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Abstract

BACKGROUND:Models for forecasting individual clinical progression trajectories in

early Alzheimer’s disease (AD) are needed for optimizing clinical studies and patient

monitoring.

METHODS: Prediction models were constructed using a clinical trial training cohort

(TC; n = 934) via a gradient boosting algorithm and then evaluated in two validation

cohorts (VC 1, n = 235; VC 2, n = 421). Model inputs included baseline clinical fea-

tures (cognitive function assessments, APOE ε4 status, and demographics) and brain

magnetic resonance imaging (MRI) measures.

RESULTS: Themodel using clinical features achieved R2 of 0.21 and 0.31 for predicting

2-year cognitive decline in VC 1 and VC 2, respectively. AddingMRI features improved

the R2 to 0.29 in VC 1, which employed the same preprocessing pipeline as the TC. Uti-

lizing thesemodel-based predictions for clinical trial enrichment reduced the required

sample size by 20% to 49%.

DISCUSSION: Our validated prediction models enable baseline prediction of clinical

progression trajectories in early AD, benefiting clinical trial enrichment and various

applications.
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1 BACKGROUND

The heterogeneity of individual disease progression trajectories

between patients poses a major challenge for designing efficient clini-

cal trials to detect meaningful benefits of candidate treatments1–4 and

for physicians, caregivers, and patients to make appropriate decisions

and plans on treatment and long-term care.5–8 This is especially true of

Alzheimer’s disease (AD) where patients initially diagnosed with mild

cognitive impairment (MCI) and confirmed to be brain amyloid beta

(Aβ) positive (Aβ+) experience different rates of clinical progression,

depending on their baseline clinical and biological characteristics.4,9–13

Several unique demographics, clinical, genetic, proteomic, imaging, and

disease pathological patient characteristics may help explain some

of this heterogeneity and more accurately determine their disease

prognosis14–17.

Clinical trials on Aβ+ patients with early AD, that is, patients with

either MCI due to AD or mild AD dementia, tend to employ cut-

offs and selection criteria on cognitive function, apolipoprotein E

(APOE) ε4 genetic status (defined in Table 1), and disease pathological

factors such as the amyloid burden and tau assessed via positron emis-

sion tomography (PET) scan, cerebrospinal fluid (CSF), or blood.18–25

Despite the consideration of such factors for screening patients in clin-

ical trials, there is usually considerable variability in the rates of clinical

progression of randomized patients.26 Including patients with a low

likelihood of progression or the failure to account for this heterogene-

ity may reduce the power to detect clinically meaningful treatment

effects and thus require a larger sample size in clinical trials.17,26,27

RESEARCH INCONTEXT

1. Systematic review: Heterogeneity of clinical progression

is a common phenomenon in early Alzheimer’s disease

(AD). Given recent advances in novel therapeutics and

the growing AD population, models that can predict indi-

vidual progression trajectories using common baseline

clinical assessments are needed for drug development

and real-world applications.

2. Interpretation: Prediction models trained via machine

learning in a clinical trial cohort using common baseline

clinical assessments accurately predicted the 24-month

clinical progression trajectories in two validation cohorts.

Key baseline predictors include cognitive status, partic-

ularly in memory, praxis, language, and the volume of

medial temporal and associated cortical regions. Applying

thesemodel-based predictions for prognostic clinical trial

enrichment reduced the required sample size by 20% to

49%.

3. Future directions: The added value of various fluid-

based biomarkers to these prediction models should

be explored. For real-world applications, these models

should be adapted to include assessments that are more

feasible in clinical practice.

TABLE 1 Demographic and clinical data summary of training and validation cohorts.

Training cohort Validation cohort 1 Validation cohort 2

Patient characteristics N= 934 N= 235 N= 421

Diagnosis MCI; N (%) 761 (81%) 153 (65%) 286 (68%)

Mild AD; N (%) 173 (19%) 82 (35%) 135 (32%)

Gender Female; N (%) 431 (46%) 136 (58%) 189 (45%)

Male; N (%) 503 (54%) 99 (42%) 232 (55%)

Race White; N (%) 706 (76%) 213 (91%) 394 (94%)

Non-White; N (%) 228 (24%) 22 (9%) 27 (6%)

ApoE4 status E4 homozygous; N (%) 140 (15%) 39 (17%) 83 (20%)

E4 heterozygous; N (%) 458 (49%) 127 (54%) 210 (50%)

Non-E4; N (%) 336 (36%) 69 (29%) 128 (30%)

Education Mean (SD) 13.4 (3.6) 14.0 (3.7) 16.0 (2.7)

Age Mean (SD) 72.1 (7.3) 71.2 (8.8) 73.4 (7.0)

BMI Mean (SD) 25.9 (4.3) 25.7 (3.8) 26.6 (5.0)

MMSE Mean (SD) 25.8 (2.5) 26.0 (2.3) 26.1 (3.0)

CDR-SB Mean (SD) 2.6 (1.2) 2.9 (1.5) 2.5 (1.8)

Note: All the demographic and clinical characteristics are significantly different (p < .05) between the cohorts. The training cohort has a significantly greater

proportion ofMCI and ApoE4-positive subjects. The first validation cohort (VC 1) has a greater proportion of males. Subjects in the second validation cohort

(VC 2) are older and have higher bodymass index (BMI). These differences among early AD patients across different clinical trials and observational cohorts

help to provide amore generalizable assessment of the performance of the predictionmodels between the training and validation cohorts.

