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mRNA translation relies on identifying translation initiation sites (TISs) in mRNAs. Alternative TISs are prevalent across

plant transcriptomes, but the mechanisms for their recognition are unclear. Using ribosome profiling andmachine learning,

we developed models for predicting alternative TISs in the tomato (Solanum lycopersicum). Distinct feature sets were predictive
of AUG and nonAUG TISs in 5′ untranslated regions and coding sequences, including a novel CU-rich sequence that pro-

moted plant TIS activity, a translational enhancer found across dicots and monocots, and humans and viruses. Our results

elucidate the mechanistic and evolutionary basis of TIS recognition, whereby cis-regulatory RNA signatures affect start site

selection. The TIS predictionmodel provides global estimates of TISs to discover neglected protein-coding genes across plant

genomes. The prevalence of cis-regulatory signatures across plant species, humans, and viruses suggests their broad and crit-

ical roles in reprogramming the translational landscape.

[Supplemental material is available for this article.]

Translation initiation is the first stage of protein synthesis and is
also rate limiting, as it includes the selection of the translation ini-
tiation site (TIS) in the mRNA. The choice of TIS determines the
coding sequence (CDS) of mRNA and ensures the accurate and
timely production of a desired protein. This mechanism enables
plants to rapidly respond to developmental cues and environmen-
tal stress (Merchante et al. 2017; Urquidi Camacho et al. 2020;
Fang and Liu 2023). Advanced high-throughput computational
and experimental workflows can be used to annotate protein-cod-
ing genes, decode plant genomes, and identify the genetic basis of
phenotypic diversity among plant species. However, the current
criteria for identifying protein-coding genes, which include the
presence of an AUG initiation codon, a minimum open reading
frame (ORF) length of 100 amino acids, and a (most likely) single
ORF in eukaryotic mRNA, limit the identification of genes with
small or nonAUG-initiated ORFs and may not fully capture the
complexity of plant genomes (Yandell and Ence 2012; Kearse
and Wilusz 2017; Hsu and Benfey 2018). Ribosome profiling,
which allows the global mapping of TISs in vivo, has revealed nu-
merous unannotated TISs in mRNAs in plants (Juntawong et al.
2014; Hsu et al. 2016; Willems et al. 2017; Wu et al. 2019; Li and
Liu 2020). These alternative TISs (i.e., the AUG and nonAUG
TISs that differ from the annotated AUG sites) mainly located at
AUG and near-cognate codons (i.e., codons with one base differ-
ence from AUG) direct the translation of uncharacterized ORFs en-
coding novel peptides/proteins or different protein isoforms.

These peptides/proteins play crucial roles in stress and other phys-
iological responses in plants (Hanada et al. 2013; Juntawong et al.
2014; Tavormina et al. 2015; Hellens et al. 2016; Hsu et al. 2016;
Willems et al. 2017; van der Horst et al. 2019; Li and Liu 2020).
For example, multiple Arabidopsis (Arabidopsis thaliana) small
ORFs initiated at AUG encode hormone-like peptides that regulate
morphogenic development and salinity stress tolerance (Hanada
et al. 2013; Nakaminami et al. 2018). The tomato (Solanum lycoper-
sicum) valyl-tRNA synthetase gene encodes both mitochondrial
and cytosolic proteins via an upstream ACG and annotated AUG
initiation site, respectively (Li and Liu 2020).Whereas previous an-
notations of protein-coding genes overlooked alternative TIS-
initiated ORFs, ribosome profiling studies have revealed unexpect-
ed proteome diversity in plants (Hanada et al. 2013; Juntawong
et al. 2014; Tavormina et al. 2015; Hellens et al. 2016; Hsu et al.
2016; Willems et al. 2017; van der Horst et al. 2019; Li and Liu
2020). Thus, it is crucial to elucidate the general principles of plant
TIS recognition to decode plant genome sequences (Kress et al.
2022).

How do plant ribosomes recognize start sites for protein syn-
thesis? Although thousands of unannotated AUGs and near-cog-
nate TISs are present in the 5′ untranslated regions (UTRs) and
major CDSs of plant mRNAs, ribosomes do not initiate protein
synthesis at every triplet they encounter (Hanada et al. 2013;
Juntawong et al. 2014; Hsu et al. 2016; Willems et al. 2017; van
derHorst et al. 2019; Li and Liu 2020), highlighting the need to un-
derstand how start codons and a subset of triplets are selected in
mRNA. These mechanisms depend on the sequence context and
cis-regulatory RNA elements surrounding the start codon
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(Hinnebusch 2017; Kearse and Wilusz 2017; Orr et al. 2020). For
example, Kozak sequences and specific TIS-flanking nucleotides
in the –2, –4, and +5 positions (where +1 refers to A of the AUG
start site) can enhance the efficiency of translation initiation
(Kozak 1984; Noderer et al. 2014). Nevertheless, they do not ac-
count for all AUG- and nonAUG TIS activities. Kozak motifs are
commonly found in 5′ UTR–nonAUG TISs (TISs located in
5′ UTRs and using a nonAUG codon) and CDS-AUGs TISs (located
in CDSs and using an AUG codon) but not in 5′ UTR–AUGTISs (lo-
cated in 5′ UTRs and using an AUG codon) in both mammals and
plants (Spealman et al. 2018; Benitez-Cantos et al. 2020; Li and Liu
2020). Thus, howplant ribosomes recognize different types of start
codons in mRNA is not fully understood. Several questions re-
main, including which sequence features determine alternative
TISs in plants, how these determinants jointly and distinctly regu-
late AUG and nonAUG TIS selection, the similarity of these fea-
tures across plant species and eukaryotes, and how much of
plant genomes truly encodes proteins.

Machine learning (ML) offers oneway to uncover the protein-
coding genes of plant genomes and understand the mechanisms
underlying plant AUG and nonAUG TIS recognition. ML can sys-
tematically identify RNA cis-regulatory codes of plant alternative
TISs and provide more accurate TIS annotations. ML frameworks,
which build mathematical models and identify patterns in large
data sets, have successfully elucidated complex gene regulatory
networks and predicted phenotypes in plants. For example,
ML-based predictions of dynamic gene expression responses and
identification of novel regulators have revealed the transcriptional
regulatory network architectures of plant stress responses (Ma et al.
2014; Wu et al. 2021; Wang et al. 2022). ML strategies have also
helped characterize novel cis-regulatory DNA elements and their
combined effects in regulating transcription and associating ge-
netic variation with differential gene expression and phenotypic
diversity (Azodi et al. 2020a,b). Therefore, integrating high-
throughput translation initiation sequencing data sets from differ-
ent plant species using ML techniques may facilitate TIS/ORF
annotations and help decipher the underlying TIS-determining
principles across plants (Willems et al. 2017; Li and Liu 2020).

