅 in the next iteration. We use patch-wise losses 223 
for training 𝐺, and whole slide image (WSI) losses for training 𝑅. 224 
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The training framework of our DS network consists of several novel learning components, 225 
as shown in Fig. 2. Based on the CUT framework as the backbone (32), the DS model uses 226 
a mix of adversarial loss and contrastive loss in the unpaired image setting, as shown in Fig. 227 
2A. The adversarial learning measures the perceptual similarity of the generated DS images 228 
and the PS images. It tries to reduce the gap between the high-dimensional distributions of 229 
the DS and PS images such that the generated DS images are perceptually indistinguishable 230 
from the PS images. The contrastive loss uses self-supervised patch-wise learning to ensure 231 
structural consistency between the OCT-SC and DS images. It maximizes mutual 232 
information and provides self-guidance for content preservation. The combination of 233 
contrastive loss and adversarial loss enables high-quality DS images that preserve the 234 
content and structures of the OCT-SC images. 235 

To improve upon the unsupervised CUT framework, we propose a semi-supervised learning 236 
method. Our method leverages augmented pseudo pairs generated by a biophysical model 237 
and registered cross-modality image pairs that are dynamically adjusted by a learnable 238 
registration network. The intuition is that using additional auxiliary supervision enhances 239 
the learnability, efficiency and accuracy of the model compared to unsupervised learning. 240 
Crucially, our semi-supervised method does not require any exact paired PS and OCT-SC 241 
images during training. 242 

In Fig. 2B, we introduce the pseudo-supervised learning auxiliary task to enhance the 243 
unpaired image translation for DS of OCT-SC images. We first compute the OD maps from 244 
the PS images and then utilize the OD - PS image pairs to train the DS model in a pseudo-245 
supervised manner. This approach proves effective because the OD image exhibits similar 246 
image contrast and feature distribution as the OCT-SC across various cortical regions. 247 
Additionally, the OCT-SC demonstrates an approximate linear relationship with the OD of 248 
the Gallyas silver stain (21). Furthermore, since the OD map is naturally pixel-aligned with 249 
the PS image, it facilitates supervised learning and provides additional semi-supervision and 250 
alignment constraints for the main DS model. However, the inherent disparities in image 251 
features and intensity value distributions between the OD map and the OCT-SC image result 252 
in a domain gap, which limits the accuracy of the trained DS model when relying solely on 253 
this auxiliary task. Our insight is that when this task is combined with the adversarial 254 
learning component in the CUT backbone, it enables domain adaptation similar to the 255 
domain-adversarial training framework (33). The performance on the OCT-SC image is 256 
ensured by penalizing the perceptual differences between the DS images generated from the 257 
OCT-SC image and the OD map using the adversarial loss. By leveraging both the pseudo-258 
supervised learning and adversarial learning components, we effectively bridge the domain 259 
gap and improve the accuracy of the DS model for OCT-SC image translation. 260 

In Fig. 2C, we illustrate the second auxiliary task for aligning the PS image, the OCT-SC 261 
image, and the DS image using a registration network. This registration module undergoes 262 
two training stages: pre-training and fine-tuning. During the pre-training stage, the 263 
registration module operates on the WSI scale. It predicts a deformation field that indicates 264 
the pixel-wise displacement vectors required for non-rigid transformation. To facilitate 265 
cross-modal self-supervised registration, we utilize the OD map as a surrogate for the OCT-266 
SC image and learn a deformation field between the OD map and the input OCT-SC image. 267 
This result is used as an initial estimate for the deformation between the PS image and the 268 
matching OCT-SC image. By leveraging our biophysical model, we bootstrap the 269 
challenging self-supervised cross-modality image registration problem in this pre-training 270 
stage. The subsequent fine-tuning of the registration model aims to provide pixel-wise 271 



weak-supervision for the DS model. In this stage, we employ an alternate training approach 272 
that involves collaborative learning between the DS model and the registration model. When 273 
the DS model is fixed, the registration model is trained at the WSI scale to address global 274 
geometry correction. When the registration model is fixed, the DS model is trained at the 275 
image patch scale to provide sufficient samples for local translation learning. This 276 
unsupervised cross-modality image registration module enables the DS model to learn 277 
improved local color tone mapping from unaligned imaging modalities without the need for 278 
explicit supervision.  279 

Overall, our DS framework augments unpaired image translation with pseudo supervised 280 
learning and unsupervised cross-modality image registration. The total loss function used 281 
for training is the weighted sum of the four objectives derived from the main image 282 
translation task and two auxiliary tasks. Our method achieves superior performance over 283 
other baseline methods, including CycleGAN, CUT and FastCUT in terms of DS quality 284 
and accuracy, as shown in Supplementary Materials (SM) Section 1, Section 2, Fig. S1 and 285 
Fig. S3. Additional details about the network structure, training procedures and quantitative 286 
evaluations are described in Methods and SM Section 3, 4, 9 and 10. 287 

Digital staining enhances mesoscopic brain structures and provides high staining 288 
uniformity 289 
We present the ability of our DS technique to preserve the mesoscopic brain structures and 290 
achieve uniform staining of cerebral cortex sections from post-mortem human brains. We 291 
use two groups of PS imaging results as comparative references: one group consists of WSIs 292 
of well-stained sections, and the other group consists of WSIs of less-ideally-stained 293 
sections. 294 

In Fig. 3A, we present the OCT-SC, DS, and well-stained PS images of adjacent sections 295 
from the human cerebral cortex, arranged from left to right. The DS images show that our 296 
technique can accurately capture various brain structures that match the PS images, such as 297 
cortical layers, myelin fibers, and vessel blobs. The DS and PS images share similar 298 
contrast, with white matter (WM) regions appearing as dark brown or black and gray matter 299 
(GM) regions appearing as white, while the OCT-SC image has the opposite contrast. 300 
Within the gray matter, the infra layers also appear to be darker than supra layers, consistent 301 
with the PS images. These correspondence in mesoscale structures validate that our DS 302 
model can reliably and accurately learn this general inverse mapping between OCT-SC and 303 
PS images.  304 