Abbreviations: BMI, body mass index; CDR-SB, sum of boxes of clinical dementia rating scale; MCI, mild cognitive impairment; MMSE, Mini-Mental State

Examination; SD, standard deviation.
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Some of the variability in the rates of clinical progression between

patientsmay be explained by the differences in their baseline cognitive

function in specific domains such as word recall, ideational praxis, ori-

entation, and executive function, in addition to differences in disease

pathological characteristics such as brain magnetic resonance imag-

ing (MRI) measures or other biomarkers.28–32 If such baseline patient

characteristics can be used collectively to build prognostic prediction

models to predict the future clinical decline of each patient, such pre-

dictions during initial patient screening can be used to design optimal

clinical trials and as a guide for treatment, monitoring, and patient care

decisions in clinical practice and real-world situations.17,27,33 Current

AD clinical trials tend to be 18 to 24 months in duration. Prognostic

prediction of clinical progression over such a short time frame in Aβ+
early ADpatients tends to be less accurate than predicting progression

over, say, 3 to 5 years (eg, tab. 2 in Franzmeier et al.).17

Thus, in this report, we present the development of such prognostic

prediction models via a machine learning algorithm for predicting the

future longitudinal clinical decline of Aβ+ early AD patients over a typ-

ical 18- to 24-month duration of a clinical trial using historical placebo

subject data from two clinical trials.We then demonstrate and validate

the prediction performance of these models in an independent cohort

of placebo subjects from another clinical trial and in another cohort of

subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database. Finally, we study the utility of using the prognostic predic-

tions of clinical progression for increasing the efficiency of clinical trials

via clinical trial simulations.

2 METHODS

2.1 Database

The training cohort (TC) for constructing the prediction models com-

prised934Aβ+earlyADsubjects fromtheplaceboarmof two identical

clinical studies that were part of the same Elenbecestat phase-3 pro-

gram (A Placebo-Controlled, Double-Blind, Parallel-Group, 24 Month

Studywith anOpen-Label ExtensionPhase toEvaluate theEfficacy and

Safety of Elenbecestat [E2609]) in Subjects with Early Alzheimer’s Dis-

ease; NCT02956486, MissionAD1 and NCT03036280, MissionAD2).

Over 81% of the placebo subjects in TC had MCI due to AD, and the

rest had mild AD. The trial was approved by the Institutional Review

Board or independent ethics committee at each center, and all the

participants provided written informed consent.

The first validation cohort (VC 1) for testing the performance of

the prediction models included 235 Aβ+ early AD subjects from the

placebo armof an 18-month clinical study of another program (A Study

to Evaluate Safety, Tolerability, and Efficacy of Lecanemab in Sub-

jects with Early Alzheimer’s Disease; NCT01767311). The trial was

approved by the Institutional Review Board or independent ethics

committee at each center, and all the participants provided written

informed consent.

The second validation cohort (VC 2) for further assessment of the

prediction models included 421 Aβ+ subjects diagnosed as either MCI

or AD with at least 1 year of clinical follow-up and the relevant clini-

cal and MRI assessments from the ADNI 2 and ADNI 3 phases of the

ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003 as

a public–private partnership, led by Principal Investigator Michael W.

Weiner, MD. The primary goal of ADNI has been to test whether serial

MRI, PET, other biologicalmarkers, and clinical and neuropsychological

assessment can be combined to measure the progression of MCI and

AD. For up-to-date information, see www.adni-info.org. The study was

approved by the Institutional Review Boards of all of the participating

institutions and informed written consent was obtained from all par-

ticipants. Data used for the analyses presented here were accessed on

December 15, 2021.

Data on the longitudinal clinical decline in the TC for construct-

ing the prediction models were based on the change from baseline

in the sum of boxes of the clinical dementia rating scale (CDR-SB) at

months 3, 6, 9, 12, 15, 18, 21, and 24. The clinical follow-up times con-

sidered for evaluating the prediction models in VC 1 and VC 2 were

months 3, 6, 9, 12, 15, and 18 andmonths 6, 12, and 24, respectively. A

summary of some key demographics and clinical characteristics of the

subjects in these three cohorts is included in Table 1, and a summary

of the longitudinal change in CDR-SB at each time point is provided in

Table S1.

2.2 Cognitive function assessments

While the clinical decline was defined in terms of the change from

baseline in CDR-SB, other baseline cognitive function assessments at

baseline were also considered as potential predictors for construct-

ing the prediction models. These include the composite endpoints,

Mini-Mental State Examination (MMSE), Alzheimer’s Disease Assess-

ment Scale–Cognitive Subscale (ADAS-Cog-13), CDR-SB, and all their

subscores.