Here, we combined ML-based, computational, and experi-
mental techniques to investigate how plant ribosomes recognize
different types of TISs alongmRNA sequences, including those ini-
tiated at both canonical AUG and nonAUG codons, and explored
uncharacterized TIS-initiated ORFs in the tomato. We built ML
models using TIS-flanking mRNA sequence and TIS codon usage
and characterized common or species-specific sequence features.
We explored their conserved regulatory role across dicot and
monocot plants, viruses, and humans.

Results

ML enables cross-species TIS predictions in plants

To comprehensively and precisely buildmodels that predict TISs in
plant mRNAs, we used tomato ribosome profiling data sets (Sup-
plemental Fig. S1A; Willems et al. 2017; Li and Liu 2020) to
globally profile experimentally supported alternative AUG and
near-cognate TISs (referred to as true-positive [TP] TISs) and imple-
mented an ML workflow to distinguish these TP TISs from AUG
and near-cognate triplets with no significant translation initiation
signals (true-negative [TN] TISs) (Fig. 1A–D). Bioinformatics and
statistical analyses identified TPs (see the Supplemental Methods)
and categorized them into six groups based on the locations of ini-

tiation codons and their sequences: 5′ UTR–AUG, 5′ UTR–non-
AUG, CDS-AUG, CDS-nonAUG, 3′ UTR–AUG, and 3′ UTR–
nonAUG (Fig. 1A, left). This allows us to explore the common
and distinct regulatory mechanisms between AUG and nonAUG
TIS recognition. We identified several hundred to thousands of
TP TISs in the 5′ UTR and CDS but not the 3′ UTR (Fig. 1B,C; Sup-
plemental Fig. S1). Therefore, we focused on the TP and TN TISs in
the 5′ UTR and CDS for further analysis using the ML workflow il-
lustrated in Figure 1D. The ML workflow includes the collection
and selection of features comprising known (such as Kozakmotifs)
(Kozak 1984, 1989), ORF (such as mononucleotide contents with-
inORFs andORF sizes), and contextual features (nucleotide/amino
acid frequency of k-mers around TISs) (Fig. 1A, right) and their em-
ployment for the generation of TIS predictionmodels (see the Sup-
plemental Methods).

The F1 scores from the model using the features from all cat-
egories ranged from 0.7 to 0.9 with the highest and lowest F1
scores observed for the 5′ UTR–AUG and CDS-nonAUG groups, re-
spectively, in the tomato (Fig. 1E, arrows; Supplemental Fig. S2A;
Supplemental Table S1). Similar results were also observed in Ara-
bidopsis (Fig. 1A,C; Supplemental Fig. S1F, arrows). Furthermore,
the model using the features from all categories outperformed
those using the known, ORF, or contextual categories for TIS pre-
diction (Supplemental Figs. S1F, S2A; Supplemental Table S1).
Therefore, in addition to using features with known biological
functions (e.g., Kozak score), using a combination of unexplored
features (e.g., ORF and contextual features) and features with
known biological functions is important for TIS prediction.

To assess the generality of TIS recognitionmechanisms across
plants, we explored whether the models generated from tomato
could be used for predictions in Arabidopsis. The best models
from tomato predicted the four types of Arabidopsis TISs with F1
scores ranging from 0.73 to 0.87 (Fig. 1F, orange; Supplemental
Fig. S2B; Supplemental Table S1), showing the robustness of the es-
tablishedMLworkflow in identifying TIS predictionmodels across
plants. We observed similar patterns using Arabidopsis models to
predict tomato TISs (Fig. 1F, light blue). The feature enrichment
values (ratio of TP to TN feature values) showed significant positive
correlations in the tomato andArabidopsis for all groups tested (Fig.
1G). These results suggested that information gained fromone spe-
cies-based model could be useful for predicting TISs in other plant
species.

Shared and distinct nearby sequence contexts and codon usage

bias are associated with plant AUG and nonAUG TIS predictions

We asked to what extent each feature contributed to the perfor-
mance of the TIS prediction model in plants. We identified the
top features that contributed most to model performance for
each TIS group in the tomato (Fig. 2A–D; Supplemental Fig.
S3A). The knownPWM–5′ UTR–TP feature, representing the nucle-
otide compositions of the flanking regions (see the Supplemental
Methods; Noderer et al. 2014; Reuter et al. 2016; de Arce et al. 2018;
Li and Liu 2020), substantially contributed to the accuracy of the
model, especially for predicting tomato 5′ UTR–nonAUG TISs
(Fig. 2C,D), as supported by its high feature importance score
and significant enrichment (false-discovery rate [FDR]) (Fig. 2C),
its top feature ranking and higher feature occurrence in 10 ran-
domly balanced TP/TN data sets (Fig. 2D, right), and the differen-
tial feature values between TPs and TNs (Fig. 2D, left).

Analysis of the nucleotide compositions of the TIS-flanking re-
gions showed that all tomato TIS groups have a high frequency of C
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Figure 1. Identification of prediction models and the associated features that predict plant alternative translation initiation sites (TISs). (A) Illustration
of the identified true-positive (TP; blue) and true-negative (TN; gray) TISs that were categorized based on the location of initiation codons (i.e., 5′ UTR,
CDS, or 3′ UTR) and their sequences in a transcript. The “known” features include the Kozakmotif and position weight matrices (PWMs) generated from
short sequences centered on TISs (Joshi et al. 1997; Reuter et al. 2016). The “ORF” features consist of various nucleotide compositions/sizes of the al-
ternative TIS-initiated open reading frames (ORFs) and the annotated ORFs and also the RNA structures/nucleotide compositions of their surrounding
regions. The “contextual” features based on k-mer enrichment analyses (k = 1–3) consist of the nucleotide and amino acid sequence contexts in the
200-bp region centered on the TISs (see the Supplemental Methods). Gray line indicates mRNAs; black boxes, annotated AUG TIS-initiated ORFs;
and blue boxes, alternative TIS-initiated ORFs. (B,C ) Numbers of the identified TP and TN TISs, categorized as described in A, in the tomato (B) and
Arabidopsis (C ). (D) Machine-learning (ML) workflow used to identify prediction models and the features that were informative for predicting TISs
(see the Supplemental Methods). The Pearson correlation coefficient (r) and the false-discovery rate (FDR; determined by Wilcoxon rank-sum test) rep-
resent the correlation and the statistical significance of differences for the feature values between TP and TN TIS sets. “Top 50 FDR in contextual fea-
tures” represents that the 50 contextual features with smallest FDRs were selected for further analysis (see the Supplemental Methods). The F1 score is
the harmonic mean of precision and recall, which ranges from zero to one with one indicating a perfect model. (E) The prediction performance (rep-
resented as F1 scores) when all features (i.e., the known/ORF/contextual ones) were applied in predicting the four tomato TIS groups. A circle indicates
the performance of a model with a given combination of model parameters in a randomly balanced TP and TN data set. A black line indicates the mean
of the F1 scores for a given ML algorithm. An arrow indicates the best model (i.e., for theML algorithmwith highest mean performance, the model with
highest F1 score). A dashed line indicates the baseline performance expected by random guessing. (F ) The cross-species and within-species prediction
performance (shown as F1 score) when using the best model built in one species to predict the TISs in another species (light blue and orange) and to
predict the TISs within the same species (red and dark blue). Results are shown for the four TIS groups in the tomato and Arabidopsis. (G) Themean of the
fold changes for the feature values between TP and TN TIS sets among 10 randomly balanced data sets. Rho indicates Spearman’s rank correlation
coefficient. The black line indicates the fitted linear regression line, and the gray area indicates the 95% confidence interval. To exclude the possibility
of bias arising from 5′ UTR lengths, the lengths of 5′ UTR for genes with and without 5′ UTR–AUG and 5′ UTR–nonAUG are shown in Supplemental
Figure S14.
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nucleotides in nearby flanking regions (Fig. 3A; Supplemental Fig.
S4A). On the other hand, we found that the 5′ UTR–nonAUG and
CDS-AUG TPs, but not 5′ UTR–AUG TPs, tended to have A’s at po-
sitions –4 to –1 and G and C at positions +4 and +5, respectively
(Fig. 3A,I; Supplemental Fig. S4A), a pattern similar to theKozakmo-