In the zoom-in regions, we present the images on different types of cortex regions, including 305 
gyral crest regions marked as 1 and 3 and sulcal fundus regions marked as 2 and 4, from the 306 
three modalities: OCT-SC, DS and PS. In region 1, the structures of radial myelin fiber 307 
bundles at scales of about 10-20 µm are shown as dark brown tubular features in both DS 308 
and PS images, especially in the GM region. By comparing OCT-SC and DS images, we 309 
can see that the image content is consistent, which indicates that the ability of resolving fine 310 
features is primarily limited by the input OCT-SC data. Despite the limitations of resolution 311 
and speckle noise in the OCT data, the orientation of fiber bundle traces and the intensity 312 
distribution according to cortical layers can still be discerned in the DS results. Similar 313 
patterns are also evident in zoom-in regions 3 and 4, where the local intensity variation is 314 
visible in the GM regions, although the fiber bundles are less distinct in OCT-SC and DS 315 
images than in the PS images. In region 2, the supra cortical layers (I-III), infra layers (IV, 316 
V, VI) and WM are clearly distinguished by the white, light brown, and dark brown bands,  317 



318 
Fig. 3. DS results on OCT-SC of tissue slices and comparisons with PS images. Cases 319 
include (A) ideal staining samples; (B) non-uniform staining and understanding samples. 320 
ROI 1, 3, 5, 7 are gyral crest regions and 2, 4, 6, 8 are sulcal fundus regions.VS: “vessel 321 
space”. Scale bars are 1 mm. 322 

respectively. The black line structure near the top of the PS image indicates smaller vessels, 323 
which are also visible in the DS image at the same locations. The zoom-in regions 1, 2 and 324 
3 in PS show small white blob or tubeness features especially in the WM regions. In PS, 325 
these white blobs represent the empty space previously occupied by vessels which are lost 326 
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due to slicing and washing steps during staining. In contrast, the white blobs in DS images 327 
primarily represent the space within vascular walls and perivascular space which appear 328 
smaller since no slicing or physical staining is performed on OCT-SC images. Those 329 
features are generally referred to as VS (“vessel space”) in Fig. 3. These visualizations 330 
demonstrate that our DS model can faithfully reveal ~20 µm scale brain structures. 331 

A major advantage of DS over PS is stain uniformity. To demonstrate this, we present three 332 
types of images in Fig. 3B from the less-ideal PS group that comprises most of our PS data. 333 
One inherent limitation of traditional histological staining is the variability across different 334 
sample regions and experiments. Despite our careful sample preparation and staining 335 
procedures, the staining result is influenced by many confounding factors of the chemical 336 
reaction and uniformity of the staining quality is challenging to ensure. In Fig. 3B, the 337 
rightmost column of the first row shows a PS example with over- and non-uniform staining 338 
(in particular along the vertical directions); the second row shows a PS example with under-339 
staining. 340 

We select two gyral crest regions (marked as 5 and 7) and two sulcal fundus regions (marked 341 
as 6 and 8) to provide in-depth analysis. The PS images in regions 5 and 6 are over-stained, 342 
while the PS images in regions 7 and 8 are under-stained. In region 5, the DS and OCT-SC 343 
images show clear ridges corresponding to cortical layer V, but the PS image shows a dark 344 
brown shade due to over-staining. In region 6, which is a sulcal fundus region with less 345 
visible cortical layers, the DS image shows a clear boundary between WM and GM regions, 346 
but the PS image shows an ambiguous boundary. Small vessel blobs are also more visible 347 
in the DS image than in the PS image. In region 7, which is a gyral crest region, the DS 348 
image shows dark ridge features corresponding to cortical layer IV and V, but the PS image 349 
does not show these features due to under-staining. Additional examples are shown in SM 350 
Section 5 and Fig. S4.   351 

The superior stain uniformity demonstrated by our DS results across different sections is 352 
enabled by the OCT-SC that extracts a normalized quantity based on a physics model that 353 
reflects the intrinsic property of the brain tissue. This stain uniformity will be a great 354 
advantage during anatomical and pathological evaluations. A limitation of our current OCT-355 
SC curve fitting model is that it reduces the spatial resolution (lateral: 6 µm raw OCT 356 
measurement, 12 µm fitted SC map; axial: 6 µm raw OCT measurement, 150 µm fitted SC 357 
map), which limits the ability to resolve fine fiber structures. 358 

Digital staining enables reliable cortical layer differentiation and layer thickness 359 
quantification 360 
We demonstrate the capability of DS-OCT to reliably distinguish cortical layers with 361 
comparable or even better sensitivity than PS, thanks to the uniform DS quality as discussed 362 
before. We identify cortical layers IV, V and VI by the displayed fiber density (36, 37), 363 
since these layers are more prominent than layers I, II and III in most of our samples. We 364 
provide additional examples of DS layer visualization and compare them with well-stained 365 
and less-ideal stained PS samples in SM Section 6 and Fig. S5. We also show how the layer 366 
thickness can be consistently quantified in our DS images. 367 

Figure 4A shows the WSIs of the DS result and the reference PS of an adjacent brain slice. 368 
The DS image clearly reveals the curved double-band structures above the WM region, 369 
which are stained in dark brown. These features indicate higher myelin fiber density that 370 
are characteristic in cortical layer IV and V (37). Consistent image contrast variations for 371 



the laminar structures are observed in the DS result. In contrast, the double-band structures 372 
are less visible around some of the gyral regions and the contrast is less distinct in the PS 373 
image. Figure 4B shows zoom-ins from a gyral crest region and a sulcus region of the three 374 
modalities, corresponding to the regions marked by the green box and red box in Fig. 4A 375 
respectively. The OCT-SC and DS images have a strong correlation in their intensity 376 
variations. The DS image consistently shows the double-band features in the GM region, 377 
while the PS image often fails to reveal them due to over- or under-staining. 378 