2.3 Imaging data

All subjects in TC and VC 1 received a 3.0 Tesla (T) structural MRI at

baseline. Approximately 75% of subjects in VC 2 received 1.5T, and

the rest received 3T MRI. Brain MRI data (volume, area, and corti-

cal thickness) in all three cohorts were generated for various brain

regions of interest using the Desikan-Killiany atlas,34 resulting in 207

regional measures. Image processing for TC and VC 1 was carried out

by Clario using their proprietary imaging pipeline. For VC 2, this was

done using FreeSurfer software at the University of California San

Francisco. Further details can be found in the “UCSF FreeSurfer Meth-

ods” PDF document under “MR Image Analysis” in the ADNI section

of https://ida.loni.usc.edu/ as well as in Dale et al. and Fischl et al.35–37

Cortical thickness values are represented inmillimeters (mm). The vol-

ume (cubic millimeters) and area (squaremillimeters) were normalized

(divided) by the intracranial volume to reduce intersubject variability

and account for variance due to head size within each cohort. While

the performance of prediction models that include MRI features was

http://www.adni-info.org
https://ida.loni.usc.edu/
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assessedand reported for bothVC1andVC2, it is important to empha-

size that the reliable ascertainmentof theperformanceof thesemodels

with MRI features can only be achieved in VC 1 due to the inability to

reprocess MRI images in VC 2 using the same preprocessing method

used for TC and VC 1.

2.4 Data analysis

Structural brain network (SBN) modules and hubs were derived using

207 MRI regional measures (volume, area, and cortical thickness)

in TC via an algorithm from genomics called “multiscale embedded

gene co-expression network analysis.”38 This algorithm first entails

the calculation of the correlation of MRI measures across all pairs of

regions. Regions with significant correlations were embedded on a

spherical surface and representative edges (regions that are correlated

with multiple other regions) were extracted to create planar-filtered

networks. Finally, a hierarchy of network modules was constructed by

recursively clustering the regional measures with coherent structures

into network modules. This resulted in a total of 18 SBN modules

(labeled SBN.1 to SBN.18) and 45 hub regional measures. Some

regions may be present in more than one network module depending

on the nature of correlations between the neighboring regions. The

regional measures in each of the SBN modules were aggregated

into a single composite eigenvalue for each subject by the MEGENA

algorithm. Subsequent prediction modeling efforts using the MRI data

focused only on these 18 SBN modules and 45 hub regional measures

as this helped to reduce the redundancy and dimensionality across

the 207 regional measures and were more likely to yield meaningful

and interpretable insights on the key prognostic predictors of clinical

progression. A complete listing of all the SBNmodules andhub regional

measures is provided in Tables S2 and S3, respectively.

A prognostic model for predicting longitudinal cognitive trajectory

for each patient was first constructed from the training cohort using

baseline cognitive function assessments, APOE ε4 status, demograph-

ics such as gender, age, and body mass index (BMI), and the mea-

surement time of cognitive function as predictors and the change in

CDR-SB as the outcome of interest via the Stochastic Gradient Boost-

ingMachine (SGBM) algorithm.39 For simplicity, we do not account for

the within-subject correlation in the training process and only include

visits where all predictors and CDR-SB are measured for the patient

in the TC. This is analogous to using the working independence cor-

relation matrix in the generalized estimating equation (GEE) approach

to analyzing longitudinal data. An expanded version of this model was

thendevelopedby adding thebaseline SBNs to thebaseline clinical fea-

tures. A complete listing of all the features (predictors) considered in

these two models is provided in Tables S4 and S5, respectively. SGBM

is an ensemble tree-based model that efficiently combines the predic-

tions from multiple decision trees to generate the final predictions. It

learns from the data to automatically model the inherent non-linearity

and interactions between predictors, without prior assumptions on

the distribution or specific mathematical forms of the relationships

between predictors and outcomes. Overfitting is avoided by inter-

nally tuning the model with hold-out datasets and cross-validation.

In our implementation of the prediction model, we consider assem-

bling up to 1000 decision trees with up to three-way interactions

among predictors. The ranking and relative influence of each predic-

tor in the prognostic models were derived by assessing the reduction

in the mean squared error (MSE) each time the predictor was used

as a root node to split the decision trees in the SGBM algorithm, and

these were then normalized to range from 0 to 100%.40 Insights into

the relationshipsbetweenpredictors andoutcomesand the interaction

between predictors were derived via individual conditional expec-

tation (ICE) profiles and partial dependence plots of the prediction

profiles.41

The prediction performance of our SGBMmodels underwent rigor-

ous evaluation. Initially, a comprehensive assessment was conducted

through 10 iterations of 10-fold cross-validation within the TC.42 Sub-

sequently, the models were evaluated in two independent validation

cohorts, VC 1 and VC 2. This evaluation involved measuring the coef-

ficient of determination (R2), MSE, and mean absolute error (MAE)

for observed versus predicted cognitive decline (CDR-SB change from

baseline) at each time point.