tif (Kozak 1984, 1989). This Kozak-motif pattern was also observed
in annotated AUG TPs (Fig. 3A; Supplemental Fig. S4) and is in line
with previously reported sequence requirements for mammalian
TISs at AUG and nonAUG codons (Noderer et al. 2014; de
Arce et al. 2018). These observations suggest that 5′ UTR–AUG,

A B

C D

E F

G H

Figure 2. The features that are most informative for predicting plant 5′ UTR TISs. (A) Comparison of the importance scores derived from the model and
the statistical significance of differences (−log10(FDR), determined by aWilcoxon signed-rank test with Bonferroni correction) between tomato 5′ UTR–AUG
TPs and TNs for the features used in the best model. Rho indicates Spearman’s rank correlation coefficient. The black line indicates the fitted linear regres-
sion line, and the gray area indicates the 95% confidence level interval. (B) The means of the feature values in the tomato 5′ UTR–AUG TP and TN data sets
(right) and the frequency of features identified in 10 randomly balanced data sets (left) for the feature elimination–determined top 10 features (ranked using
their importance) (see Supplemental Fig. S3A). The rank and frequency indicate the importance of a given feature in the prediction model and their ro-
bustness using 10 randomly balanced data sets. The features with a frequency greater than seven within the top 10 are shown. Orange indicates the
TIS group with the higher feature value. (C–H) As described in A,B, but for the tomato 5′ UTR–nonAUG TIS group (C,D), the Arabidopsis 5′ UTR–AUG
TIS group (E,F), and Arabidopsis 5′ UTR–nonAUG TIS group (G,H). To exclude the possibility of bias arising from random down-sampling, the correlation
between two different strategies of random sampling is shown in Supplemental Figure S15.
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5′ UTR-nonAUG, and CDS-AUG TISs have both shared and distinct
sequence context dependencies for TIS recognition in the tomato.

The tomato model performances were slightly worse for the
nonAUG groups relative to AUG groups regardless of TIS location

(Fig. 1E; Supplemental Table S1). Not every near-cognate codon
serves as a TIS with equal activity, with CUG, ACG, and GUG gen-
erally being the most efficient (Kearse and Wilusz 2017; de Arce
et al. 2018; Li and Liu 2020). Hence, we attempted to increase
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Figure 3. The C/U nucleotide compositions and the flanking sequences of 5′ UTR TISs. (A,B) Sequence logo plots showing the differential enrichment of
A/U/C/G nucleotides between TPs and TNs in the regions 15-bp upstream of and 13-bp downstream from the TISs, represented as the log2 ratio of the site
frequencies between TPs and TNs, for the 5′ UTR TISs and annotated AUG sites in tomato (A) and Arabidopsis (B). (C,D) Enrichment of sites with the indi-
cated 3-mer sequences in the tomato (C) and Arabidopsis (D) TIS groups, represented as the log2 ratio of the site frequencies between TPs and TNs in the
180-bp region centered on tomato TISs with a 10-bp window. (E,F ) As described in C,D, but for the A, U, C, and G mononucleotides. (G) As described in
Figure 2A, but shown for the regression coefficients (x-axis) for the features used in the best linear regression model of predicting human TISs. (H) As de-
scribed in Figure 2B, but for the top six features with highest regression coefficients in human TIS predictionmodel. (I) Summary of theML-revealed features
of the Kozak motif (Kozak), the mononucleotide C content (“C”), and CU-rich tracts for their importance across different TIS groups.
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prediction accuracy by adding the feature TIS codon usage bias
(i.e., enrichment values of each near-cognate codon among TP
TISs) (Supplemental Fig. S1D). In general, models with TIS codon
usage bias information slightly outperformed those without this
feature (Supplemental Fig. S5A), and the rate of TN→TPmisclassi-
fication (i.e., a TN TIS inaccurately classified as a TP TIS) decreased
by 6% in the tomato (Supplemental Fig. S5B, light brown). Thema-
jor codons contributing to misclassification were AAG and AGG
(Supplemental Fig. S5C, arrows), suggesting that, in addition to
the flanking sequences context, the codon preference of TISs
themselves is also important for tomato nonAUG prediction.

We observed similar patterns when examining the prediction
models of Arabidopsis TISs (Figs. 2E–H, 3B,I; Supplemental Figs.
S3B,G–J, S4B, and S5), reflecting the shared sequence features be-
tween the tomato and Arabidopsis (Fig. 1G) and suggesting these
features are evolutionarily conserved across plants.

CU-rich tracts are important for plant TIS predictions

We identified that the UUC and UCU short sequences, as well as
the amino acids encoded by CU-rich codons such as Ser, were im-
portant for model accuracy (Fig. 2B,D,F,H). To determine whether
the amino acids themselves or the encoded codons are crucial, we
examined the codon usages for those amino acids. We found that
the codons enriched in TP groups were biased toward C and U, re-
gardless of the types of amino acids in both the tomato and
Arabidopsis (Fig. 3C,D; Supplemental Fig. S6A–F). We further dis-
sect codon sequences into mononucleotides and found the C/U
enrichments were more obvious in four groups across species
(Fig. 3E,F,I; Supplemental Fig. S6G,H). Similar C/U enrichment
was also identified when we examined the TIS-predictive features
from human cells (Fig. 3G,H; Reuter et al. 2016). These results sug-
gest that CU-rich nucleotide tracts, regardless of the amino acids

they encode, are important for alternative TIS prediction in all
TIS groups and are a shared cis-regulatory RNA signature across eu-
karyotes, at least in plants and humans.

