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Abstract

INTRODUCTION: In this study, we leverage proteomic techniques to identify commu-

nities of proteins underlying Alzheimer’s disease (AD) risk among clinically unimpaired

(CU) older adults.

METHODS: We constructed a protein co-expression network using 3869 cere-

brospinal fluid (CSF) proteins quantified by SomaLogic, Inc., in a cohort of participants

along the AD clinical spectrum. We then replicated this network in an independent

cohort of CU older adults and related thesemodules to clinically-relevant outcomes.

RESULTS: We discovered modules enriched for phosphorylation and ubiquitination

that were associated with abnormal amyloid status, as well as p-tau181 (M4: β = 2.44,

p<0.001,M7: β=2.57, p<0.001) and executive function performance (M4: β=−2.00,
p= 0.005,M7: β=−2.39, p< 0.001).

DISCUSSION: In leveraging CSF proteomic data from individuals spanning the clinical

spectrum of AD, we highlight the importance of post-translational modifications for

early cognitive and pathological changes.
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1 BACKGROUND

Alzheimer’s disease (AD) is themost common form of dementia among

adults 65 years and older.1 The hallmark pathological features of AD

are extracellular deposits of the misfolded amyloid beta (Aβ) protein,
as well as neurofibrillary tangles composed of hyperphosphorylated

tau protein.2 Protein misfolding causes soluble versions of Aβ and

tau to be organized into toxic, fibrillar aggregates and to lose their

functional properties.3,4 As a result, there is growing interest in

targeted, therapeutic interventions that enhance the biological pro-

cesses behind protein degradation as a means of combating disease

progression.5

The presence of amyloid plaques begins years if not decades before

the onset of clinical dementia, and has been conceptualized as an

asymptomatic preclinical stage of AD.6,7 Abnormal Aβ accumulation

among clinically unimpaired (CU) adults is associated with magnetic

resonance imaging (MRI)–basedmeasures of neuronal injury,8,9 abnor-

mal tau levels,10 cognitive decline,11,12 and future progression to mild

cognitive impairment (MCI) or dementia.11 Decreases in cerebrospinal

fluid (CSF) levels of Aβ42 and Aβ42 /Aβ40 ratios are among the earli-

est physiological changes that can be used to identify individuals with

preclinical AD.13,14 This initial period along the AD continuum repre-

sents a promising target for early therapeutic intervention15; however,

the physiological drivers of initial disease processes remain poorly

understood.

Recent advancements inmass spectrometry, immunoaffinity assays,

and aptamer-based microarrays have led to recent findings describing

proteomic changes beyond amyloid and tau in the context of AD.16,17

This research has been pivotal to identifying novel biomarkers and

disease processes that emerge in parallel to or independent of initial

amyloid and tau accumulation. As opposed to focusing solely on

individual protein levels, many of these studies have approached

high throughput proteomic data sets using network approaches to

uncover communities of proteins—or modules—important to AD

pathogenesis.

The Accelerated Medicines Partnership for Alzheimer’s Disease

(AMP-AD)Consortiumalone has published nearly a dozen such studies

investigating proteomic changes in AD,18–26 often exploring changes

that occur in the asymptomatic period preceding AD dementia, that is,

among CU individuals and individuals with MCI who do not meet clini-

cal criteria for dementia.18,21–26 These studies6,22,23,25,27 have identi-

fied proteomic changes in participants without dementia (defined as

having a Mini-Mental State Exam [MMSE] score above 24 or Clinical

Dementia Rating [CDR] score less than 123).

However, few studies—including those described above—have uti-

lized network techniques to examine proteomic changes associated

with preclinical AD, particularly among CU individuals.28 Abnormal

amyloid accumulation during the CU stage is increasingly becoming a

target for therapeutic intervention in anti-amyloid clinical trials, yet

little is known about the biological pathways underlying in vivo neu-

rodegenerative and cognitive changes at the earliest stages of the AD

cascade, among CU individuals.

In this study, we identify CSF proteomic co-expression modules

and examine their associations with early disease-relevant changes

in a large cohort of CU individuals. To accomplish this, we con-

structed a protein co-expression network among a discovery cohort

of CU, MCI, and AD participants, using 3869 proteins quantified

in the CSF by modified aptamer technology (SomaScan). We fur-

ther replicated this network in an independent, deeply phenotyped

CU cohort. We discovered modules enriched for post-translational

modifications (phosphorylation and ubiquitination) that predicted

abnormal amyloid accumulation, tau aggregation, cognitive perfor-

mance, and apolipoprotein E (APOE) genotype among CU individuals.

These findings emphasize the importance and multi-faceted role

of post-translational modifications as an early driver of AD-related

pathophysiology.

2 METHODS

2.1 Participants

We analyzed CSF samples from 258 research participants recruited

from either the Iqbal Farrukh and Asad Jamal Stanford Alzheimer’s

Disease Research Center (ADRC) and its affiliated clinics (ADRC+)

or from the Stanford Aging and Memory Study (SAMS). Clinical diag-

nosis was determined at a clinical consensus meeting by a panel of

neurologists and neuropsychologists. ADRC+ participants underwent

neurological examination, neuropsychological testing, and neuroimag-

ing, and provided biofluid samples (CSF). Participants diagnosed as

CU (CDR = 0 or 0.5), MCI (CDR = 0, 0.5, or 1), or having AD dementia

(CDR > 0.5) were used in our analyses and treated as the discovery

cohort.29 SAMS is an ongoing prospective study ofCUolder adults that

seeks to understand how memory performance relates to brain struc-

ture, brain function, and AD risk factors.30,31 SAMS eligibility included

normal or corrected-to-normal vision/hearing, right handedness,

native English speaking, a lack of a history of neurologic or psychiatric

disease, aCDRglobal score of zero, andperformancewithin thenormal

range on a standardized neuropsychological test battery. SAMS partic-

ipants underwent lumbar puncture to collect CSF and completed MRI

scanning.

All study protocols were approved by the Stanford University Insti-

tutional Review Board. Written informed consent was obtained from

each study participant or their legally authorized representative.
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RESEARCH INCONTEXT

1. Systematic review: We reviewed the literature using

traditional methods (e.g., Google Scholar) for stud-

ies using network approaches to analyze proteomic

changes among clinically unimpaired (CU) older adults

at increased risk for Alzheimer’s disease (AD) (i.e., with

abnormal levels of amyloid beta [Aβ] aggregation). The
research we found in this area either had small sample

sizes (N < 20) or grouped CU participants with those

meeting the criteria for mild cognitive impairment (MCI).