379 
Fig. 4. Comparisons results of layer differentiation and thickness estimation in DS 380 
results. (A) The DS and PS WSIs from a cortex tissue section. (B) Zoom-in ROIs of 381 
inverted OCT-SC, DS and PS modalities marked in green and red boxes in (A) and 382 
normalized intensity profiles aggregates along white dotted lines. (C) Manually annotated 383 
layers IV/V/VI labeled in three colors and estimated local thickness. Statistics of thickness 384 
are visualized in box plot and grouped by gyral crest and sulcus regions. ROI is the zoom-385 
in of the dotted blue box from (A).  386 

Next, we demonstrate the improved contrast between cortical layers in DS by plotting the 387 
average intensity (across the three color channels) along the white dotted lines in Fig. 4B. 388 
The right panel shows the normalized profiles over a 3.5-mm depth range, where blue, green 389 
and red represent OCT-SC, DS and PS modalities, respectively. We manually marked the 390 
boundaries of layer IV, V and VI with dotted vertical lines in four different colors. In both 391 
gyrus and sulcus regions, the DS profiles show the highest contrast (measured by the 392 
difference between the maximum and minimum values) in layer IV and V among the three 393 
modalities, which facilitates identifying the layer boundaries. When comparing OCT-SC 394 
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and PS with DS, the DS enhances the intensity variations at the boundary between layer IV 395 
and V. This reduces any confusion when distinguishing between these two layers. 396 
Comparing the profiles between OCT-SC and DS in different layers suggests that our DS 397 
model works beyond our approximate linear biophysical model (21) and increases the local 398 
contrast by a nonlinear mapping function expressed by our neural network. 399 

In Fig. 4C, we further demonstrate straightforward segmentation and thickness 400 
quantification of cortical layers IV, V and VI using our DS result (see details in Methods), 401 
which can provide valuable information for many neuropathological studies (17, 38, 39). 402 
The top panel shows the zoom-in region of the dotted blue box in Fig. 4A, where we 403 
manually labeled the boundaries of the three cortical layers. We estimated the layer 404 
thicknesses from the binary mask obtained from cortical layer segmentation using an 405 
algorithm from our previous work (17). We chose two gyral crest regions and a sulcus 406 
region indicated by the white boxes in the binary mask image. The bottom panel displays 407 
the box plot of the local layer thickness statistics in gyrus and sulcus regions. We observed 408 
a similar pattern of variation in layer thickness for layer IV, V and VI in the sulcus, gyrus 409 
and the entire cortical regions. The median local thickness of layer IV, V and VI were 300 410 
µm, 540 µm and 480 µm respectively. We also observed a significant reduction in layer 411 
thickness in all three layers in the sulcus regions compared to the gyrus regions, in 412 
agreement with the literature (40, 41). The median thickness of layer IV, V and VI were 410 413 
µm, 630 µm and 580 µm respectively in the gyrus regions, and were 250 µm, 370 µm and 414 
310 µm respectively in the sulcus regions. 415 

Volumetric digital staining on cubic centimeter-scale brain tissue 416 
Next, we showcase volumetric staining on cubic centimeter-scale brain tissue enabled by 417 
our technique that combines S-OCT and DS. Our technique significantly reduces tissue 418 
distortion and misalignment during the 3D reconstruction process suffered by the traditional 419 
3D pathology technique. We demonstrate 3D DS on a 4 cm ´ 5 cm ´ 1.2 cm brain tissue 420 
block that was not used for training our DS model. We show that our method can preserve 421 
the intricate 3D brain structures in both GM and WM regions. Moreover, we visualize the 422 
3D vessel network in the WM.  423 

In Fig. 5A, we present a 3D visualization of the DS output on the whole tissue block in the 424 
top panel. The DS model takes as input a z-stack of around a hundred slices of OCT-SC 425 
images. Each OCT-SC slice, which has a size of 4 cm ´ 5 cm, is processed separately and 426 
fed to the DS model. The DS output images are then directly stacked along the z-axis to 427 
create the digitally stained volume. Consistent with the 2D results, the 3D DS volume 428 
generates white and dark-brown colors that correspond to GM and WM regions 429 
respectively. We can also observe a smooth transition of these GM and WM boundaries 430 
along the z direction, which reflects the preservation of 3D geometries of the brain 431 
structures. In Fig. 5B, we display several orthogonal cross-sectional views of the DS 432 
volume. The overall color tone and contrast variations match with the 2D results in Fig. 3. 433 
Small white blobs and tubes within the WM region indicate the vessel space. These results 434 
are consistent with 2D DS results that have been verified with PS references, and partly 435 
confirm the generalization ability of our DS model on unseen large-scale brain samples. 436 
Moreover, the X-Z cross section also shows several continuous features along the depth, 437 
such as intricate brain folding structures, double-band cortical layers, and small tubular 438 
vessels. This again illustrates the 3D geometry preservation feature of our DS technique. 439 



440 
Fig. 5. 3D visualization and cross-sections views of the DS results on a large unseen 441 
tissue block. (A) The DS output images are stacked along the z-axis to render the whole 442 
digitally stained volume as well as segmented WM regions. (B) Orthogonal cross-sectional 443 
views of the DS volume. (C) Two zoom-in regions of vessel structures in yellow and green 444 
boxes from (A) are shown on the left. Three orthogonal maximum intensity projections 445 
(MIP) of the DS volume are shown on the right. All scale bars are 5 mm.  446 