We asked whether longer specific sequences also regulate TIS
selection. We conducted k-mer enrichment analyses, which start-
ed from any k-mers with length or four or more and successfully
narrowed down to around 111–153 putative cis-elements, with
the predominant size of 5–7 nt (Supplemental Fig. S6I) and being
predictive of TISs in Arabidopsis (Supplemental Fig. S6J). Using the
combined set of these cis-regulatory RNA elements (n=444)
(Supplemental Fig. S6I), we developed a TIS prediction model
with F1/AUROC scores of 0.74/0.78 (Supplemental Fig. S6P,Q)
with the top motifs of UCUUC and UCUCU (Supplemental Fig.
S6R). The “UCUUC” and “UCUCU” motifs were significantly en-
riched and prevalent in the upstream regions of four TIS groups
in the tomato (Fig. 4; Supplemental. Fig. S6K–M), highlighting
their significance in AUG and nonAUG TIS activity. There was
also a positive correlation between the number of C/Us and the en-
richment of sequence occurrence of all 5-mers for all tomato TIS
groups (Fig. 4A; Supplemental Fig. S6N). Similar results were also
observed in Arabidopsis (Fig. 4B,D; Supplemental Fig. S6). These re-
sults suggest that both CU-rich nucleotide tracts and specific CU-
related putative cis-elements are associated with alternative TIS se-
lection in plants.

Note that the perfect AUROC score of annotated TIS predic-
tion (Supplemental Fig. S7A) indicated a bias in our TN collection
strategy toward AUG triplets in 5′ UTRs. We thus examine feature
similarities between the annotated and alternative TIS groups,
focusing on the important features from alternative TIS prediction
model (Figs. 2–4). Similar patterns of sequences enrichments of the
UCU, UCC, UUC, C mononucleotides, and UCUUC/UCUCU, as
well as the depletion of AUG, were observed across annotated
and alternative TIS groups (Figs. 3C–F, 4C,D; Supplemental Figs.

A B

C D

Figure 4. Characterization of putative RNA cis-elements predictive of plant TISs. (A,B) Relationship between the number of C/Us (y-axis) and the enrich-
ment of sequence occurrence (x-axis) for all 5-mers in the tomato (A) and Arabidopsis (B) 5′ UTR–AUG and 5′ UTR–nonAUG TIS groups. The enrichment is
represented as the log2 ratio of median sequence occurrence between TPs and TNs in the 200-bp regions centered on TIS sites. Rho indicates Spearman’s
rank correlation coefficient. (C,D) As described in Figure 3C, but for the enrichment of putative RNA cis-elements in the tomato (C) and Arabidopsis (D) 5′
UTR TIS groups. The putative “UCUUC” and “UCUCU” elements with the highest importance score and with the highest enrichment, which are indicated
by arrows and highlighted in blue and orange in C,D, are shown.
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S6A–L; S7B–I). In contrast, the well-known Kozak motif was not
enriched in the 5′ UTR–AUG group but was present in the rest
of the alternative and annotated TIS groups (Fig. 3A,B; Supplemen-
tal Fig. S4A,B). The principal component analyses and pairwise
comparison of the feature correlations showed that the annotated
AUG TP TISs were closest to the CDS-AUG TP TISs (rho=0.97),
followed by 5′ UTR–nonAUG (rho=0.95) and then 5′ UTR–ATG
(rho= 0.94) in the tomato and Arabidopsis (Supplemental Fig.
S7J–M). These findings underscore the similarity of most features
among TIS groups while highlighting the unique presence of the
Kozak motif. Our ML models effectively predicted the four
groups—5′ UTR–AUG, 5′ UTR–nonAUG,CDS-AUG, andCDS-non-
AUG—whereas the CDS-nonAUG group had a relatively lower
score. Despite some sequence similarities in the CDS-nonAUG
group (Fig. 3I), we prioritized the first three TIS groups for
discussion.

The plant CU-rich tracts function as translation enhancers

to promote initiation activity

To validate the regulatory roles of the CU-related features in recog-
nizing TISs, we mutated the CU-rich nucleotide tracts in the up-
stream regions of alternative AUG and nonAUG TISs selected from
tomato. In all five TISs examined, mutating CU-rich tracts led to
much lower protein abundance (wild-type sequences [WT] vs. CU-
tract mutation [mCU]) (Fig. 5A; Supplemental Fig. S8A–E), whereas
steady-state mRNA levels remained comparable (Supplemental Fig.
S8F–I), indicating that the CU-rich tracts generally promote the effi-
ciency of protein synthesis. Mutating “UCUUC” and “UCUCU” in
the 5′ UTR–AUG TIS of Solyc06g076770.3.1 also decreased protein
abundance but not mRNA abundance (WT vs. UCUUC/UCUCU
mutations [mUCUUC/mUCUCU]) (Fig. 5A; Supplemental Fig.
S8H). Mutating the CU-tract or “UCUUC”/”UCUCU” in the 5′

UTR–nonAUG TIS of Solyc06g009750.3.1 did not change transla-
tion efficiency (Supplemental Fig. S8F,G), implying other factors in-
fluence TIS activity.

CU-rich elements enhance TIS activity in an internal ribo-
some entry site (IRES)–like manner in human, human viral, and
plant viral mRNAs (Fig. 5B; Nicholson et al. 1991; Chappell et al.
2000; Zeenko and Gallie 2005; Stupina et al. 2011; Weingarten-
Gabbay et al. 2016; Jaramillo-Mesa et al. 2019), whereas their roles
in plants are largely unexplored. Focusing on the orthologous gene
pairs between Arabidopsis and human, the CU contents of the an-
notated TP TISs were higher than those without initiation signals
(Supplemental Fig. S9), suggesting the similarity of the translation
initiation regulation in both species. To characterize the CU-rich
elements in plant mRNAs, we swapped the TIS upstream regions
between WT and mCU mutants from the 5′ to 3′ end in the 5′

UTR–AUGTIS of Solyc03g096920.3.1 (Fig. 5C). The protein signals
of the GFP reporter were significantly weaker for mCU-45 and
mCU-56 than for the WT and were most similar to that of mCU
(Fig. 5D); however, their mRNA abundances were comparable
(Supplemental Fig. S8I). The WT fifth regions contained a CU-
rich site that can base pair with a purine-rich (especially G) region
of plant 18S rRNAs (Fig. 5E), a highly conserved region across rice
(Oryza sativa), tobacco (Nicotiana tabacum), maize (Zea mays), and
wheat (Triticum aestivum) that efficiently enhances translation
(Akbergenov et al. 2004). These results provide experimental evi-
dence that CU-rich elements enhance translation initiation in
plant mRNAs.