2. Interpretation: In this study, we leverage cerebrospinal

fluid (CSF) data and proteomic techniques—particularly

co-expression networks—to identify biological mecha-

nisms related to AD pathology among CU older adults.

Our results highlighted the involvement of ubiquitina-

tion, particularly as a regulator of autophagy, in such early

disease pathology.

3. Future directions: Future research should determine the

causal direction between autophagy and abnormal amy-

loid accumulation, as well as examine proteomic changes

among CU individuals longitudinally and among more

diverse participant samples.

2.2 Cerebrospinal fluid samples

CSF sampleswere collected via lumbar puncture,whichwasperformed

in the morning after an overnight fast. A Sprotte needle inserted

between lumbar vertebrae L4 and L5 was used to collect 10 mL of

CSF, divided into 1.0 or 0.5 mL aliquots and stored in polypropylene

tubes at−80◦Cuntil assay.CSF centrifugation andassessmentof blood

contamination was conducted as described previously.32

2.3 AD biomarker quantification and amyloid
status determination

Separate aliquots processed by the Lumipulse G system (Fujirebio US,

Inc., Malvern, PA) were used to measure CSF levels of AD biomark-

ers (phosphorylated tau 181 [p-tau181], Aβ42, and Aβ40) for all 147
SAMS CU and 89 of the 111 ADRC+ participants.29 The remaining

22 ADRC+ participants who did not have Lumipulse data had Aβ pep-
tides quantified by theQuanterixNeurology3-plexAassay (Quanterix,

MA, USA). Amyloid status was determined with ratios of Aβ42 to Aβ40,
and Aβ42/Aβ40 ratios were used both continuously and dichotomously

in subsequent analyses. Cut offs to classify participants into amy-

loid negative (Aβ−) and amyloid positive (Aβ+) groups were derived

in a batch-specific fashion and are described in the Supplementary

Methods.

2.4 SomaLogic protein quantification and quality
control

The aptamer-based SOMAScan assay platform was used to quan-

tify CSF protein expression levels for further network analysis.33

This method of protein quantification relies on chemically modi-

fied DNA strands whose unique three-dimensional (3D) shapes allow

them to bind to specific proteins with high specificity. “SOMAmers”

whose protein-aptamer complexes that survive sequential streptavidin

bead capture, photocleavage, and kinetic capture are quantified after

hybridizing to a DNA microarray. This technique provided us with the

relative concentration (quantified in termsof relative fluorescent units,

or RFUs) of 5284 CSF proteins.

SomaLogic, Inc., uses a 96-well plate design with wells devoted to

buffer, calibrator, quality control, and biological samples to account for

nuisance variation and batch effects. There are three stages of data

normalization: (1) hybridization control normalization removes individual

sample variance by using hybridization control spike-ins to calculate a

factor by which to scale each sample’s measurements; (2)median signal

normalization accounts for intraplate measurement variance within a

sample class; and (3) plate scaling and calibration calculates within-plate

and across-plate reference values based on control calibrator samples

to adjust the intraplate measurements of each individual protein, as

well as the entire plate as a whole. Proteins flagged by SomaLogic’s

internal quality control, as well as samples with normalization fac-

tors falling outside the acceptable assay range were removed before

analysis. In addition, we removed outlying samples whose standard-

ized connectivity34 wasmore than three standard deviations (SD) from

the mean. Finally, for each protein, we constructed a distribution of

measurements across buffer samples and assessed whether it differed

significantly fromeach clinical sample’smeasurement (at a false discov-

ery rate alpha level of 5%).We removedproteinswheremore than25%

of clinical samples fell within this buffer distribution, resulting in 3869

CSF proteins for subsequent analyses (Figure S1).

2.5 MRI imaging

MRI was used to measure structural neuroimaging outcomes within

the SAMS CU cohort. Data were acquired on a 3T GE Discovery

MR750 MRI scanner (GE Healthcare) using a 32-channel radiofre-

quency receive-only head coil (NovaMedical). For the current analyses,

we processed a whole-brain high-resolution T1-weighted anatomic

volume (repetition time [TR] = 7.26 ms, field of view [FoV] = 230 mm

× 230 mm, voxel size = 0.9 × 0.9 × 0.9 mm, slices = 186), through

FreeSurfer version 7. Subcortical and cortical region of interest (ROI)

volumes—including total gray matter, hippocampus, and white matter

hypointensity volume—were defined by FreeSurfer’s aparc+aseg atlas.

2.6 Cognitive composite scores

We examined memory and executive function composite scores

derived from a neuropsychological battery administered to the SAMS
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CU cohort. The memory composite score reflected delayed recall

performance across (1) the logical memory subtest of the Wechsler

Memory Scale, (2) the Hopkins Verbal Learning Test—Revised, and (3)

the Brief Visuospatial Memory Test—Revised. The executive function

composite score was derived by averaging the (1) total time to com-

plete Trails B, (2) total number of animals recalled in 60 s, and (3) the

summed score from theDigit Span Forward andBackward. Trails Bwas

inverted such that higher scores reflect better performance. Compos-

ite scores were computed by first z-scoring individual subtest scores

using the full SAMS cohort as reference and then averaging.31

2.7 APOE genotyping

The APOE genotype was determined by whole-genome sequencing

(WGS) at either the Beijing Genomics Institute (BGI) in Shenzhen,

China, or as part of the Stanford Extreme Phenotypes in Alzheimer’s

Disease project with sequencing performed at the Uniformed Services

University of the Health Sciences (USUHS) on an Illumina HiSeq plat-

form. The Genome Analysis Toolkit (GATK) workflow Germline short

variant discovery was used to map genome sequencing data to the

reference genome (GRCh38) and to produce high-confidence variant

calls using joint-calling.35 APOE genotype (ε2/ε3/ε4) was determined

using allelic combinations of single nucleotide variants rs7412 and

rs429358.

2.8 Statistical methods

All statistical analyses were performed with R version 4.2.2. Network

construction, module stability/preservation, and differential expres-

sion analyses were conducted with 111 participants recruited from

the ADRC and affiliated clinics (69 CU, 22 with MCI, and 20 with AD

dementia), after using hierarchical clustering to remove eight outly-

ing participants. Proteomic data were log10 transformed and adjusted

for effects of age, sex, length of CSF storage time, study origin (i.e.,

either ADRC, SAMS, or affiliated clinics), and hidden factors identi-

fied by the first five components of singular value decomposition. As a

final quality control step, we conducted a principal components analy-

sis on theentireproteomicdata set and foundno lingeringbatcheffects

(Figure S1).