One of the applications studied in this research is the use of

prognostic predictions of individual cognitive trajectories from our

proposed predictionmodels as an enrichment tool to screen and select

patients for a clinical trial. To that end, 500 clinical trials were simu-

lated via the bootstrap approach (samplingwith replacement) based on

the data from the placebo arm of the clinical trial used for VC 1, with a

1:1 randomallocation of active treatment and placebo. The clinical trial

duration was set at 18 months. The treatment effect, defined as the

difference in the change from baseline in CDR-SB between the treat-

ment and placebo groups at month 18, was set at 30%. The impact of

selecting only patients with predicted 18-month CDR-SB change of at

least 0.5 and 1 (enrichment scenarios 1 and 2, respectively) was then

evaluated for each simulated clinical trial by comparing the sample size

requirement and power between the non-enriched and enriched clin-

ical trials for these different enrichment scenarios. The sample size

evaluations were based on the two-sample t test. The rationale for

the thresholds used in the two enrichment scenarios is to exclude sub-

jects that areprogressingmore slowlyover the18-monthperiodwhere

treatment effects may be more difficult to detect. In addition, these

thresholds are likely to represent a clinically meaningful progression

fromMCI tomild AD.43

All analyseswere performed using R version 4.2.2 (R Foundation for

Statistical Computing),44 along with the packages MEGENA,45 gbm,46

and pdp.47

3 RESULTS

3.1 Demographics

Data in the training and two validation cohorts (TC, VC 1, and VC 2)

included 934, 235, and 421 Aβ+ subjects, respectively. Most of these

subjects had MCI due to AD and the rest had mild AD. A summary of
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F IGURE 1 Longitudinal cognitive trajectory. The longitudinal profiles of the change from baseline of CDR-SB of 934, 235, and 421 subjects in
the training and the two validation cohorts, respectively, reflect the considerable heterogeneity in progression over a typical 18- to 24-month
duration of AD clinical trials.

some key demographic and clinical characteristics (gender, APOE ε4
status, age, BMI, diagnosis, MMSE, and CDR-SB) is shown in Table 1.

All demographic and clinical characteristicswere significantly different

(p < .05) between the three cohorts. The training cohort had a signif-

icantly greater proportion of MCI and ApoE4-positive subjects. The

first validation cohort (VC 1) had a greater proportion of males. Sub-

jects in the second validation cohort were older and had a higher BMI.

These differences among early AD patients across different clinical tri-

als and observational cohorts help to provide a robust assessment of

the performance of the prediction models between the training and

validation cohorts. TheKruskal-Wallis testwasused for comparing age,

education, BMI, and MMSE, and the chi-squared test was used for

comparing gender and ApoE4 status. A summary of CDR-SB change

from baseline at each time point in the three cohorts is shown in Table

S1. The longitudinal trajectory of clinical progression (CDR-SB change

from baseline) for individual subjects in the three cohorts shown in

Figure 1 reflects the heterogeneity in clinical progression over a typical

18- to 24-month duration of AD clinical trials.

3.2 Prediction models

The relative influence of the top 10 predictors in the prediction model

constructed via the SGBM algorithm using only the baseline clini-

cal features (cognitive function assessments and demographics) are

shown in Figure 2A, and the top 10 predictors from the expanded

model that includes the SBNmodules andhub regionalmeasures based

on the MRI features are shown in Figure 2B. In addition to time,

the key baseline clinical predictors in these models were ADAS-Cog-

13, MMSE, word recall and recognition, ideational praxis, CDR-SB,

and word-finding difficulty, along with BMI and age. Ideational praxis

refers to the ability to perform multilevel tasks, for example, the

sequence of steps needed for brushing teeth. Some of the key MRI-

based predictors include features from the SBN hub regions, middle

temporal cortical area, and inferior parietal cortical volume, along

with the network module (SBN.11) comprising the inferior parietal

gyri, inferior temporal gyri, middle temporal gyri, and banks of the

superior temporal sulci (Figure 2C), the network module (SBN.15)

comprising the entorhinal cortices and temporal poles (Figure 2D),

and the network module (SBN.3) comprising the superior parietal

gyri, precunei, isthmus of the cingulate gyri, lateral occipital gyri,

postcentral gyri, supramarginal gyri, superior temporal gyri, fusiform

gyri, lingual gyri, and transverse temporal gyri, plus the regions in

SBN.11 (Figure 2E). A complete listing of the ranking and relative

influence of all the predictors used in these two prognostic models is

provided in Tables S4 and S5, respectively.