Furthermore, we asked whether the insertion of repeats of
CU-rich tracts can enhance initiation activities. We inserted three

and four copies of theWT-5 sequences upstream of the nano-lucif-
erase (nLUC) reporter (WT-5×3 and WT-5×4) (Fig. 5E,F, brown)
andmeasured the nLUC/mRNA ratio (representing translation ini-
tiation activity). We used published sequences as negative (four
copies of 1083; 1083×4) and positive (four copies of ARC; ARC×
4) controls (Akbergenov et al. 2004) and calculated the fold chang-
es (FCs) between the negative control and positive control, as well
as theWT-5 repeats. In general, we observed an increase of transla-
tion initiation activity (Fig. 5F). These results, together with our
findings from the ML-characterized importance of CU-rich fea-
tures across species (Figs. 2–4), as well as the experimentally sup-
ported role of specific CU-rich elements in translation initiation
(Fig. 5), collectively pointed a conserved translational strategy of
CU-rich tracts and specific CU-related cis-elements in regulating
AUG and nonAUG TIS recognition across plants and even in hu-
mans and viruses.

TIS prediction models discover plant TISs

Although our plant TIS predictionmodels performed well (Fig. 1E;
Supplemental Fig. S1F), ∼9%–25% of TNs weremisclassified as TPs
(i.e., TNs with a high TP prediction score and classified as TPs; TNs
→TPs) in each group (Fig. 6A,B, light brown; Supplemental Fig.
S10A,B). To explore the possibility that misclassified TNs function
as initiation sites, we compared the feature values between correct-
ly predicted TNs (true TNs; TNs→TNs) and incorrectly predicted
TNs (misclassified TNs; TNs→TPs) (Fig. 6A,B; Supplemental Fig.
S10A,B). The features that likely contributed to misclassification
(i.e., with significant enrichment [FDR] and high frequency in
10 randomly balanced TP/TN data sets) (Fig. 6C,D, arrows;
Supplemental Fig. S10C,D) were those with high importance
scores in the built prediction models (Fig. 2; Supplemental Fig.
S3; Cusack et al. 2021). For example, in the tomato 5′ UTR–AUG
group, the number of Met residues was significantly different be-
tween mispredicted TNs (TNs→TPs) and true TNs (TNs→TNs)
(Fig. 6C,E), and this feature also had a high importance score in
the corresponding model (Fig. 2B, “Met”). Likewise, in the
Arabidopsis 5′ UTR–nonAUG group, the number of Ser residues
(which reflects CU nucleotide enrichment) was significantly mis-
predicted, and this feature also had a high importance score in
the corresponding model (Figs. 6D,F, 2H, “Ser”).

To explore the potential of the TIS prediction models to iden-
tify alternative TISs in plant mRNAs, we assessed whether the mis-
predicted TNs with high prediction scores function as TISs in vivo
(for the details of selected tomato TISs, see Supplemental Figs. S8,
S11). Immunoblotting detected proteins corresponding to the ex-
pected sizes for these misclassified AUG and nonAUG TIS-initiated
ORFs (vector vs.WT) (Fig. 5A; Supplemental Figs. S8, S11A,B). In ad-
dition, the mispredicted CDS-AUG TIS site of Solyc11g039830.2.1
(encoding glycyl-tRNA synthetase) could potentially generate a pro-
tein isoformwith distinct N termini, likely affectingmitochondrion
targeting signals (Supplemental Fig. S11C).

We further applied this pipeline to the noncoding RNA
(ncRNA) genes annotated in Araport11 (n= 5178). We identified
three novel TISs, including the one encoding a novel small ORF
(Supplemental Fig. S12A; Hsu et al. 2016), and they all had CU-
rich tracts in their upstream regions (Supplemental Fig. S12, gray
boxes). These findings suggested that alternative TISs can be locat-
ed in genes with known functions and the ncRNAs and direct the
translation of novel polypeptides or protein isoforms that diversify
the proteome. Thus, TIS prediction models can help identify po-
tential TISs, even without experimental evidence.
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Predicting TISs with conserved features in monocots and dicots

via transfer learning

To explore whether our TIS prediction models can be applied to
different tissues or even monocots, we generated TIS lists from
the cycloheximide-treated ribosome profiling data sets of different
plant species and tissues (Lei et al. 2015;Willems et al. 2017; Li and
Liu 2020; Yang et al. 2021) using RiboTISH software (Zhang et al.

2017a).We grouped the RiboTISH-reported TISs based on FDR val-
ues and examined their prediction scores generated by our best to-
mato TIS prediction model (Fig. 1E). Compared with TISs with
lower FDRs (Fig. 7A, gray and light green lines, top andmiddle pan-
els; Supplemental Fig. S13), TISs with higher FDRs had higher pre-
diction scores, especially in 5′ UTR–nonAUG, in Arabidopsis
(suspension cells) and tomato (leaves) (Fig. 7A, lime green and
dark green lines, top and middle panels; Supplemental Fig. S12).

A

B C E

D F

Figure 5. Mutation of CU-rich sequences on plant cellular mRNAs attenuated the TIS activities. (A) Immunoblotting analyses of proteins with translation
initiated from the TISs indicated in Supplemental Figure S8 (orange arrows) andwith translation driven by the upstream 100-nt wild-type (WT) sequence or
sequences withmutations of CU tracts (mCU) or UCUUC/UCUCU (mUCUUC/mUCUCU) sites. Proteins were expressed inNicotiana benthamiana (tobacco)
leaves using the Agrobacterium-mediated transient expression system. Vector indicates tobacco leaves infiltrated with agrobacteria containing the expres-
sion vector (i.e., the GFP or FLAG-containing plasmid without a target gene sequence). (Bottom) The protein abundance of the reporter genes relative to
actin for three biological repeats (dots) and the corresponding means and standard errors are shown. (B) The known CU-rich sequences found on human
transcripts and on plant and animal viral mRNAs promote translation efficiency as reported in the indicated literature. (C) Illustration of swapping the WT
(orange box) and the CU-mutated (mCU; gray line) sequences for the TIS-upstream region of a 5′ UTR–AUG TIS of Solyc03g096920.3.1 examined in A. The
TIS-upstream region was divided into six subregions (indicated in Supplemental Fig. S8A) to generate distinct mCU mutants with indicated CU-mutated
regions fused with the GFP reporter gene as described in A. (D) As described in A, but for the protein of the mCUmutants as indicated in C. (E) The putative
binding site onWT sequences (shaded), but not on CU-mutated ones, to the plant 18S rRNA (sold and dashed lines). The sequences of the plant 18S rRNA
at positions nt 1115 to 1125 and the WT sequence or sequence with mutations of CT tracts (red) in the fifth region indicated in C are shown. (∗) P-values <
0.05, which is derived from one-way ANOVA test, representing the significant difference between WT and the samples with CU sequence mutations. (F )
Heatmap shows the nLUC/ mRNA ratio for five biological replicates: 1083 ×4 and ARC×4 denote negative and positive controls with four copies of 1083
and ARC fragments indicated in E. WT-5 × 3 andWT-5 × 4 denote vectors with three and four copies of theWT-5 indicated in E. (nLUC) Nano luciferase. The
color keys represent log2 fold change (FC) relative to the negative control. (∗) P-value < 0.05, (∗∗) P-value < 0.01; determined by one-tailed Student’s t-test.
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Similarly, among the potential TISs in Arabidopsis seedlings identi-
fied by RiboTISH, their FDRs and predicted scores from our model
were positively correlated (Fig. 7A, bottom). In themonocotmaize
and rice, we also observed this correlation in the 5′ UTR–nonAUG
TIS groups (Fig. 7B, left). Note that the small sample sizes of the
RiboTISH-reported 5′ UTR–AUG and CDS-AUG groups might in-
fluence the results (Fig. 7A,B; Supplemental Fig. S13). In addition,
once the LTM- and Harringtonine-based Ribo-seq experiments in
rice and maize are available, they will be valuable to examine the
performance of our TIS prediction model between monocots and
dicots. Together, these results show the feasibility and flexibility
of our analytical pipelines and the utility of the TIS prediction

model for identifying TISs from different plant tissues, as well as
within and across species.