2.9 Differential abundance analyses

We conducted a one-way analysis of variance (ANOVA) followed by

a Student’s t-test to identify differentially expressed proteins in AD

dementia compared to CU individuals within the ADRC+ cohort. A

false discovery rate (FDR) correction at an alpha level of 5% was used

to account for multiple comparisons and determine significance. Mod-

ules with at least one differentially abundant protein were considered

relevant to aging and AD dementia, and they became the focus of

subsequent analyses.

2.10 Protein–protein co-expression network

Weperformed a weighted gene correlation network analysis using the

WGCNA package (version 1.72.1) in R.34 For this, we used a subset

of participants from the ADRC+ cohort to ensure a diagnostically bal-

anced sample; specifically, we included only 18 CU, 18MCI, and 18 AD

participants. All cognitively impaired participants (MCI and AD) were

amyloid positive.

First, we constructed a matrix of the bi-weight mid-correlations

between proteins and transformed this into a signed adjacency matrix

using a soft thresholding power of 12 (resulting in a scale-free topology

fit above 0.8). This adjacencymatrix was then transformed into a topo-

logical overlap matrix (TOM), which captures the similarity between

nodes in terms of their shared patterns of connections. We performed

hierarchical clustering with a 1-TOM distance measure, and used a

dynamic tree cutting algorithm (cutreeDynamic, with a minimummod-

ule size of 15, deepSplit=4, and a partitioning aroundmedoid step that

respected the dendrogram) to identify modules from the dendrogram.

The first principal component of each module’s protein expression

matrix was used to define a module eigenprotein.34 The degree of

module membership for each protein (i.e., their intramodular connec-

tivity (kME) value) is calculated by correlating its expression patterns

across all samples with the module eigenprotein. We used kME val-

ues to merge highly similar modules together. The top 50% of proteins

(ranked by kME value) within each module were correlated with

every other module; if more than 25% of these proteins had greater

membership in another module, themodules weremerged.

2.11 Gene ontology analysis

We used the g:Profiler R package (version 0.2.1) to understand the

GeneOntology (GO) biological processes (GO:BP) andmolecular func-

tions (GO:MF) enriched within our modules at an experiment-wide

threshold of α=0.05.Whenever possible, we used the programdefault

multiple comparison algorithm (g:SCS), which accounts for the hierar-

chical relationship between GO terms; we also tested for enrichment

against a custom background of all 5284 SomaLogic-quantified pro-

teins. When we were unable to find significantly enriched biological

pathways with this approach, we turned to three alternate methods.

First, we used FDR correction for multiple comparisons (still enriched

against the custom background of all SomaLogic proteins). If we were

still unable to identify significant GO terms, we then used g:SCS cor-

rection against a background of all annotated genes. Finally, if wewere

still unable to identify GO terms, we used FDR correction against a

background of all annotated genes.

2.12 Module preservation analysis

We used the WGCNA modulePreservation function to calculate the

extent to which our modules were preserved in the independent, CU

cohort (SAMS). This function applied our previously-defined modules
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to SAMS CSF samples and calculated module preservation statistics

comparing the strength of interrelationship between nodes (module

density) as well as connectivity patterns (module connectivity) in repli-

cated modules versus the original.36 For each preservation statistic,

module labels were permuted 200 times with a random seed set to

1 for reproducibility. Module density and connectivity preservation

statistics are captured in a ZSummary measure (i.e., the mean of these

two categories of preservation statistics); modules with a ZSummary >10

were considered preserved, as recommended previously.36 We addi-

tionally examined the medianRank of each module, which reflects the

relative ranking of each across all preservation statistics and is less

influenced bymodule size than the ZSummary value.36

2.13 Module/phenotype relationships

Representative eigenproteins were used to capture protein-

expression patterns within each module, and to conduct statistical

analyses examining module/trait associations. Kruskal–Wallis tests

for one-way ANOVA were used to calculate module relationships to

clinical diagnosis within the ADRC+ cohort and Aβ status within the

SAMS CU cohort. All module associations with aging and AD-related

phenotypes—Aβ42/Aβ40 ratios, log-transformed p-tau181 levels,

hippocampal and total gray matter volume, log-transformed white

matter hypointensities, APOE ε2 and ε4 allele count, and memory and

executive function cognitive composite scores—were determined by

linear regression models controlling for age and sex. Models predict-

ing cognition additionally controlled for education level, and those

predicting MRI outcomes further controlled for estimated intracranial

volume. These demographically adjusted models comprised our first

set of analyses (approach 1). In a second round of analysis (approach

2), we additionally controlled for amyloid status (and removed CSF

Aβ42/Aβ40 ratios as an outcomeof interest). Finally, we performed a set

of analyses (approach 3) that controlled both for amyloid status and

continuous CSF p-tau181 levels (removing CSF Aβ42/Aβ40 ratios and

log-transformed CSF p-tau181 levels as outcomes of interest). All p-

values were adjusted for multiple comparisons at an FDR significance

level of p< 0.05.

2.14 Module enrichment analyses

To establish whether a module was enriched with a particular

characteristic—such as genetic regulators of amyloid pathology or pro-

teins differentially abundant in AD dementia versus CU individuals—

we first calculated the average log-transformed p-value for that given

characteristic across proteins within our module of interest. We

then constructed a null distribution of average p-values with 10,000

module-sized random samples (with replacement) and calculated a z

score to see if there was a significant difference between our module

of interest compared to the null distribution.

To assess for enrichment of amyloid pathology, we used a single-

nucleotide polymorphism (SNP) summary statistics from the genome-

wide association study (GWAS) of amyloid positron emission tomogra-

phy (PET) data of Raghavan et al. (2020).37 For enrichment of genetic

regulators of clinical AD dementia diagnosis, we used GWAS summary

statistics from the International Genomics of Alzheimer’s Project

(https://www.niagads.org/igap-rv-summary-stats-kunkle-p-value-

data),38 as well as the study of Bellenguez et al. (2022) (https://www.

ebi.ac.uk/gwas/publications/35379992).39 GWAS summary statistics

served as input to the FUMA online platform, which functionally

annotates SNPs, maps them onto genes, and calculates the gene-level

associations with a given phenotype.40 The p-values resulting from

these gene-level associations were used for our module enrichment

analyses of amyloid PET signal and AD dementia genetic risk.

To assess whether a given module was enriched for polyubiquiti-

nated proteins, we used amapping of the ubiquitylome byAbreha et al.

(2018),41 and to examine enrichment for protein phosphopeptides, we

used a mapping of the phosphoproteome by Ping et al. (2020).42 For

these analyses, instead of calculating the average log-transformed p-

values,wecalculated theaveragenumberofubiquitination sitesorpro-

tein phosphopeptides within a module of interest or an equally-sized

random sample.