To further illustrate the ability of our DS technique to preserve the 3D geometry of 447 
mesoscale brain structures, we present a 3D visualization of a centimeter-scale network of 448 
vessel space which is not visible in 2D PS images. Besides the GM and WM contrast, our 449 
DS volume also shows several continuous white tubular structures corresponding to blood 450 
vessels in the top panel of Fig. 5A. In the bottom panel of Fig. 5A, we show the segmented 451 
DS volume displaying only the WM region, where the white tubular structures are more 452 
prominent and not masked by the GM. In Fig. 5C, we highlight two regions in yellow and 453 
green boxes. The vessel spaces in those regions are rendered with more transparency and 454 
reveal the branching and connectivity of the vessel network. On the right panel of Fig. 5C, 455 
three orthogonal maximum intensity projections (MIP) of the DS volume further 456 
demonstrate the preservation of the 3D vessel structures. We note that the axial continuity 457 
of our DS volume is currently limited by the axial resolution (150 µm) imposed by our SC 458 
fitting model, which we aim to improve in the future. Being able to image brain samples as 459 
large as 4 ´ 4 ´ 1 cm3 (34), we can easily extend the aforementioned analysis to large brain 460 
areas with uniform and enhanced contrasts, which could greatly improve the throughput of 461 
brain anatomy study. 462 

Generalization to unseen anatomical regions 463 
To further demonstrate the generalization capability of our trained DS model, we conducted 464 
a pilot study on different anatomical regions that were imaged by a different S-OCT setup 465 
not seen during training. We used the same fitting model to generate the OCT-SC image in 466 
Fig. 6, which shows a sample from the hippocampus region acquired by a different S-OCT 467 
setup. Since our SC fitting model extracts an intrinsic tissue property and is relatively 468 
insensitive to variations in hardware platforms and sample conditions, it ensures the 469 
robustness of our DS method. The DS image is inferred by directly inputting the OCT-SC 470 
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to the previously trained model. Figure 6 shows the OCT-SC and DS images, and the 471 
reference PS image of an adjacent section from left to right. We roughly aligned the field of 472 
views of the DS and PS images using a rigid transformation. On a large scale, the DS process 473 
successfully transforms the image contrast to match the anatomical structures found in the 474 
PS image. By comparing with the anatomy of hippocampus (42), we can identify the alveus 475 
(AL) and/or fimbria fomix (FF) layer at the top, the stratum pyramidale (SP) layer beneath 476 
them, and the stratum radiatum (SR), stratum moleculare (SM) and the dentate gyrus (DG) 477 
layers that encase the Cornu Ammonis areas (CA1-CA4) of dense neurons. Importantly, in 478 
CA1-CA4 areas, we found bright spots in OCT-SC images, which are transformed to brown 479 
spots in the DS images. These structures correlate strongly with the brown spots seen in the 480 
PS image and are likely individual neuron somas. More examples of generalization results 481 
can be found in SM Section 7 and Fig. S6. 482 

483 
Fig. 6. DS-OCT generalization performance on a hippocampus tissue slice. Examples 484 
of OCT-SC, DS and PS images (of adjacent sections) on one sample from the Hippocampus 485 
region are shown. SP: Stratum Pyramidale; AL: Alveus; FF: Fimbria Fomix; SR: Stratum 486 
Radiatum; SM: Stratum Moleculare; DG: Dentate Gyrus; CA: Cornu Ammonis. 487 

Such generalization agrees with our previous work that discovered a universal correlation 488 
between optical scattering and myelin density across the human brain (21). This suggests 489 
that a DS-OCT model, even if trained on limited regions of the human brain, may be 490 
effectively employed in other unseen regions. This significantly decreases the training effort 491 
compared to those that rely on transfer learning.  492 

 493 
Discussion  494 

In summary, we developed a novel semi-supervised learning technique for DS of OCT 495 
images for large-scale volumetric visualization and analysis on human brain tissue samples. 496 
Our technique works by integrating label-free S-OCT imaging and an advanced deep 497 
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learning DS model. The S-OCT enables imaging of cubic centimeter-scale brain tissues and 498 
preserves complex 3D tissue geometry across sections. Our semi-supervised learning 499 
method bypasses the need for paired unstained and stained images and can achieve high-500 
quality DS using a limited amount of weakly paired image data for model training. Our deep 501 
learning model is built on an unsupervised CUT model backbone, which is augmented with 502 
two auxiliary tasks. The pseudo-supervised module reduces the data requirement for model 503 
training by exploiting the correlation between the OCT-SC and the OD of Gallyas silver 504 
stain. The unsupervised cross-modality image registration module exploits the structural 505 
information between the adjacent tissue sections. By working with a fitted tissue property, 506 
namely the SC, from the raw OCT measurement as the input to the deep learning model, it 507 
greatly enhances the uniformity and generalizability of the DS results. This is highlighted 508 
by our volumetric DS result on cubic centimeter-scale brain tissue block and on unseen 509 
anatomical regions from different OCT systems. We believe our OCT DS technique is a 510 
promising solution for large-scale human brain imaging for comprehension characterization 511 
of brain structure across scales.  512 

We envision that our deep learning framework holds great potential for a wide range of 513 
applications in the field of DS. There is a growing demand for exploring semi-supervised 514 
learning approaches to effectively harness the wealth of information contained in unpaired 515 
or weakly paired biomedical images. Obtaining pairs of images with labels and without 516 
labels can be a challenge in many biomedical contexts. However, it is often easier to obtain 517 
images of samples with slight distortions or adjacent sections. To leverage these types of 518 
datasets, our method leveraged a novel inverse mapping technique, going from stained 519 
images to label-free modalities, and generated pairs of images that were pixel-aligned to 520 
serve as augmented supervision. Furthermore, we introduced a novel cross-modality 521 
registration algorithm to correct for sample distortions and account for the complex 522 
geometries of the samples. As a result, our enhanced semi-supervised learning framework 523 
facilitates more straightforward training on datasets that may be naturally acquired from 524 
routine staining experiments, even when those datasets are only weakly paired. In essence, 525 
incorporating semi-supervised methods can significantly enhance the efficiency of the “data 526 
collection-training-validation” cycle in the development of digital staining models. 527 