Next, we analyzed the pairwise Pearson correlation coeffi-
cient (PCC) to identify conserved features inmonocots and dicots.
Features linked to “UCU,” “Ser,” and “CUC” content had strong
correlations (PCC>0.8), indicatingCU tracts are key for TIS predic-
tion (Fig. 7C, bold). The functions of genes with alternative TISs
with the top 10% highest prediction scores and with frequent
CU tracts (top 25% in the highest-CU contents in its upstream
100-bp region) were associated with abiotic/biotic stress responses
in all species examined, except for genes from the rice data set, in
which no Gene Ontology (GO) terms were enriched (Fig. 7D).

A B

C D

E F

Figure 6. The features of misclassified TN TISs. (A,B) Prediction score distribution of the TN TISs for the 5′ UTR–AUG and 5′ UTR–nonAUG TIS groups in
tomato (A) and Arabidopsis (B). The mean threshold (dashed lines) for the classification of TN→ TN (the TN TISs predicted as TNs; gray) and TN→TP (the
TN TISs predicted as TPs; light brown) and themean percentage (%) of the TN TISs misclassified as TP (TN→TP group) derived from the bestmodels in the
10 randomly balanced data sets (as indicated in Fig. 1) are shown. (C,D) Dot plots show the frequency (y-axis) of a given feature used for TIS prediction in 10
randomly balanced data sets and the feature enrichment (FDR; x-axis) between the TN→TN and TN→ TP groups for the TIS groups indicated in A,B. The
red line represents the threshold (frequency of seven or more) of important features as indicated in Figure 2. (E,F) Violin plots show the feature value dis-
tributions for the features of methionine counts or PWM–5′ UTR–TP and “Arg” or “Ser” that weremost enriched in C,D for the TN→TN (gray) and TN→TP
(light brown) groups, indicated in A and the TP→TP (the TP TISs predicted as TPs, dark brown) group. The red dot represents the median value.
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Given the known role of CU-rich tracts in plant virus TIS activity
(Fig. 5B; Stupina et al. 2011; Jaramillo-Mesa et al. 2019), their val-
idated function in promoting plant translation initiation (Fig. 5),
and their association with stress-related plant genes (Fig. 7), CU
tracts are likely important for triggering plant immunity and viral
pathogenesis in both plants and plant viruses.

Discussion

Gene annotation is critical for inferring gene family structure, evo-
lution, and function and for decoding genomes from sequences to
phenotypes, as it provides physical and biological contexts to an
assembled genome sequence (Kress et al. 2022). The prevalence
of unannotated protein-coding regions and the lack of a workflow
for revising protein-coding gene annotations of existing plant ge-
nome references have limited fundamental discovery. Here, we ad-
dressed these issues by focusing on the agriculturally important
tomato crop. Exploiting an ML pipeline, we discovered known
Kozak motifs, novel CU-rich sequences, and the codons of TISs

themselves with joint and distinct influences on alternative AUG
and nonAUG TIS recognition, the observations also found in a
model species, Arabidopsis (Figs. 1–4). We identified CU-rich ele-
ments in plant mRNAs that promote translation initiation (Fig.
5) and were evolutionarily conversed for accurate TIS prediction
within and across plant species, as well as in humans and viruses
(Figs. 1–3, 7). Lastly, our models revealed hidden TISs based on
mRNA sequences across monocots and dicots, thereby improving
gene annotation in plants (Figs. 6, 7). The translation of small or
nonAUG TIS-initiated ORFs can expand proteome diversity and
produce proteins with varied functions (Figs. 5, 6; Supplemental
Fig. S8; Hanada et al. 2013; Willems et al. 2017; Wu et al. 2019;
Li and Liu 2020). Alternatively, some noncanonical ORFs act as
cis-regulatory units to interfere with the translation of the main
ORF in a transcript (Tanaka et al. 2016). Thus, the coding regions
or peptide compositions of these noncanonical ORFs may not be
critical or conserved across plants (von Arnim et al. 2014).
Additionally, because unannotated TIS-initiated ORFs tend to be
short, the use of computational approaches becomes less effective

A

D

B C

Figure 7. Prediction of monocot and dicot TISs and their characteristics. (A) Distribution of the TIS prediction scores generated by the tomato best mod-
els for the 5′ UTR–AUG and 5′ UTR–nonAUG TIS groups identified by the RiboTISH algorism and with RiboTISH-reported FDRs (FDR percentile in which the
0–25 category includes TISs with lowest FDR values) using ribosome profiling data sets generated from dicot plants including Arabidopsis (suspension cells),
tomato (leaves) and Arabidopsis seedings. (B) As indicated in A, but for the data sets generated frommonocot plants including maize and rice. (C) Pairwise
Pearson correlation coefficient of the features among dicot and monocot plants for the 5′ UTR–nonAUG TISs identified by the RiboTISH algorism.
Monocots: (At) Arabidopsis, (Sl) tomato, and (At-Se) Arabidopsis seedlings; monocots: (Zm) maize and (Os) rice. (D) GO biological process terms signifi-
cantly enriched (FDR <0.05) in genes that have RiboTISH-reported TISs with the top 10% highest prediction scores and with the top 25% highest CG con-
tents in the upstream 100-bp regions.
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owing to low conservation scores (Couso 2015). The read coverage
of Ribo-seq data sets, the abundance of translated transcripts, and
the mRNA features or structures triggering ribosome pausing
(Richter and Coller 2015; Merchante et al. 2017) might affect the
phasing patterns of genes revealed via CHX-based Ribo-seq data
sets. These highlight the limitation of relying on sequence conser-
vation and 3-nt periodicity in revealing protein-coding regions for
ORF annotation. Thus, complementary to comparative-genomic
approaches and the CHX-based ribosome profiling analyses
that have successfully characterized some alternative AUG and
nonAUG TIS-initiated ORFs that are conserved across eudicot
plant species (Hsu et al. 2016; van der Horst et al. 2019), our ML
pipeline together with LTM-supported TIS profiles serves as an al-
ternative and complementarymethod to generate global estimates
of the TISs used in vivo, providing protein-coding information for
genomic sequences, especially in information-poor crop species.
We should note that our approach and data set are limited in iden-
tifying TISs that are specifically sensitive to the LTM chemical,
which may not provide a comprehensive profile of every TIS on
the genome. In addition, the LTM-induced ribosome stalling
near a given initiation site might form a block to pause scanning
ribosomes along mRNAs and lead to the bias in identifying its fur-
ther upstream TISs (Lee et al. 2012; Gao et al. 2015) that might
noise TIS prediction models and informative features found. The
extent to which the LTM-revealed TISs reflect translation events
on genomes remains to be addressed. Thus, the additional experi-
mental validation on the ML-derived novel TISs and TIS features
(Fig. 5), the ribosome profiling with distinct chemical treatments
and time-course design, and the high-throughput and high-sensi-
tive proteomics approaches such as peptidomes and N-terminal
proteomics will facilitate profiling TISs on genome and elucidating
plant TIS recognitionmechanisms (Lee et al. 2012; Stern-Ginossar
et al. 2012; Fields et al. 2015; Gao et al. 2015; Willems et al. 2021;
Fan et al. 2023).