We performed cell-type enrichment analyses using the Internet-

based application, WebCSEA (https://bioinfo.uth.edu/webcsea/index.

php?csrt=11311320302846866589). Modules were considered

enriched for a particular cell type if the combined p-value exceeded a

Bonferroni threshold of (p= 3.69× 10−5).

2.15 Multivariate LASSO regression, stability
selection, and other statistical analyses

We performed multivariate regression analyses with a least absolute

shrinkage and selection operator (LASSO)method to examinewhether

protein modules of interest could discriminate Aβ− from Aβ+ CU par-

ticipants, using the glmnet package (version 4.1.6) in R. This approach

uses L1 regularization to reduce the number of parameters within a

model, by shrinking irrelevant and redundant parameters to a coeffi-

cient of 0. We selected the tuning parameter, 𝜆, that minimized the

mean cross-validated error after 10-fold cross-validation. We also

manually assigned observations to folds 1 through 10 using a ran-

domsequence. SAMSCUparticipantswithAPOEgenotype information

(n = 124) were divided into an 80/20 train/validation split and used to

train and validate our classifiers. We then evaluated the performance

of our classifiers among a test set of ADRC+CUparticipants that were

not included in our network construction process (n=54).Weused the

mean and confidence interval of the area under the receiver-operating

characteristic (ROC) curve (AUC) to determine the significance and

accuracy of each of our classifiers; these calculations and visualizations

were performed with the ROCR (version 1.0.11) and pROC (1.18.0) R

packages.

For the simplest logistic regression model, we included only age,

sex, and ε4 allele count as predictors of amyloid status.We used this as

a baseline point of comparison for our LASSO regression model, which

additionally included all proteins within a given network module as

https://www.niagads.org/igap-rv-summary-stats-kunkle-p-value-data
https://www.niagads.org/igap-rv-summary-stats-kunkle-p-value-data
https://www.ebi.ac.uk/gwas/publications/35379992
https://www.ebi.ac.uk/gwas/publications/35379992
https://bioinfo.uth.edu/webcsea/index.php?csrt=11311320302846866589
https://bioinfo.uth.edu/webcsea/index.php?csrt=11311320302846866589
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predictors. The purpose of this was to leverage the variable selection

properties of LASSO regression to understand which module proteins

and/or demographic characteristics weremost influential in predicting

amyloid positivity. Thus we implemented a stability selection approach

using the stabs R package (version 0.6.4), which uses subsampling to

determine which model features are most likely to be selected across

many different LASSO iterations.43,44 Each subsample contained half

of the observations of the original data set, and this process was

repeated 50 times. We used a 65% selection probability threshold

to identify stably selected LASSO regression model features; these

features then served as predictors in a logistic regression model

predicting amyloid status among CU individuals.

3 RESULTS

3.1 ADRC+ discovery cohort participant
characteristics

We began with data from 111 participants along the AD continuum as

our discovery cohort (mean age = 68.6 years, SD = 8.31; 55% women)

(Table 1).

TABLE 1 Demographic information for the Alzheimer’s Disease
Research Center and affiliated clinics (ADRC+ cohort).

Full cohort,

N= 1111

Network

construction

subset,

N= 541

Age, years 68.62 (8.31) 68.63 (8.32)

Gender

Female 61 (55%) 33 (61%)

Male 50 (45%) 21 (39%)

Sample origin

ADRC participant 78 (70%) 35 (65%)

Clinic non-enrollee 33 (30%) 19 (35%)

Length of CSF storage time,

years

3.94 (2.40) 4.24 (2.63)

Amyloid status

Negative 42 (38%) 12 (22%)

Positive 69 (62%) 42 (78%)

Diagnosis

CU 73 (66%) 18 (33%)

MCI 19 (17%) 18 (33%)

AD 19 (17%) 18 (33%)

APOE ε4 allele count

0 35 (45%) 13 (37%)

1 31 (40%) 18 (51%)

2 12 (15%) 4 (11%)

Unknown 33 19

1Mean standard deviation (SD); n (%).

These participants were either enrolled by the Stanford ADRC or

recruited from associated clinics at Stanford; we thus refer to these

participants as the ADRC+ cohort. Of these participants, 73 were CU,

19 had MCI, and 19 were diagnosed with AD dementia. Based on CSF

analyses, there were 42 amyloid negative (Aβ−) and 69 amyloid pos-

itive (Aβ+) participants; all clinically impaired participants (diagnosed

with eitherMCI or AD)were amyloid positive. Themean length of stor-

age timeofCSF samplesbeforeproteinquantificationby theSomaScan

assay platformwas 3.94 years (SD= 2.39).

We used the ADRC+ cohort to identify proteins differentially abun-

dant in AD relative to CU contexts. However, a clinically balanced

subset of these participants (n = 54) were used to construct a protein

co-expression network (mean age=68.6, SD=8.32; 61%women). This

subset included 18 CU (Aβ+: n = 6), 18 MCI, and 18 AD participants

(Table 1).

3.2 Protein co-expression network construction
and module characterization reveals 13 AD-relevant
modules

Differential expression analysis among the discovery ADRC+ cohort

revealed 130 proteins whose CSF concentrations were significantly

different between AD dementia and CU participants, at a FDR thresh-

old of p < 0.05 (Figure 1A). These included AD-associated proteins

previously identified in the literature, such as vascular endothelial

growth factor A (VEGFA, p = 9.159 × 10−8), matrix metallopro-

teinase 10 (MMP-10, p = 4.045 × 10−6), and neurofilament light

polypeptide (NEFL, p = 1.515 × 10−5).45–48 A number of 14-3-3 reg-

ulatory proteins were also differentially expressed between healthy

and AD dementia participants, including YWHAB (p = 1.066 × 10−4),

YWHAE (p= 2.729 × 10−5), YWHAG (p= 6.159 × 10−9), and YWHAZ

(p= 3.477× 10−6).

We constructed a protein co-expression network among a clinically

balanced subset from theADRC+ cohort, using theweighted gene cor-

relation network analysis (WGCNA) algorithm. This network resulted

in 25 communities of proteins, or “modules,” ranging in size from 15

(M14-oxidative stress response and M23) to 1323 proteins (M22)

(Figure 1B,C). Thirteen of these modules were enriched with at least

one of the 130 differentially expressed proteins. We considered these

modules to be AD relevant and made them the focus of subsequent

analysis interpretations.