We discuss some of the main limitations that affect the quality of S-OCT images and the 528 
DS method based on them. The first limitation is the data processing pipeline of OCT 529 
imaging. Coherent scattering results in speckle noise, which manifests as randomly 530 
distributed fine-grained dark or white spots in OCT and the fitted SC images. These speckle 531 
artifacts do not necessarily correspond to the actual cortical structures in PS images, as 532 
shown in Fig. 3 and SM Fig. S4. Consequently, visualizing and digitally staining small 533 
vessels, capillaries, and fine axonal fiber structures become challenging. Moreover, the 534 
current resolution of our OCT-SC data is insufficient to resolve delicate structures like 535 
single neurons. To address this limitation, a possible future direction is to optimize the 536 
processing pipeline of OCT-SC with deep learning techniques to achieve higher imaging 537 
quality. For example, self-supervised learning algorithms for speckle suppression can be 538 
developed by utilizing a customized blind-spot denoising network and a speckle statistics 539 
model (43). Enhancing the resolution of SC can be explored by employing a deep learning 540 
model similar to (44) to learn a more accurate and robust fitting model without the need for 541 
local-averaging. These improvements can increase the robustness and resolution of our 542 
method, enabling us to capture finer neuronal structures. The second limitation pertains to 543 
stitching artifacts that cannot be fully corrected in our current DS model, thereby affecting 544 
the quality of WSI image, as observed in Fig. 3, 4 and SM Fig. S6. To address this issue, it 545 



may be possible to incorporate a structural prior constraint into our DS training framework, 546 
which will potentially yield better correction of these artifacts. The last limitation involves 547 
the imperfect registration component in our DS model. The fitting depth range we utilized 548 
for SC (150 µm) is larger than the physical sectioning thickness of PS images (50 µm). 549 
Furthermore, during staining experiments, sample destruction may occur, introducing 550 
imaging content mismatch. However, our registration learning only corrects for global-scale 551 
geometric distortion between adjacent sections and does not account for potential content 552 
mismatch between weakly-paired images. Consequently, the registration process fails to 553 
generate pixel-aligned image data, as seen in SM Fig. S2. To tackle this issue, further 554 
improvements to the deep learning framework may consider methods to address content 555 
mismatch.  556 

It is worth noting that our training and testing images comprise a mix of normal control and 557 
neurodegenerative human brain samples, which hinders the model’s ability to learn the 558 
distinctions between normal and diseased brain images. To expand our work towards 559 
distinguishing between normal and diseased cases, one needs to acquire images from a 560 
larger set of brain samples for both conditions. Additionally, we plan to incorporate multi-561 
modality input, such as polarization information, into our DS model to increase the imaging 562 
sensitivity to birefringence structures, including myelin fibers (17, 19). Another promising 563 
modality we aim to integrate with the S-OCT is two photon microscopy, which allows 564 
imaging of small vessels and myelin fibers based on autofluorescence contrast with reduced 565 
noise and improved resolution (34). 566 

Materials and Methods 567 
 568 
Serial-sectioning OCT (S-OCT) 569 
The S-OCT microscope was described previously (34). We used a swept light source 570 
(AxsunTech) with 100 kHz swept rate, a central wavelength of 1310 nm, and a spectral full 571 
width half maximum (FWHM) of 110nm, yielding an axial resolution of 5.6 µm in brain 572 
tissue (n=1.4). We used a free-space interferometer and quarter wave plate (QWP) to 573 
illuminate the sample with circularly polarized light, and used two balanced detectors for 574 
measuring orthogonally polarized reflection light. A variable retarder (VR) placed in the 575 
sample arm was used to compensate for the system birefringence and to recover precise 576 
measurement of sample birefringence. To sample the spectrum in even-k space, we input 577 
the k-clock of the light source into a high-speed digitizer (ATS9350, AlazarTech), 578 
afterwards real-time FFT was carried out using a Graphic Processing Unit (RTX4000, 579 
NVIDIA), and the spatial-domain data was trimmed to only save the first 1 mm depth. The 580 
post-objective power was measured to be 3.7 mW, achieving a 95dB SNR in both 581 
polarization channels. We used 1´1 mm2 FOV with 3 µm lateral step size and 30% overlap 582 
between tiles. The sample was mounted on XYZ motorized stages which translated the 583 
sample to image the whole surface as well as between the vibratome and objective. After 584 
block-face imaging, a custom vibratome cut off the 50 µm slices with 0.3mm/s cutting speed 585 
and 3000 rotations per minute (RPM) blade vibrating frequency. 586 

Optical properties estimation with S-OCT 587 
Tissue optical properties were extracted by following a previously established procedure to 588 
analyze the reflectance intensities of OCT using a nonlinear fitting method (11, 12). To 589 
summarize, spatial parametrization is first applied to the confocal parameter across a 3D 590 
OCT image to constrain and reduce the degrees of freedom in the nonlinear coefficient 591 
fitting problem, resulting in improved confidence in the estimated optical properties of the 592 



sample. Afterwards, a nonlinear least-squares solver is used to estimate the back-scattering 593 
and scattering coefficients from the nonlinear reflectance-vs-depth over about 150 µm 594 
depth. All curve fitting was performed in MATLAB. After extracting the optical properties 595 
for each image tile, the tiles were stitched using the coordinates generated during the 596 
volumetric reconstruction with ImageJ software (45). 597 

Sample preparation 598 
For the training phase, we used a set of 15 samples obtained from the Boston University 599 
Alzheimer’s Disease Research Center brain bank. These samples consisted of five cases 600 
with stage VI Alzhemer’s disease (AD), five cases with stage III and IV Chronic Traumatic 601 
Encephalopathy (CTE), and five age-matched normal control cases. To ensure 602 
representation across the thickness of the tissue, we selected one slice per millimeter for this 603 
study.  604 