Different ML pipelines have been used to predict TISs in hu-
man and mouse cells (Ingolia et al. 2011; Reuter et al. 2016; Zhang
et al. 2017b). These studies revealed significant sequence features
that provided information for predicting TISs (Reuter et al. 2016;
Zhang et al. 2017b). In addition to known biological features such
as the Kozak sequence and the sequences nearby flanking TISs, sev-
eral important contextual features also contribute toTIS recognition
mechanisms. For example, the number of upstream AUG/Ser resi-
dues contributed to the models with high importance scores in
both humans and mice (Fig. 3G,H; Reuter et al. 2016; Zhang et al.
2017b). CU-rich tracts regulate TIS activities in humans and plant
and human viruses (Figs. 3, 5C; Stupina et al. 2011; Weingarten-
Gabbay et al. 2016; Jaramillo-Mesa et al. 2019). Thus, given the
similarity of the contextual features required for TIS prediction/ac-
tivities in humans,mice, viruses, and plants (Figs. 2, 3, 5), it is likely
that these features are biologically meaningful for the regulation of
TIS selection across different kingdoms rather thanbeingmerely the
result of sequencing or experimental bias. The conservation of TIS
recognition mechanisms further indicates their critical and univer-
sal roles in controllingmRNA translation,which is indispensable for
all organisms. The codon bias of TIS sites was also an important fea-
ture for plant TIS prediction (Supplemental Fig. S5), which is in line
with findings for mammalian TIS prediction (Zhang et al. 2017b)
and the observation that AAG and AGG are generally poor start co-
dons, as revealed using in vitro/in vivo reporter assay systems
(Kearse and Wilusz 2017). These observations show that both con-
textual features and TIS codon preference play important roles in
TIS recognition.

The polypyrimidine CU-tract element enhances translation
initiation of preferred start sites via cap-independent and IRES-me-
diated translation in plant viruses. These CU-tract regions provide
complementary interactions between the CU-rich regions of viral
mRNAs and the conserved regions of 18S rRNAs within 40S small
ribosomes, as reported for tobacco etch virus, blackcurrant rever-
sion virus, turnip crinkle virus, and triticummosaic virus (Zeenko
and Gallie 2005; Karetnikov and Lehto 2007; Stupina et al. 2011;
Jaramillo-Mesa et al. 2019). A systemic high-throughput screen
of IRES elements in humans andhuman viruses revealed shortmo-
tif sequences, including the known viral “UUCCUUU” and
“UACUCC” IRES elements, and novel short C/U-related sequences
(such as “CCCUCUU” and “UUCCUU) that can base pair with 18S
rRNAs within a scanning ribosome to enhance cap-independent
translation (Weingarten-Gabbay et al. 2016). However, much
less evidence is available for their regulatory roles in plant mRNA
translation, with only a single report showing that a 100-bp CU-
rich region within the 5′ UTR of OsMac1 in rice promotes transla-
tion initiation (Mutsuro-Aoki et al. 2021). Base-paring interaction
between plantmRNAs andplant 18S RNAs is critical for translation
initiation efficiency, as observed in the short 5′ UTRs ofArabidopsis
ribosomal protein S18C and a plant translation enhancer element
with the active plant ribosomal 18S RNA complementary sequenc-
es (Akbergenov et al. 2004; Vanderhaeghen et al. 2006). In line
with these findings for individual genes, our studies systemically
and experimentally characterized the broad influence of CU-rich
sequences in plant TIS recognition across different plant species,
likely via interaction with plant 18S RNAs, and highlighted a con-
served translational strategy thatmodulated initiation site recogni-
tion in different species (Figs. 3, 5, 7). Genes with alternative TISs
were associated with abiotic/biotic stress responses (Fig. 7D). Al-
though it is proposed that base-pairing interaction between the
polypyrimidine CU-tract on mRNAs and the purine-rich regions
of 18S rRNAs slows down scanning ribosomes and facilitates ribo-
some positioning on preferred TISs along a transcript with multi-
ple AUG codons (Akbergenov et al. 2004; Weingarten-Gabbay
et al. 2016), themechanisms underlying these actions, particularly
regarding the structural interaction among the CU-rich motifs,
rRNAs, and the preferred TISs, as well as whether the plant CU-
richmotifs function similarly to IRESs as shown in humans and vi-
ruses (Akbergenov et al. 2004; Weingarten-Gabbay et al. 2016; Jar-
amillo-Mesa et al. 2019) remain largely unclear and require further
investigation. Together, it will be interesting to investigate how
plants and plant viruses use these CU-rich tracts for protein syn-
thesis and which translated proteins result in plant immunity.

Kozak sequences and the sequences nearby flanking TISs are
well-known cis-regulatory signatures that enhance initiation at ei-
ther AUG or nonAUG start codons (Kozak 1984, 1989). Here, we
showed that Kozak motifs are preferentially associated with
5′ UTR–nonAUG and CDS-AUG but not with 5′ UTR–AUG TISs
(Fig. 3; Supplemental Fig. S4). How can ribosomes recognize these
cis-regulatory sequences when scanning mRNAs? Multiple trans-
acting factors including (but not limited to) eukaryotic translation
initiation factors (eIFs) play vital roles in selectively regulating TIS
efficiency (Roy and vonArnim2013; Kearse andWilusz 2017; Fang
and Liu 2023). How different sets of trans-regulatory factors and
cis-regulatory elements work together coordinately to determine
initiation sites and start protein synthesis, especially when plants
are exposed to different stress conditions, will be an interesting
topic for further research.