Gene ontology (GO) analyses allowed us to characterize the biolog-

ical processes and molecular functions enriched in 23 of the 25 mod-

ules, including 11 of the 13 AD-relevant modules (Figure 1D, Figure

S2). These modules and annotations includeM1-immune system regu-

lation, M2-axonogenesis, M3-synapse assembly, M4-phosphorylation,

M7-ubiquitination, M10-telomerase RNA activity, M12-blood coagu-

lation, M14-oxidative stress response, M15-G protein/oxidoreductase

activity, M18-steroid dehydrogenase activity, M22, M23, and M25-

axonal guidance.

A representative eigenprotein was calculated for each module and

used inKruskall–Wallis tests to predict clinical disease stage (Figure 2).
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F IGURE 1 Protein co-expression network construction andmodule characterization in the discovery ADRC+ cohort. (A) Differential
abundance analysis. A volcano plot depicting the results of an ANOVA analysis followed by a Student’s t-test to identify differentially abundant
proteins in AD dementia compared to CU individuals. This models the log2-fold change in relative fluorescence units (RFUs) (x-axis) against the
negative log10 p-value (y-axis) representing the association between the protein and a clinical AD dementia diagnosis. The p-values were adjusted
using an FDR correction for multiple comparisons at an alpha level of 5%; only proteins with –log10 adjusted p-values exceeding this threshold
were colorized as teal (decreased abundance in AD) or purple (increased abundance in AD). These proteins were used to restrict the scope of our
subsequent analyses of co-expression networkmodules. (B)WGCNA protein co-expression network construction. A heatmap representing the
topological overlapmatrix (TOM) based on similarities in protein abundance levels that was used as input for our hierarchical clustering and
community detection. Heatmap colors range from light yellow to red, reflecting low to high similarity, respectively. At the top and to the right, the
network dendrogram andmodule color assignments are displayed. (C) Table of module sizes. A table listing all modules in our ADRC+ network by
the number of proteins within eachmodule. (D) Gene ontology analysis. Functional annotations derived from gene ontology analyses of the
modules containing at least one protein differentially abundant in AD, conducted using g:Profiler. Of these ninemodules, only seven contained
functional enrichments that exceeded significance thresholds, and they are depicted here. The top threemost significant gene ontology (GO)
biological process and/or molecular function terms permodule are displayed (y-axis) against their respective –log10 p-values (x-axis).

Fourmoduleswere significantly associatedwith AD severity after FDR

correction for multiple comparisons, including M3-synapse assem-

bly (p = 0.0059), M4-phosphorylation (p = 0.0059), M10-telomerase

RNA activity (p= 0.0447), andM15-G protein/oxidoreductase activity

(p= 0.0349).ModulesM2-axonogenesis (p= 0.0351) andM18-steroid

dehydrogenase activity (p = 0.0539) had weak to suggestive associa-

tions with clinical disease stage before multiple comparison correction

(Figure S3).

3.3 Module preservation within an independent
CU cohort (SAMS)

An independent cohort of 147 CU participants were used to exam-

ine whether the protein co-expression network was preserved in the

absence of cognitive impairment, as well as to relate modules from

the network to clinically-relevant phenotypes (mean age = 68.7 years,

SD = 5.79; 61% women) (Table 2). These participants were enrolled
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F IGURE 2 Modules by clinical disease stage. Box plots illustrating the results of Kruskall–Wallis tests for one-way ANOVA used to calculate
module eigenprotein relationships to clinical disease stage. ModulesM3-synapse assembly, M4-phosphorylation, M10-telomerase RNA activity,
andM15-G protein/oxidoreductase activity were significantly associated with disease stage after FDR correction for multiple corrections.

in the Stanford Aging and Memory Study (SAMS) and are referred

to herein as the SAMS CU cohort. There were 109 amyloid negative

(Aβ−; mean age= 68.1 years, SD= 5.52) and 38 amyloid positive (Aβ+;
mean age = 70.2 years, SD = 6.34) participants. The mean length of

storage time before SomaScan protein quantification was 3.84 years

(SD= 1.32).

We used a module preservation analysis to determine whether

the co-expression network could be reproduced within our SAMS

CU cohort. Fifteen modules—including nine AD-relevant modules—

were highly preserved, with ZSummary values ranging from 12.0 to

31.0 (Figure S4). All remaining modules were weakly preserved, with

ZSummary values ranging from 4.0 to 9.4.

3.4 Modules M4-phosphorylation,
M7-ubiquitination, and M18-steroid dehydrogenase
activity predict amyloid status and clinical
phenotypes

We used Kruskal–Wallis tests to assess module relationships to Aβ
status (Figure 3A) and found M4-phosphorylation (p = 0.0007) and

M18-steroid dehydrogenase activity (p = 0.0028) to be significantly

associated with amyloid positivity after FDR correction. These mod-

ules remained associated with amyloid when CSF Aβ42/Aβ40 ratios

were treated continuously and adjusted for age and sex, again after

FDR correction (M4-phosphorylation: β = −0.09, p = 0.001; M18-

steroid dehydrogenase activity: β = 0.10, p < 0.001) (Figure 3B).

Module M7-ubiquitination (p = 0.0066, FDR-corrected: p = 0.0550)

also had a significant association with amyloid status before—as well

as a suggestive association after—multiple comparison correction.

To understand how modules might contribute to other phenotypes

relevant to aging and AD risk, we focused on the associations between

AD-relevant modules and continuous CSF p-tau181, composite cogni-

tive scores, APOE genotype, and structural MRI measures (Figure 3B,

Tables S1–S3). Ten of the 13 AD-relevant were associated with

p-tau181 levels: M1-immune system regulation, M2-axonogenesis,

M3-synapse assembly, M4-phosphorylation, M7-ubiquitination,

M12-blood coagulation, M22, M23, and M25-axonal guidance. Six

of the AD-relevant modules were associated with ε4 allele count:

M2-axonogenesis, M4-phosphorylation, M7-ubiquitination, M18-

steroid dehydrogenase activity, M22, and M25-axonal guidance. Five

modules were associated with executive function composite scores:
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(A)

(B)

F IGURE 3 Module/phenotype relationships. (A)Modules by amyloid status. Box plots illustrating the results of Kruskall–Wallis tests for
one-way ANOVA used to calculatemodule eigenprotein relationships to amyloid status within the independent SAMSCU cohort. From left to
right, modulesM4-phosphorylation, M7-ubiquitination andM18-steroid dehydrogenase activity are depicted. (B) Heatmap visualizingmodule
relationships to cognition, AD pathology, genotype, and structural MRI outcomes within the independent SAMSCU cohort. Only
module/phenotype relationships significant after multiple comparison correction are depicted. Heatmap colors range from purple to turquoise to
red, reflecting themagnitude and direction of standardized beta values. The text within heat map cells are the unadjusted p-values for each
association. Module/trait relationships whose unadjusted p-values change in significance (or are otherwise noteworthy) after controlling for
amyloid and/or tau aremarkedwith different superscripts: those that lose significance after controlling for amyloid aremarkedwith "a”; those that
gain significance after controlling for amyloid aremarkedwith “b”; those that maintain significance after controlling for amyloid and tau are
markedwith “c.”
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TABLE 2 Demographic information by amyloid status (amyloid negative or amyloid positive) for the clinically unimpaired, independent
Stanford and AgingMemory Study cohort (SAMSCU cohort).