The nature of the relationship between each of the key baseline

predictors versus the predicted clinical progression from these two

prediction models is examined at the individual subject level and for

an average subject via ICE profiles, as shown in Figure 3. This is

accomplished by plotting the individual and average predicted out-

comes for different values of each predictorwhile holding the values of

other predictors constant. These ICE prediction profiles reveal strong

sigmoidal-like non-linear relationships between each baseline predic-

tor and clinical decline with floor and ceiling effects and a region of

linear impact in between. The flexibility of the SGBM algorithm allows

for such relationships and inflection nodes of the predictors to bemod-

eled without prior specifications or assumptions. The heterogeneity of

profiles across subjects reflects the interaction between the predictors

that are examined further in Figure 4.
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F IGURE 2 (A-E) Top 10 predictors in predictionmodels and brain heatmaps of key SBNmodules and hub regions. The relative influence of the
top 10 predictors in the predictionmodel based on the baseline clinical features alone (A) and in themodel that also includesMRI-based SBN
modules and hub regional measures (B) are shown here. The key baseline clinical predictors in thesemodels include ADAS-Cog-13 (ADAS.13),
Mini-Mental State Examination (MMSE), word recall (ADCRL), ideational praxis (ADCIP), word recognition (ADCRG), CDR-SB, andword-finding
difficulty (ADCDIF), alongwith demographic features, bodymass index (BMI), and age. The keyMRI-based predictors include the SBN hub regional
measures, middle temporal cortical area (VSMTCR), and inferior parietal cortical volume (VVIPCR), along with the SBNmodules, SBN.11 (C) that
includes the inferior parietal gyri, inferior temporal gyri, middle temporal gyri, and banks of the superior temporal sulci, SBN.15 (D) that includes
the entorhinal cortices and temporal poles, and SBN.3 (E) that includes the superior parietal gyri, precunei, isthmus of the cingulate gyri, lateral
occipital gyri, postcentral gyri, supramarginal gyri, superior temporal gyri, fusiform gyri, lingual gyri, transverse temporal gyri; the regions in
SBN.11. RL, LL, RM, LM refer to right lateral, left lateral, right medial, and left medial, respectively. Degree refers to the number of spatially
connected (correlated) neighboring regions.

The interaction prediction profiles shown in Figure 4 reveal the

strong dependence between someof the key predictors that have been

accounted for by the SGBM algorithm. For example, greater cognitive

decline (CDR-SB change from baseline) over time is seen in subjects

with higher baseline ADAS-Cog-13 (Figure 4A). Subjects with high

ADAS-Cog-13 andworsening ideational praxis (ADCIP) at baseline are

likely to have greater cognitive decline (Figure 4B). In addition, subjects

with high ADAS-cog-13 and with lower middle temporal cortical area

(VSMTCR) or lower area, volume, or thickness in the entorhinal cortex

and temporal pole (SBN.15) at baseline are also expected to experience

a greater cognitive decline (Figures 4C-D).

3.3 Performance evaluation of prediction models

The prediction performance of the two prediction models, one based

on the baseline clinical features alone and the other that adds the

baseline MRI features in the form of SBNs, was evaluated in the two

independent validation cohorts, VC1 and VC 2. As is evident from the

overlapping 95% confidence intervals in Figures 5A and 5B, the aver-

age predicted clinical decline from these two models with respect to

the change from baseline in CDR-SB tracks well and does not sig-

nificantly differ from the average observed decline in both validation

cohorts. Predictions of the clinical decline of individual subjects from

the two prediction models are significantly correlated (p < .001) with

the observed clinical decline (Figures 5C and 5D). Table 2 presents

a detailed breakdown of performance metrics, including the coef-

ficient of determination (R2), MSE, and MAE, for each time point.

Furthermore, Table S6 provides Pearson correlation coefficients as an

additional performancemetric.

The model utilizing baseline clinical features demonstrated a mod-

erate performance, achieving an R2 of 0.21 and 0.31, along with MSE

values of 2.28 and 3.34 andMAE values of 1.16 and 1.35 for predicting

cognitive decline at 18 and 24 months in VC 1 and VC 2, respectively.

Adding MRI features to this model resulted in a notable improvement.

In VC 1, which employed the same image processing pipeline as TC,
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F IGURE 3 (A-H) Individual conditional expectation profiles of some key predictors. The nature of the relationship between some of the key
baseline clinical andMRI-based SBN predictors versus the predicted clinical decline (CDR-SB change from baseline) is shown here for each subject
(in black) and the average subject (in red) via these individual conditional expectations (ICE) profiles. The prediction profile of each subject was
centered by subtracting from the predicted CDR-SB change corresponding to the lowest value of the predictor. The intersubject heterogeneity in
these ICE profiles is mostly due to the strong interaction between the predictors, which is evident in Figure 4. The SGBM algorithm accounts for
these non-linear relationships and interactions without prior assumptions on the distribution or mathematical forms of the relationships.

F IGURE 4 (A-D) Interaction prediction profiles between some key predictors. These interaction prediction profiles reveal the strong
dependence between some key predictors that were accounted for by the SGBMalgorithm.

the R2 value increased to 0.29, and the MSE decreased to 2.08. How-

ever, this enhancement in model performance was not replicated in

VC 2, where differences in the image preprocessing methods between

TC and VC 2 likely had an impact. While the model relying solely on

baseline clinical features performs reasonably well in predicting cog-

nitive decline, the inclusion of baseline MRI features, processed using

the same pipeline, is recommended when MRI assessments are avail-

able. This holds true particularly in the context of patient selection and

clinical trial enrichment, as illustrated below.