For the pilot generalization study, we used OCT data from five samples obtained from two 605 
human brains. These samples were collected at the Massachusetts General Hospital Autopsy 606 
Suite and encompassed various brain regions, including the cerebellum, hippocampus, 607 
somatosensory cortex, superior frontal cortex, and middle temporal area 21. The subjects 608 
from whom these samples were obtained had no history of neurological deficits and had a 609 
mean age of 53.5 ± 12.0 years, with one male and one female.  610 

All samples were fixed by immersion in 10% formalin for at least two months. The post-611 
mortem interval did not exceed 24 hours. Prior to imaging, the samples were washed in 1X 612 
phosphate buffered saline for a month to remove residual fixation agents and then embedded 613 
in 4.5% agarose for tissue support (46). During embedding, the brain blocks were warmed 614 
to 65 °C to allow sufficient penetration of agarose into the deep sulcus. During imaging, the 615 
brain tissue blocks were mounted in a water bath filled with Deionized (DI) water. The DI 616 
water was changed every day to remove the debris from cutting that could degrade the OCT 617 
image quality. Following data collection, the tissue slices were stored in 1X PBS with an 618 
antibacterial agent (sodium azide) at a temperature of 4 °C. To maintain the sequence of the 619 
slices, each slice was stored in an individual glass vial. 620 

Gallyas silver staining and imaging 621 
A total of 35 brain slices were obtained from 15 samples for our study. To ensure anatomical 622 
diversity, at least two slices were taken per sample, with each slice being separated in depth 623 
by 1 mm. These slices had a thickness of 50 µm and were mounted onto gelatin-coated 624 
slides. Gallyas staining protocol, as described by Pistorio (2), was then employed to process 625 
the samples. Modifications were made to the impregnation and bleaching time to 626 
accommodate the increased thickness of the samples. 627 

Following the staining process, the samples were captured in brightfield mode using a 10 ´ 628 
objective (NA=0.4) and an RGB camera. We utilized the VS-120 slide scanner designed for 629 
75 ´ 25 mm2 slides for this purpose. The exposure time was set at 1.73 ms, and the pixel 630 
size was 0.7 µm with a 1 ´ 1 mm2 FOV. For wider samples, imaging was conducted using 631 
the BZ-X microscope under similar settings. The resulting images can be opened in 632 
Olympus Olyvia software and exported as TIFF images for further processing. 633 

Image processing 634 
Our image dataset consists of two types of images: PS images from the slide scanner and 635 
OCT-SC images computed from S-OCT. We first inspected all the PS images visually and 636 



excluded the ones that had low staining quality or artifacts in the training dataset. We 637 
selected 9 out of 35 PS WSIs for training our DS model. The PS WSIs had different sizes 638 
depending on the tissue sample, but they were around the median scale of 36 mm ´ 48 mm 639 
with the pixel size of 1.9 µm. To generate the weakly-paired training dataset, we manually 640 
paired the PS images with the OCT-SC images that had the most similar appearance. Since 641 
the sectioning thickness (50 µm) of PS samples did not match the fitting thickness used for 642 
OCT-SC images (150 µm) and the depth information of PS samples was not recorded, we 643 
can only pair the PS with the closest adjacent OCT-SC image sample by qualitatively 644 
assessing the similarity of tissue features. We then downsampled the PS images using 645 
bicubic interpolation by a scale factor of 6.32 to match the 12 µm pixel size in OCT-SC 646 
images. We also cropped or padded the PS images to have the same image size as the 647 
corresponding OCT-SC images, which was around 3000 ´ 4000 pixels for each sample. We 648 
performed this procedure on all PS images when we compared them with the OCT-SC 649 
images side-by-side in our results. 650 

The PS images undergo several preprocessing steps to minimize the effects of sample and 651 
staining variations before they are used for training. The preprocessing steps include 652 
background removal, intensity normalization and color transfer. The background removal 653 
eliminates the unwanted image artifacts in PS image and is done by interactive image 654 
segmenter in MATLAB. The intensity normalization adjusts the PS images to balance the 655 
varying illumination levels across different imaging experiments. The brightest pixel (Ir, Ig, 656 
Ib) is used to estimate the illuminant color and the image is scaled by the constant 657 (1 I!⁄ , 1 I"⁄ , 1 I#⁄ ) for each color channel, followed by a range normalization to map the 658 
overall image value range to [0, 1]. The color transfer uses Reinhard method (47) to 659 
standardize the staining color variations among experiment, sample and imaging conditions 660 
given a target PS image with a relatively ideal staining as reference.  661 

The OCT-SC images obtained from the fitting algorithm show some artifacts mainly in the 662 
background areas and near the sharp boundaries of the vessel regions, because the algorithm 663 
assumes a constant SC value for the 150 µm imaging thickness (11). To reduce the 664 
background noise and correct the over-smoothed values near the vessel edges, the OCT-SC 665 
images are further processed by several steps. First, the background is removed by applying 666 
a histogram-based thresholding method using the triangle algorithm (48), followed by a 667 
sequence of smoothing morphological operations such as erosion, small object removal and 668 
dilation. Next, the pixels with zero values in the masked image are identified as defective 669 
and are replaced by the local median. Then, the edges of the vessel regions are detected 670 
using a difference-of-Gaussian (DoG) filter and thresholding. Finally, the outlier regions 671 
with small values compared to the local maximum are segmented and combined with the 672 
edge mask. The combined mask is smoothed by similar morphological filters, and the values 673 
in the mask are replaced by the local maximum. The preprocessing pipeline is implemented 674 
in Python using the basic filters and morphological operators from scikit-image package 675 
(48). 676 