Overall,

N= 1471
Negative,

N= 1091
Positive,

N= 381

Age, years 68.69 (5.79) 68.1 (5.5) 70.2 (6.3)

Gender

Female 90 (61%) 66 (61%) 24 (63%)

Male 57 (39%) 43 (39%) 14 (37%)

Length of CSF storage time, years 3.83 (1.32) 3.88 (1.29) 3.69 (1.39)

Aß42/Aß40 ratio 0.09 (0.02) 0.100 (0.010) 0.054 (0.012)

MMSE 29.11 (0.90) 29.16 (0.87) 28.95 (0.96)

Unknown 5 5 0

p-tau181 39.75 (21.05) 33 (9) 60 (31)

Whitematter hypointensity volume 2264.96 (2,182.09) 2171 (2,194) 2534 (2,155)

Unknown 4 3 1

Memory composite 0.09 (0.75) 0.17 (0.68) −0.13 (0.88)

Unknown 6 6 0

Executive function composite 0.06 (0.73) 0.17 (0.67) −0.21 (0.81)

Unknown 6 6 0

APOE𝜀4 allele count

0 95 (77%) 78 (86%) 17 (52%)

1 26 (21%) 13 (14%) 13 (39%)

2 3 (2.4%) 0 (0%) 3 (9.1%)

Unknown 23 18 5

Total graymatter volume 601,534.04 (49,725.45) 602,657 (50,864) 598,317 (46,828)

Unknown 4 3 1

Hippocampal volume 7941.23 (769.82) 7995 (767) 7787 (766)

Unknown 4 3 1

1Mean standard deviation (SD); n (%).

M3-synapse assembly, M4-phosphorylation, M7-ubiquitination, M22,

andM25-axonal guidance.

There was little difference in results between demographically

adjusted (Figure 3B, Table S1) and amyloid-adjustedmodels (Figure 3B,

Table S2). After controlling for continuous Aβ42/Aβ40 values, M18-

steroid dehydrogenase activity was additionally associated with CSF

p-tau181 levels, whereas M2-axonogenesis was no longer associated

with ε4 allele count. Only M7-ubiquitination was associated with

executive function composite scores in these analyses.

Finally, the only significant relationship that persisted after control-

ling for p-tau181 and Aβ42/Aβ40 values was that between ε4 allele

count and module M18-steroid dehydrogenase activity (Figure 3B,

Table S3). A number of relationships were significant before multi-

ple comparison correction. Specifically, M3-synapse assembly and

M7-ubiquitination were associated with executive function; M4-

phosphorylation and M7-ubiquitination were associated with ε4 allele

count; M10-telomerase RNA activity was associated with hippocam-

pal volume; and M2-axonogenesis and M3-synapse assembly were

associated with white matter hypointensity volume (Table S3).

Many of these patterns remained significant even among Aβ−
participants alone (Figure S4). All but M1-immune system regu-

lation remained associated with p-tau181 levels, and M18-steroid

dehydrogenase activity remained associated with ε4 allele count.

Many more modules were associated with continuous amyloid ratios

amongAβ−participants, includingM1-immune system regulation,M2-

axonogenesis, M3-synapse assembly, M7-ubiquitination, M22, M23,

andM25-axon guidance (Figure S5).

3.5 Genetic and cell-type module enrichment

Next, we explored whether any AD-relevant modules were enriched

for genetic variants associated with AD risk in GWASs. First, we

examined whether they were enriched for proteins expressed by

genetic regulators of clinical AD dementia (Kunkle et al.,38; Bellenguez

et al.,39) and/or amyloid burden measured with PET (Raghavan

et al.,37), as established by various GWAS summary statistics.

We used Z scores to determine how the average log-transformed
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F IGURE 4 Module enrichment of AD genetic risk factors and post-translationally modified proteins. Histograms representing the
bootstrapped null distribution of either the average –log10 p-values, number of ubiquitination sites, or number of protein phosphopeptides. These
histogramswere derived from randomly sampling amodule-sized collection of proteins 10,000 times. Histograms are overlaid with normal
distribution curves, and vertical lines represent z scores capturing the distance between the average p-value within a givenmodule and its
bootstrapped null distribution. Only vertical lines with z-scores significant above the 90% confidence interval critical value (−1.645 or 1.645) are
labeled. Significant enrichment results in moduleM15-G protein and oxidoreductase activity of gene-level associations with clinical AD dementia
from the Bellenguez et al. (2022)39 GWAS, moduleM4-phosphorylation of protein phosphopeptides derived from the Ping et al. (2020)42 mapping
of the phosphoproteome, andmoduleM7-ubiquitination of polyubiquitinated proteins derived from the Abreha et al. (2018)41 mapping of the
ubiquitylome.

p-value within our module compared to a distribution of 10,000

module-sized random samples. M13-G protein and oxidoreductase

activity (Z = 3.009) was significantly enriched for proteins associated

with genetic regulators of clinical AD dementia (Figure 3). In addition,

in an effort to validate M4-phosphorylation and M7-ubiquitination

module functional annotations, we sought to ensure that these mod-

ules were enriched for such post-translationally modified proteins.

Using a mapping of the ubiquitylome by Abreha et al. (2018) and

of the phosphoproteome by Ping et al. (2020), we confirmed that

M4-phosphorylation was significantly enriched for protein phospho-

peptides (Z = 3.351), whereas M7-ubiquitination was enriched with

polyubiquitinated proteins (Z= 4.361) (Figure 4).

We also performed cell-type enrichment analyses on our AD-

relevant modules, using the internet-based application, WebCSEA.

Eight of our 13 modules were enriched for specific cell types

after Bonferroni correction: M2-axonogenesis for macrophages, M3-

synapse assembly for neurons, M4-phosphorylation for neurons,

M7-ubiquitination for excitatory neurons and stromal cells, M10-

telomerase RNA activity for enterocytes and red blood cells, M15-G

protein/oxidoreductase activity, M18-steroid dehydrogenase activity

for epithelial and red blood cells, and M25-axon guidance for stromal

cells (Figure S6).