3.4 Use of prognostic predictions for clinical trial
enrichment

The impact on the sample size reduction and power increase is shown

in Figures 6A and 6B when enriching the clinical trial for subjects pre-

dicted to experience at least mild to moderate levels of clinical decline,

that is, subjectswithpredicted18-monthCDR-SBchangeof at least 0.5

and 1. Approximately 88% and 65% of the clinical trial subjects used in

VC 1 met these criteria for the two enrichment scenarios. The results
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F IGURE 5 (A-D) Prognostic prediction of average cognitive decline and cognitive decline of individual subjects in the two validation cohorts.
Mean and 95% confidence interval of the observed and predicted CDR-SB change from baseline using themodels based on the baseline clinical
features (model 1) alone andwith the addition ofMRI-based SBN features (model 2) are shown in (A) for validation cohort (VC) 1 and in (B) for VC
2. The observed versus predicted CDR-SB change from baseline for individual subjects at each time point frommodels 1 and 2 along with the 95%
prediction intervals are shown for VC 1 in (C) and VC 2 in (D).
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TABLE 2 Prediction performance summary in the two validation cohorts.

VC 1 VC 2

R2 MSE MAE R2 MSE MAE

Month Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

3 0.07 0.07 0.88 0.91 0.68 0.69 – – – – – –

6 0.06 0.08 1.76 1.74 0.88 0.87 0.16 0.14 1.09 1.16 0.72 0.73

9 0.13 0.11 1.95 1.99 0.94 0.97 – – – – – –

12 0.17 0.2 1.64 1.59 0.96 0.94 0.25 0.28 2.15 2.03 1.01 0.99

15 0.17 0.22 2.26 2.14 1.16 1.14 – – – – – –

18 0.21 0.29 2.28 2.08 1.16 1.15 – – – – – –

24 – – – 0.31 0.29 3.34 3.88 1.35 1.38

Note: The coefficient of determination (R2),mean squared error (MSE), andmean absolute error (MAE) of the predicted versus observed clinical decline (CDR-

SB change from baseline) from the prognostic clinical progressionmodel based on baseline clinical features alone (model 1) and themodel that adds baseline

MRI-based SBNs (model 2) is shown here for the two validation cohorts (VC 1 and VC 2).Model 1 predictions aremostly on par with those ofmodel 2, except

at later time points with respect to R2 andMSE in VC 1, which employed the same image processing pipeline as the training cohort (TC).

F IGURE 6 (A and B) Application of prognostic prediction of longitudinal cognitive decline for clinical trial enrichment. The impact on the
sample size reduction and power increase is shown here when enriching the clinical trial for subjects with predicted 18-month CDR-SB change of
at least 0.5 and 1. 500 clinical trial simulations based on the placebo arm data from a clinical trial (validation cohort 1) were used to study the
impact of this enrichment. In panel (A), when using the predictions from themodel based on baseline clinical features alone for enrichment (model
1), the power increases from 80% to 88.3% and 96.5%, respectively, for the two enrichment scenarios (ES1, ES2). Fixing the power at 80%, these
enrichment scenarios withmodel 1 improve the ability to detect the treatment effect from 30% to 26.7% and 22.3%, respectively. In panel (B), the
total sample size required to detect a 30% treatment effect reduces from 718 to 568 and 398 (20.9% and 44.6% reduction), respectively, for the
two enrichment scenarios withmodel 1. Modest improvement in these numbers is seenwhen using themodel based on both the baseline clinical
features and theMRI-based SBN features (model 2) for enrichment; for the two enrichment scenarios the power increases from 80% to 89.2% and
97.6%, respectively, and theminimum treatment effect that can be detected with 80% power improves from 30% to 26.3% and 21.3% (Figure 6A).
The total sample size required to detect a 30% treatment effect reduces from 718 to 552 and 364 (23.2% and 49.4% reduction), respectively, for
the two ESs usingmodel 2 predictions.

for these two enrichment scenarios are presented using the prediction

model based on the baseline clinical features alone (cognitive func-

tion assessments and demographics; model 1) and the model with the

addition of baselineMRI features in the form of SBNs (model 2).