To generate the training image dataset, we used PyTorch to create a parallel processing 677 
module that can split the WSIs of different image sizes into smaller patches during training 678 
on the fly. This allows us to dynamically update the intermediate image tensors that can be 679 
input to different parts of deep learning models to train at different image scales. The WSIs 680 
dataset with different sizes can then be directly handled by a custom data loader for 681 
standard-size tensor operation. We first pad the WSI to the size of multiple integers of patch 682 
size, and then use the tensor unfolding method in PyTorch to cut the image tensor using a 683 



sliding window into smaller tensors stacked in the batch dimension. The inverse stitching 684 
operation is done similarly using the tensor folding methods. 685 

For creating a 3D visualization of the DS images that show the volumetric digital staining 686 
results, we change the white-color background of the DS images to black, so that only the 687 
sample region is visible. This is done by converting the DS color images to grayscale and 688 
applying a triangle method threshold to select the foreground pixels. Then, a morphology 689 
smoothing operation is performed to remove any noise or artifacts. To extract the WM 690 
masks from the DS grayscale images for highlighting the WM regions in the sample, we 691 
use a histogram thresholding method based on the minimum method (48) and apply another 692 
morphology smoothing operation. The pixels that are not part of the WM masks are set to 693 
zero, and the resulting images are stacked in a volume for 3D visualization. The 3D viewer 694 
in ImageJ (45) is used to display the volume. More details on the image processing 695 
procedures are provided in SM Section 8 and Fig. S7. 696 

Semi-supervised deep learning framework 697 
The proposed framework combines generative adversarial learning, contrastive learning, 698 
pseudo-supervised learning based on self-generated image pairs based on a biophysical 699 
model, and unsupervised cross-modality image registration.  700 

We denote the OCT-SC images as X and the PS images as Y. The main framework consists 701 
of a DS network G and a registration network R. The DS network G transforms grayscale 702 
OCT-SC images X into color images that resemble the color and contrast of PS images Y. 703 
The registration network R takes pairs of unaligned images X and Y as input and outputs a 704 
deformation field 𝜙 = 𝑅(𝑋, 𝑌)	that can be applied to resample and register Y to X. We use 705 
an auxiliary discriminator network D to enforce structural similarity between the output DS 706 
and reference PS images by adversarial learning. We also apply contrastive learning to 707 
ensure structural consistency between the input OCT-SC and output DS images using a fully 708 
connected network f.  709 

Our framework operates on two different image scales: WSI scale (denoted by upper case 710 
letters) and image patch scale (denoted by lower case letters). R is trained on WSIs, which 711 
have a size of about 3000 ´ 4000 pixels. G, D, f are trained on image patches, which have a 712 
size of 512 ´ 512 pixels. We design an efficient image processing module to either split (X, 713 
Y) into patches (x, y) or stitch patches back to WSIs, as detailed in the Image Processing 714 
section. The CUT framework (32) is used to jointly train the networks G, D, and f during 715 
the training phase. Additionally, G undergoes a pseudo-supervised training scheme and an 716 
alternating training process with R, which are explained below. 717 

The objective of the adversarial learning module is to enhance the perceptual similarity 718 
between the DS output 𝐺(𝑥, 𝑦)	and the target modality PS images y. This is achieved by 719 
using an auxiliary discriminator D. The role of D is to learn to differentiate between the 720 
desired modality y and the generated images G(x). During the training of D, the PS images 721 
y are assigned the label 1, indicating that they are “true” images. On the other hand, the 722 
generated images G(x) are assigned the label 0, indicating that they are “false” images. The 723 
least-squares generative adversarial network (GAN) loss 𝐿GAN(𝐷) is employed to measure 724 
the extent to which D’s outputs align with the binary labels assigned to both y and G(x). 725 
This loss function is minimized when D becomes proficient at distinguishing between y and 726 
G(x). Conversely, when training G, the 𝐿GAN(𝐺) loss is utilized to promote the fidelity of 727 
the generated images G(x).	Minimizing this loss prompts G to effectively deceive the 728 



discriminator D. The training process alternates between two steps: first, G is fixed while D 729 
is updated using the 𝐿GAN(𝐷) loss, and then D is fixed while G is updated using the 730 𝐿GAN(𝐺)loss: 731 

𝐿GAN(𝐷) = 𝐸'[(𝐷(𝑦) − 1)(] + 𝐸)9𝐷(:𝐺(𝑥);< (1) 732 

𝐿GAN(𝐺) = 𝐸) =:𝐷:𝐺(𝑥); − 1;(>	 (2) 733 

The contrastive learning module ensures that the image structures and content present in x 734 
is preserved when it is translated to G(x). We implement G with a ResNet model and treats 735 
the first half of the ResNet layers as the encoder and the remaining layers as the decoder. 736 
The encoder Genc transforms images from both domains into a common latent space, and 737 
the decoder Gdec generates translated images from latent vectors. To formulate the multi-738 
layer patch-wise contrastive loss, we adopt the approach in (32) to sample the encoded 739 
feature maps from both x and G(x). Each layer and spatial location in the feature map stack 740 
corresponds to a patch of the input image that covers the corresponding receptive field. We 741 
extract multiple layers of the encoded feature maps, randomly sample the spatial locations 742 
and apply a fully connected network f to obtain a stack of latent features 𝑧̂*,, = 𝑓(𝐺enc*,, (𝑥)), 743 
where s is the spatial index within [1, S]  and l is the selected layer within [1, L]. We do the 744 
same processing on image 𝐺(𝑥): 𝑧̂*,, = 𝑓(𝐺enc*,, (𝐺(𝑥))) Then we compute a PatchNCE loss 745 
using a cross-entropy contrastive loss: 746 

𝐿PatchNCE(𝐺, 𝑓, 𝑥) = 𝐸)DDlog H exp:𝑧*,, ∙ 𝑧̂*,,;
∑ exp:𝑧*,, ∙ 𝑧̂6,,;7
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(3) 747 