3.6 Proteins within modules M4-phosphorylation
and M7-ubiquitination accurately predict amyloid
status in an independent CU cohort

Given the relationship between amyloid status and M4-

phosphorylation, M7-ubiquitination, and M18-steroid

dehydrogenation activity, we sought to understand whether indi-

vidual proteins within this module could accurately predict abnormal

amyloid accumulation among a test set of 54 ADRC+ CU participants

whose data were not used for network construction (Tables 3–5). For

each of these modules, we performed multivariate LASSO regression

on a model derived from module proteins, age, sex, and APOE ε4 allele

count.

Both M4-phosphorylation (AUC = 0.85, 95% confidence interval

[CI] = 0.72–0.97, seven-parameter solution) and M7-ubiquitination

(AUC = 0.84, 95% CI = 0.72–0.96, six-parameter solution) predicted

amyloid status with high accuracy among the test set of ADRC+ CU

participants. (Figure 5A). In contrast, a logistic regression containing

only APOE ε4 allele count, age, and sex weakly predicted amyloid sta-

tus among ADRC+CU participants (AUC= 0.69, 95%CI= 0.52–0.86).

Module M18-steroid dehydrogenase activity did not significantly pre-

dict amyloid status (AUC = 0.56, 95% CI = 0.38–0.75, 13-parameter

solution) (Figure S7A).

LASSO regression is a useful method of feature selection. It min-

imizes the loss function by reducing the absolute value of the sum

of the model’s coefficients, shrinking the coefficients of weak and

redundant parameters to 0.We used a stability selection procedure to

determinewhich variablesweremost likely to be selected acrossmany

different iterations of LASSO regression, using a selection probability

greater than 65% as our cutoff. The stably selected variables included

YWHAG for module M4-phosphorylation and SMURF1 and APOE ε4
allele count for moduleM7-ubiquitination (Figure S7B,C).We used the

stably selected proteins as predictors in separate logistic regression

models that additionally controlled for APOE ε4 allele count. These

models predicted amyloid status with moderate to weak accuracy

(YWHAG [M4-phosphorylation]—AUC = 0.80, 95% CI = 0.65–0.94;

SMURF1 [M7-ubiquitination]—AUC = 0.71, 95% CI = 0.55–0.88)

(Figure 5B).
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TABLE 3 Demographic information by amyloid status (amyloid negative or amyloid positive) for the clinically unimpaired, Stanford and Aging
Memory Study (SAMSCU cohort) participants used to train LASSO and logistic regressionmodels.

Overall, N= 1181 Negative, N= 861 Positive, N= 321

Age, years 68.88 (6.02) 68.23 (5.64) 70.62 (6.71)

Gender

Female 72 (61%) 53 (62%) 19 (59%)

Male 46 (39%) 33 (38%) 13 (41%)

Length of CSF storage time, years 3.81 (1.31) 3.89 (1.27) 3.60 (1.41)

APOE ε allele count

0 72 (72%) 60 (82%) 12 (44%)

1 25 (25%) 13 (18%) 12 (44%)

2 3 (3.0%) 0 (0%) 3 (11%)

Unknown 18 13 5

1Mean standard deviation (SD); n (%).

TABLE 4 Demographic information by amyloid status (amyloid negative or amyloid positive) for the clinically unimpaired, Stanford and Aging
Memory Study (SAMSCU cohort) participants used to validate LASSO and logistic regressionmodels.

Overall, N= 291 Negative, N= 231 Positive, N= 61

Age, years 67.90 (4.78) 67.83 (5.14) 68.17 (3.43)

Gender

F 18 (62%) 13 (57%) 5 (83%)

M 11 (38%) 10 (43%) 1 (17%)

Length of CSF storage time, years 3.94 (1.36) 3.87 (1.40) 4.20 (1.28)

APOE ε4 allele count

0 28 (95.8%) 23 (100%) 5 (83%)

1 1 (4.2%) 0 (0%) 1 (17%)

2 0 (0%) 0 (0%) 0 (0%)

Unknown 5 5 0

1Mean standard deviation (SD); n (%).

TABLE 5 Demographic information by amyloid status (amyloid negative or amyloid positive) for the clinically unimpaired participants from the
ADRC+ cohort used to test LASSO and logistic regressionmodels.

Overall, N= 541 Negative, N= 291 Positive, N= 251

Age, years 68.44 (8.47) 67.76 (7.74) 69.24 (9.35)

Gender

F 28 (52%) 15 (52%) 13 (52%)

M 26 (48%) 14 (48%) 12 (48%)

Sample origin

ADRC participant 40 (74%) 17 (59%) 23 (92%)

Clinic non-enrollee 14 (26%) 12 (41%) 2 (8.0%)

Length of CSF storage time, years 3.73 (2.16) 4.37 (2.21) 3.00 (1.88)

APOE ε4 allele count

0 21 (52%) 12 (71%) 9 (39%)

1 12 (30%) 4 (24%) 8 (35%)

2 7 (18%) 1 (5.9%) 6 (26%)

Unknown 14 12 2

1Mean standard deviation (SD); n (%).
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(A) (B)

F IGURE 5 ModuleM3’s prediction of amyloid status using LASSO regression with stability selection. (A) Receiver-operating characteristic
(ROC) curves depicting the classification performance (sensitivity vs specificity) of models predicting amyloid status among a test set of CU
ADRC+ participants. In blue are results from a basic logistic regressionmodel including APOE ε4 allele count, sex, and age (AUC= 0.71). In either
dark green or green are results from a LASSO regressionmodel derived frommoduleM4-phosphorylation orM7-ubiquitination proteins,
respectively, along with the previously mentioned demographic and genotype factors. (C) ROC curves similar to those in (A), except in dark green
or green are results from a logistic regressionmodel including only stable model features, along with APOE ε4 allele count: YWHAG for
M4-phosphorylation and SMURF1 forM7-ubiquitination.
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4 DISCUSSION

In this study, we used CSF proteins to construct a co-expression net-

workamongacohort of individuals along the clinicalADcontinuumand

replicated this network in an independent cohort of CU older adults.

We further examined the relationship between protein clusters—or

modules—within this network and phenotypes relevant to aging and

AD, such as CSF measures of amyloid and tau burden, cognition,

structural neuroimaging outcomes, and APOE genotype. This approach

allowed us to identifymodules relevant toADdisease biology and eval-

uate their early functional and physiological consequences among CU

individuals.