A clinical trial without these enrichment scenarios would require

a total sample size of 718 subjects (359 per group) to detect a 30%

treatment effect with respect to the change from baseline in CDR-SB

at month 18 with 80% power. As evident in Figure 6A, when using the

predictions from themodel based on only the baseline clinical features

for enrichment (model 1), the power increases to 88.3% and 96.5%,

respectively, for the two enrichment scenarios. Fixing the power at

80%, these enrichment scenarios with model 1 improve the ability to
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detect the treatment effect from 30% to 26.7% and 22.3%, respec-

tively. In Figure 6B, we see that the total sample size required to

detect a 30% treatment effect reduces from 718 to 568 and 398

(20.9% and 44.6% reduction), respectively, for the two enrichment

scenarios with model 1. Modest improvement in these numbers is

seen when using the model based on both the baseline clinical fea-

tures and the MRI-based SBN features (model 2) for enrichment;

for the two enrichment scenarios, the power increases to 89.2% and

97.6%, respectively, and the minimum treatment effect that can be

detected with 80% power improves from 30% to 26.3% and 21.3%

(Figure 6A). The total sample size required to detect a 30% treatment

effect reduces from 718 to 552 and 364 (23.2% and 49.4% reduc-

tion), respectively, for the two enrichment scenarios using model 2

predictions (Figure 6B).

One of the questions that may arise with an enrichment strategy

is whether it will require screening a significant number of additional

patients to satisfy the enrichment criteria. For the VC 1 clinical trial

population and using the prediction model 2, approximately 89% and

62% of patients met the enrichment criteria of the predicted 18-

month CDR-SB change of at least 0.5 and 1, respectively. We also

observed that the total sample size required to detect a 30% treatment

effect reduced from 718 to 552 and 364 (23.2% and 49.4% reduc-

tion), respectively. Therefore, instead of screening 718 subjects, we

will need to screen 620 subjects (552 divided by 0.89) and 587 sub-

jects (364 divided by 0.62), respectively, to apply these enrichment

strategies. That is, in addition to significant reductions in sample size

requirements and an increase in power, these enrichment strategies

will entail screening 13.6% and 18.2% fewer subjects compared to

the no-enrichment strategy. More importantly, there may be other

practical benefits/needs for such enrichment strategies in clinical tri-

als, for example, if the candidate treatment is expected to benefit

only subjects that are likely to experience mild to moderate cognitive

decline.

4 DISCUSSION

In this study, prediction models were developed to forecast the indi-

vidual clinical progression trajectories of Aβ+ early AD patients over

a typical 18-month duration of a clinical trial using only their baseline

clinical and structural imaging characteristics. Amachine learning algo-

rithm called stochastic gradient boosting machine was used to build

these models in the training cohort of 934 placebo subjects pooled

from two clinical trials. We found that the prediction profiles of the

resulting models account for the inherent non-linearity of the key

predictors and their interactions (Figures 3 and 4), without any prior

assumptions on the distribution or parametric specifications.

Some recent publications have proposed models for predicting

individual progression trajectories.17,48 Our prediction models are dif-

ferent in the following ways. Our models were (1) developed using

clinical trial cohorts and validated in both clinical trial and observa-

tional research cohorts, (2) optimized for predicting near-term clinical

progression (2 years), which is more relevant for clinical trial and real-

world applications, and (3) based on commonly used baseline clinical

assessments and optionally structural MRI.

The inclusion of individual subscores of CDR-SB and ADAS-Cog-13

in our prediction models rather than just the composite scores turned

out to be quite useful, as evident from the relative influence of the top

predictors in themodels and provided valuable insights (Figures 2A,B);

baseline deficits in word recall, word recognition, and ideational praxis

have a greater impact on clinical progression relative to the other

subscores of these composite measures.

A comprehensive performance evaluation of our models in the

validation cohorts demonstrates that the use of standard clinical

assessments and demographics that are routinely assessed during the

screening phase of AD clinical trials can be used to predict the longi-

tudinal clinical progression trajectories of individual subjects. It also

suggests that adding MRI-based SBNs to the model could improve the

performance of the predictions and therefore would be preferable if

MRI data were available and preprocessed using the same method. A

predictionmodel using thebaselineMRI-basedSBNfeatures alonewas

also developed. As the predictions from this model did not perform as

well as the model based on baseline clinical features alone, and as the

clinical assessments at baseline are more readily available than MRI,

themodel based onMRI features alone is not reported here in detail.

As these prognostic progression models provide a forecast of the

individual clinical progression trajectories for Aβ+ early AD patients

over a typical duration ofADclinical trials of 18 to24months, there are

wide-ranging applications for these models across clinical drug devel-

opment and real-world clinical practice. One such application that we

studied indepthwas related to clinical trial prognostic enrichment.49,50

Clinical trial simulations using the placebo arm data of the clinical trial

used in VC 1 were carried out to study the impact of different enrich-

ment scenarios based on the predicted future clinical progression of

subjects at baseline. These analyses revealed that enriching a clinical

trial with subjects predicted to experience mild to moderate clinical

decline (as defined by theCDR-SB change frombaseline) using our pre-

diction models led to an approximately 20% to 49% reduction in the

sample size requirement for the two enrichment scenarios based on

predicted 18-month CDR-SB change of at least 0.5 and 1 (ES 1 and ES

2) and an increase in power from 80% to approximately 88% to 98%

to detect a 30% treatment effect on the clinical decline at month 18.