Our TIS predictionmodels identified informative cis-regulato-
ry features in the tomato and Arabidopsis, revealing the
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mechanistic basis of alternative TIS recognition across dicot and
monocot plants. The evolutionary similarities of plant TIS recogni-
tion principles highlight the feasibility of applying TIS prediction
models to crop species with little experimentally derived gene in-
formation. Integrating these prediction models into existing
bioinformatics tools would leverage the power of protein-coding
gene annotation pipelines across diverse plant species. Moreover,
these cis-regulatory features will facilitate efforts to reveal the
associations between genetic variation, gene expression, and phe-
notypic diversity, as well as ultimately bridge genotype to pheno-
type in plants. Lastly, our approaches and findings are a key initial
first step, but not the only one, to profile all protein products from
genomes and elucidate the mechanistic basis of selecting alterna-
tive TISs in plants. When the initiation step is completed, how
will the elongation and termination steps involve protein prod-
ucts? How the general activation and condition-specific regulation
can jointly orchestrate the TIS selections for dynamic regulation of
gene expression in plants remains largely unclear and will be
worth studying in the future.

Methods

Identification of putative cis-elements for predicting TISs

To search for the putative cis-regulatory elements associated with
Arabidopsis AUG/nonAUG TIS activities, an enrichment-based k-
mer (oligomer with the length of k)-finding pipeline was used as
described previously (Liu et al. 2018). Briefly, all possible k-mer se-
quences (k≥4) were examined for significant enrichment in the
200-bp transcript regions centered on a given TIS between the TP
and TN TISs. For the shorter k-mer sequences that were perfectly
matched to the longer k-mer sequences, only the one with higher
enrichment significance (i.e., the lower P-value)was referred to as a
putative cis-regulatory element in the downstream TIS prediction
analyses.

Construction and evaluation of predictive ML models

An ML pipeline described previously (Uygun et al. 2019; Wu et al.
2021) was retrieved from GitHub (https://github.com/ShiuLab/
ML-Pipeline; https://github.com/azodichr/ML-Pipeline/tree/master/
Workshop). Briefly, we used scikit-learn (v0.24.2) in Python
(v3.7.0) to train and test the models. For each TIS group, we split ba-
lanced data into training (70%) and testing (30%) sets and tested four
classification methods: random forest (RF), support vector machine
(SVM), logistic regression (LR), and gradient boost (GB). We used
10-fold internal cross-validation to select the optimized hyperpara-
meters. Theparameters used to train themodels for the identification
of the bestmodel among differentML algorisms are as follows: (1) RF
—“max_depth”= [3, 5, 10], “max_features”= [0.1, 0.25, 0.5, 0.75,
“sqrt”, “log2”, None], “n_estimators”= [100,500,1000]; (2) GB
—“max_depth”= [3, 5, 10], “max_features”= [0.1, 0.5, sqrt, log2,
None], “n_estimators”= [100, 500, 1000], “learning_rate”= [0.001,
0.01, 0.1, 0.5, 1]; (3) LR—“C”= [0.01, 0.1, 0.5, 1, 10, 50, 100], “inter-
cept_scaling”= [0.1, 0.5, 1, 2, 5, 10], “penalty”= [“l1”,“l2”]; and (4)
SVM—“kernel”= [“linear”], “C”= [0.01, 0.1, 0.5, 1, 10, 50, 100].
The F1 score was used to select the best model for each TIS group.
Note that to have TIS-predictive features representative in a given
species, only the features used in the best model with a frequency
of seven or more in the 10 randomly balanced data sets were includ-
ed in Figure 1G. To comprehensively reveal the features contributing
to the best model of predicting TISs, the features used at least in one
of the 10 randomly balanceddata setswere included in Figure 2, A, C,
E, andG, and Supplemental Figure S3, C, E, G, and I. The importance

scores infer the importance of each feature in a given model. For the
RF andGBmethods, this score represents theGini index, whereas for
LR and SVM, it is the coefficient.

Generation of the candidate TIS-initiated protein expression

constructs with mutations and expression tags

The best models generated (Fig. 1E; Supplemental Fig. S1F) were
used to compute the possibility of a given triplet being classified
as a TP. The triplets with the prediction scores higher than the
threshold of classifying TP/TNs used in the best models (Fig. 6A;
Supplemental Fig. S10) were selected for further functional
validation.

The introduction of protein expression constructs into tobac-
co using an Agrobacterium-mediated transient expression system
and the detection of expressionwere performed as described previ-
ously (Li and Liu 2020) with some minor modifications. Briefly,
the 5′ UTR and CDS fragments of the gene with a given target
TIS site ranging from the upstream 100 bp to the downstream
9nt (including the target TIS site) were amplified by PCR and fused
with a reporter gene encoding GFP, 10 ×MYC, or 3 × FLAG, which
was used previously (Li and Liu 2020; Chiu et al. 2022). All muta-
genesis of the tested sites of genes was performed using synthetic
primers listed in Supplemental Table S2.

Quantitative reverse-transcription PCR analyses

The total RNA purification from tobacco leaves, the cDNA prepara-
tion, and quantitative reverse-transcription PCR (qRT-PCR) analy-
ses were described previously (Li and Liu 2020; Chiu et al. 2022).
Ubiquitin 3 (Rotenberg et al. 2006) was applied as an internal con-
trol. The primers used are listed in Supplemental Table S2.

Detecting potential TISs using RiboTISH software and generating

their prediction scores

The public CHX-treated ribosome-profiling data sets in Arabidopsis
(suspension cells), tomato, maize, and rice were retrieved from the
NCBIGene ExpressionOmnibus (GEO; https://www.ncbi.nlm.nih
.gov/geo/) (under accession numbers GSE88790, GSE143311)
(Willems et al. 2017; Li and Liu 2020) and NCBI Sequence Read
Archive (SRA; https://www.ncbi.nlm.nih.gov/sra) database (under
accession numbers PRJNA523300 and SRP052520) (Lei et al. 2015;
Yang et al. 2021). To assess themodel performance between differ-
ent plant tissues in Arabidopsis, the CHX-treated ribosome profil-
ing data sets of 6-d-old Arabidopsis seedlings were generated as
described previously (Li and Liu 2020). The raw reads were
trimmed and mapped as described in previous respective studies
(Lei et al. 2015; Li and Liu 2020; Yang et al. 2021) and then input
into a RiboTISH algorism (Zhang et al. 2017a) with default settings
and the additional parameters of “- longest -alt” for the identifica-
tion of the TISs with FDRs (i.e., the BH correctionQ-value of frame
test). The prediction scores for each RiboTISH-reported TIS were
calculated in scikit-learn using the best model from Arabidopsis
(suspension cells). The genome version used in this study was
Zm-B73-REFERENCE-NAM-5.0 and IRGSP-1.0 for maize and rice,
respectively.

GO analysis

GO term enrichment analysis was performed with the PANTHER
database (Hanada et al. 2013) using the Fisher’s exact test to calcu-
late the degree of enrichment with FDR for a multiple testing ad-
justment. Significantly enriched GO terms (FDR<0.05) were
visualized as heatmaps.
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