The modules we observed resembled those described previously

in larger-scale proteomic studies. These include modules devoted

to axonal development, blood coagulation, RNA activity, synapse

assembly, G protein and oxidoreductase activity, myelination, and

protein kinase activity.22,23,26,28,49 Modules M3-synapse assembly,

M4-phosphorylation, M10-telomerase RNA activity, and M23 were

associatedwith clinical disease stage aftermultiple comparison correc-

tion.

In addition, modules M4-phosphorylation, M7-ubiquitination, and

M18-steroid dehydrogenase activity were associated with abnormal

Aβ aggregation within the SAMS cohort. Although not associated with

clinical diagnosis, these modules arguably reflect early changes in the

AD cascade and are relevant to understanding disease biology. These

modules were also associated with p-tau181 levels, particularly after

adjusting for amyloid pathology. Modules M4-phosphorylation and

M7-ubiquitination showed amyloid-independent effects with APOE ε4
genotype, whereas M18-steroid dehydrogenase activity had a tau and

amyloid-independent effect on genotype. Module M4-ubiquitination

was further associated with executive function.

We performed enrichment analyses and found that only module

M15-G protein and oxidoreductase activity were enriched for pro-

teins associated with genetic regulators of clinical AD dementia.39

We additionally confirmed thatmodulesM4-phosphorylation andM7-

ubiquitination were enriched with such post-translationally modified

proteins (i.e., protein phosphopeptides and polyubiquitinated proteins,

respectively). Furthermore, we performed cell-type enrichment anal-

yses on our AD-relevant modules and found them to be enriched for

neuronal, stromal, macrophage, epithelial, and red blood cell types.

Using LASSO regression analyses, we observed that modules M4-

phosphorylation and M7-ubiquitination accurately predicted amyloid

status among 54 CU ADRC+ participants who were not included in

the network construction process, with AUCs of 0.85 and 0.84, respec-

tively. A logistic regression model that included 14-3-3 protein gamma

(YWHAG)—a stably selected protein from the M4-phosphorylation

module—outperformed one that included APOE ε4 genotype, age, and

sex, alone (AUC of 0.80 vs an AUC of 0.69).

Our findings underscore the importance of protein post-

translational modification in abnormal amyloid accumulation. The

role of post-translational modifications—such as phosphorylation

and ubiquitination—in AD have been described in detail.41,50,51 As

mentioned, neurofibrillary tangles in AD comprise the hyperphospho-

rylated tau protein; in addition, Aβ production can be regulated by the
phosphorylation of the amyloid precursor protein [APP].50 A number

of 14-3-3 proteins—including YWHAG, YWHAE, and YWHAB—were

members of the M4-phosphorylation module. These phospho-binding

proteins regulate a wide range of functions within the brain, includ-

ing protein kinase activity, apoptosis, cell trafficking, and neuronal

plasticity.52 In addition, there is evidence that these proteins interact

with tau and can promote its phosphorylation.53 M4-phosphorylation

also contained Ca2+/calmodulin-dependent protein kinases (CAMK2B

and CAMK2D), which had relatively high selection probabilities

for an M4-wide LASSO regression model. These calcium-signaling

molecules have been linked to both phosphorylation of the tau protein

and APP.54

M7 was enriched for ubiquitination, a post-translational modifi-

cation mediated by a sequential cascade of enzymes that transfer

ubiquitin, a 76 amino acid protein, to lysine residues on target proteins.

Ubiquitin can be assembled into polymeric chains via ubiquitination

of one of its seven lysine (K) residues: K6, K11, K27, K29, K33,

K48, and K63.55 M7 was enriched specifically for K63-linked ubiq-

uitination, which is involved in non-proteasomal functions, such as

protein kinase activation, DNA repair, and autophagy.56 Autophagy is

a degradative process mediated by the lysosome and critical to the

cellular response to stress, such as nutrient starvation, hypoxia, oxida-

tive stress, and DNA damage.57,58 It degrades misfolded proteins—

particularly long-lived, insoluble, protein aggregates,59—as well as

damaged organelles.57 M7-ubiquitination contained a number of reg-

ulators of autophagy machinery, such as MAP1LC3A, GABARAP,

GABARAPL1, and GABARAPL2.60

Autophagy induced by nutrient starvation is meant to promote cell

survival, by providing cells with internal nutrient supplies and clear-

ing protein aggregates.58,61 However, there is evidence to suggest that

autophagy is dysregulated in AD.62,63 In a 5fXAD mouse model of

AD, fasting led to an increase in macroautophagy activity, but did not

result in subsequent degradation of intracellular Aβ accumulation that

stemmed from increased extracellular uptake.64 Although we cannot

establish the direction of causality between autophagy and AD pathol-

ogy, it is plausible that increased autophagy is detectable in the CU

stages preceding clinical impairment.

In conclusion, by examining module changes in the absence of clin-

ical impairment, our study enabled us to elucidate the critical impor-

tance of phosphorylation and ubiquitination for preclinical changes

in cognition and pathology. The focus on abnormal amyloid aggre-

gation is particularly relevant because clinical trials are increasingly

targeting this earliest stage of disease for therapeutic intervention. By

leveraging a large sample of CU participants and cutting-edge protein

quantification technology, we were able to identify biological mecha-

nisms associated with amyloid positivity. The SOMAScan platform is

the largest protein panel available for clinical screeningofCSF samples,

and its aptamer-based technology enabled high-throughput protein

quantification. Although some studies have observed the potential for

aptamer off-target cross-reactivity with homologous proteins, they

have also noted that in this context, roughly half of the time aptamers

are binding to alternative forms of the same protein.65,66 In addition,



ABIOSE ET AL. 1865

our reliance on network analytical approaches provided an additional

safeguard against such concerns.

Our study has several limitations. This work is cross-sectional, and

longitudinal studies are needed to understand the time course of these

proteomic signatures and the ability of thesemodules to predict future

progression from CU to clinical impairment (MCI and AD dementia).

Furthermore, we were unable to functionally annotate modules with

important relationships to AD pathology, such as M22 and M23,

possibly due to their extreme module sizes. Finally, our cohort is pre-

dominantly non-Hispanic White and highly educated, thereby limiting

the generalizability of our findings. Despite these limitations, our work

relating CSF protein modules and phenotypes relevant to aging and

AD dementia is important given the need to discover mechanisms

driving initial disease processes in the absence of clinical impairment.

Overall, our study highlights the important, multi-faceted involve-

ment of ubiquitination in the AD cascade, particularly at its initial

stages.
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