The rationale for the thresholds used in ES 1 and ES 2 was to exclude

subjects who are progressing more slowly over the 18-month period

where treatment effects may bemore difficult to detect.

Similar to Tam et al.,51 we compared non-enriched and enriched

populations in training and validation cohorts using the clinical

assessment-based predictionmodel (Table S7).While we observed dif-

ferences in MCI and mild AD patient distribution and baseline MMSE

and CDR-SB for ES 2 (p < .05), demographic and APOE ε4 status dis-

tributions remainedmostly unaffected. This trend held in the subgroup

with complete CDR-SB scores at month 18 (TC and VC 1) and month

24 (VC 2) as detailed in Table S8. In this subgroup, the prevalence of

individuals meeting ES 1 and ES 2 enrichment criteria and the aver-

age CDR-SB decline was higher (though not significant) in TC and VC

1 when enriched based on ES 1 and significantly higher for all three
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cohorts when enriched based on ES 2 (p < .05). This suggests the

prediction model met the intended goal of enriching more decliners.

However, given the propensity of these model-based enrichment tools

to favor mild AD overMCI, additional screeningmay be required when

greater representation ofMCI subjects is needed in clinical trials.

Predictions of CDR-SB change may also be used as a prognostic

covariate for increasing the precision and power of treatment effect

evaluation52–55 and can be considered either with or without enrich-

ment. Enrichment is appropriate if the treatment is expected to be

effective only for a subpopulation (eg, patients with mild to mod-

erate cognitive decline), and the prognostic covariate approach is

particularly useful if there is no justification to exclude a subgroup

of patients via enrichment. Other potential applications in clinical tri-

als include precision medicine investigations via patient stratification,

subgroup identification of treatment responders and non-responders,

and targeted post hoc evaluations of treatment effects and adverse

events.56,57 In real-world settings, these predictions could be used

as a supplemental tool for patient diagnosis and monitoring and for

decisions related to treatment and care8,58; however, this would

require clinical assessments that are more feasible in clinical practice,

and the predictionsmay need to bemore accurate.

It is important to understand whether the proposed progression

models predict well for under-represented populations such as non-

White and thosewith lower education levels.While the training cohort

used for constructing our predictionmodels included 128 (13.7%) sub-

jects with lower education level (<10 years of education) and 228

(24.4%) non-White subjects, the prediction performance could not be

reliably ascertained for these subpopulations in the two validation

cohorts due to limited sample size (7.7% and 0.4% of the subjects had

lower education level in VC 1 and VC 2, respectively, and 9.4% and

6.4% of the subjects were non-Whites). Further evaluation in other

cohorts is needed to verify the applicability of our progression mod-

els for these subpopulations. In addition, as none of the subjects in the

training cohort (TC) had other dementias that combine with AD, our

progressionmodelsmay be suitable for peoplewithADpathology only.

Although our progression models utilize all the clinical and MRI-

based SBN features, these features are weighted proportional to their

relative influence on the prediction of progression, and the features

that had zero influence are practically not used by the models (Table

S4). Thus, our algorithm allowed for the unbiased identification of

predictive features without any preselection. Although more parsimo-

nious models based on only a subset of the most important predictors

can be developed via methods such as regularization,59,60 this was

not necessary because the predictors considered are part of routine

screening assessments in AD clinical trials, and such parsimonious

models did not perform better than ourmodels.

While the application of the proposed prediction models in clin-

ical trials or real-world applications is limited by a specific set

of baseline clinical and optionally MRI-based features, these mod-

els are readily amenable to the inclusion of other types of base-

line patient data. This may include other cognitive function assess-

ments such as the functional activity questionnaire (FAQ), con-

venient real-world digital instruments such as the CogState Brief

Battery,61 computer-administered neuropsychological screens for

MCI,62 Cambridge neuropsychological test automated battery paired

associates learning,63,64 and various fluid biomarkers in the ATN

research framework that may help improve the prediction of clinical

progression.24,32,65–71

Lastly, we did not consider the within-subject correlation in train-

ing the predictionmodel, whichmay cause a loss in prediction accuracy.

On the other hand, such a loss is usually limited, and it avoids the need

to consider a parametric model or assumptions on the specific math-

ematical form of the relationship between predictors and outcomes

(eg, linear, non-linear) and about the interactions among predictors or

explicit modeling of the correlation structure, which is often difficult.

Thus, the advantages of our machine learning approach may outweigh

the use of parametric models that consider the within-subject corre-

lation for developing the prediction models. In validating the model

performance, we separately summarize the prediction performance at

different visits to avoid this correlation issue.

In summary, we show that the individual cognitive progression tra-

jectories of Aβ+ early AD patients over a typical 18-month duration

of AD clinical trials can be predicted using commonly measured clin-

ical and demographic characteristics at baseline or initial screening.

Thesemodels can readily accommodate other types of baseline assess-

ments such as those from MRI, PET, and fluid biomarkers to improve

prediction performance. These prognostic predictions have a wide-

ranging impact across clinical drug development, clinical practice, and

real-world applications.33,57
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