This loss function encourages the latent representations of image patches from x and 748 
G(x)	that belong to the same spatial location to have similar content to be close in the feature 749 
space, while pushing away the representations of patches that are uncorrelated or have 750 
different content. By this internal negative sampling scheme in the feature space, the model 751 
learns to contrast positive and negative pairs of patches based on their content similarity, 752 
which maximizes the mutual information between the input image x and the output image 753 
G(x). This provides a self-supervised signal for preserving the content of the image during 754 
the transformation.  755 

The training procedure for pseudo-supervised learning is formulated as a pixel-wise loss 756 
function that minimizes the discrepancy between the digital stained OD images 𝐺(OD(𝑌))	 757 
and the physical Gallyas-silver stain (PS) images Y. This loss function aims to guide G to 758 
learn a mapping that translates images from the OD modality to the PS modality. By doing 759 
so, it provides a “proxy supervision” for learning the mapping from OCT-SC modality to 760 
the PS modality. To facilitate this training, we first compute the OD of image Y by 761 

OD(𝑌) = −13 D log9; 𝑌<
<8=,>,?

	 (4) 762 

Subsequently, we extract patches OD(y) and y from the processed WSIs and employ an 763 
auxiliary pseudo-supervised loss, defined as: 764 

https://www.zotero.org/google-docs/?nMOUD2


𝐿Pseudo(𝐺) = 𝐸'	‖𝐺(OD(𝑦)−𝑦‖9 (5) 765 

However, there exists a mismatch in the intensity values between X and OD(Y). This domain 766 
gap between the input modalities hinders the model’s direct generalization on X if it is solely 767 
trained on pairs of OD(Y) and Y. To address this issue, we first apply histogram equalization 768 
to the WSIs of OD(Y) and X before feeding them into G. This normalization step aims to 769 
align the distribution of intensity range. However, we found that this transformation alone 770 
is insufficient in mitigating the domain gap. As a result, this learning module is further 771 
combined with the adversarial learning module in the CUT backbone to mitigate the domain 772 
gap between OCT-SC and OD.  773 

The cross-modality image registration module is trained in two stages. In the first stage, we 774 
pre-train the registration network R on WSIs of X, Y and OD(Y). The registration network 775 
R takes weakly-paired X and Y as input and predicts a deformation field 𝜙 = 𝑅(𝑋, 𝑌) that 776 
indicates the pixel-wise displacement vectors needed to perform the non-rigid 777 
transformation. To formulate a cross-modal self-supervised registration loss 𝐿DEFG , we use 778 
OD(Y) as a surrogate of Y and exploit its correlation with the input OCT-SC image X. By 779 
minimizing the difference between the registered OD(Y) and X, we indirectly learn the 780 
deformation between Y and X. This training is enabled by a differentiable resampling layer 781 
that performs image warping denoted by ∘ . We also add a total variation (TV) regularization 782 
term to encourage the smoothness of the learned deformation field. The registration loss 783 
during this pre-training stage is computed at the WSI scale as follows: 784 

𝐿regG (𝑅) = 𝐸J,K‖𝑋 − 𝜙 ∘ 𝑂𝐷(𝑌)‖9 + ‖𝜙‖LM 	 (6) 785 

where ‖𝜙‖LM is the total variation norm calculated as: 786 

‖𝜙‖LM =DWX𝜙NO9 − 𝜙N,P 	X( + X𝜙N,PO9 − 𝜙N,P 	X(
N,P

	 (7) 787 

In the second fine-tuning stage, we train R and G in an alternating and collaborative manner. 788 
The purpose of fine-tuning R is to provide pixel-wise weak-supervision between the 789 
registered Y and the DS image G(x), which in turn helps to fine-tune the DS network G. 790 
Using the coarsely trained G, we can produce G(x) that has the same image modality as the 791 
PS image Y and use a pixel-wise loss function to perform training. We implement the 792 
following scheme for alternating training. When we fix G, we train R by comparing the 793 
registered PS image Y and the DS image G(X) at the WSI scale using the loss function 794 

𝐿regGG (𝑅) = 𝐸J,K	‖𝐺(𝑋) − 𝜙 ∘ 𝑌‖9 + ‖𝜙‖LM (8) 795 

When we fix R, we crop the intermediate registered WSI 𝜙 ∘ 𝑌 into patches 𝜙' ∘ 𝑦 and train 796 
G at the patch scale by comparing the registered PS image patch and the DS image patch 797 
G(x) using the loss function 798 

𝐿regGG (𝐺) = 𝐸),'	[𝐺(𝑥) − 𝜙' ∘ 𝑦[9 (9) 799 

Additional details about the deep learning framework and individual model architectures 800 
are provided in SM Section 9, 10 and Fig. S8, S9 and S10. 801 



Image analysis 802 
The layer differentiation analysis is primarily performed using the open-source ImageJ 803 
software package. The line profiles are computed by selecting the rectangular region in the 804 
center region of interest (ROI) and aggregating the intensity value along the horizontal 805 
direction. Those profiles are then normalized to [0, 1] by their individual value range for 806 
visual comparisons. The cortical layer boundaries are manually annotated by identifying the 807 
local maxima and edges according to (36, 37). The layer segmentation on the larger ROI is 808 
performed by manual annotation on layer IV, V and VI. We used the built-in local thickness 809 
estimation function to generate the local thickness map and calculated the box plot for the 810 
thickness distribution using Matlab. Two Gyral crest ROIs and one Sulcus ROI are manually 811 
selected. Additional details about the analysis methods for the myelin fibers and vessel 812 
quantification are provided in SM Section 11 and Fig. S11. 813 

Code availability 814 
We have open sourced our codebase with training/testing script and pre-trained model 815 
weights on our GitHub repository: https://github.com/bu-cisl/DS-OCT, which will be 816 
made public upon publication. 817 

 818 
Data availability 819 
All data are available in the main text or the supplementary materials.  820 
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