
Received: 22 June 2023 Revised: 30 November 2023 Accepted: 11 December 2023

DOI: 10.1002/alz.13677

R E S E A RCH ART I C L E

Harmonizing florbetapir and PiB PETmeasurements of cortical
Aβ plaque burden usingmultiple regions-of-interest and
machine learning techniques: An alternative to the Centiloid
approach

Kewei Chen1,2,3,4 Valentina Ghisays1,2 Ji Luo1,2 Yinghua Chen1,2

Wendy Lee1,2 TeresaWu5,6 EricM. Reiman1,2,7,8 Yi Su1,2,4,5,6

1Banner Alzheimer’s Institute, Phoenix,

Arizona, USA

2Arizona Alzheimer’s Consortium, Phoenix,

Arizona, USA

3School ofMathematics and Statistical

Sciences, College of Health Solutions, Arizona

State University, Tempe, Arizona, USA

4Department of Neurology College of

Medicine-Phoenix, University of Arizona,

Phoenix, Arizona, USA

5ASU-Mayo Center for Innovative Imaging,

Arizona State University, Tempe, Arizona, USA

6School of Computing and Augmented

Intelligence, Arizona State University, Tempe,

Arizona, USA

7ASU-Banner Neurodegenerative Disease

Research Center, Arizona State University,

Tempe, Arizona, USA

8Department of Psychiatry, University of

Arizona, Phoenix, Arizona, USA

Correspondence

Kewei Chen, Banner Alzheimer’s Institute, 901

E.Willetta St., Phoenix, AZ 85006, USA.

Email: Kewei.Chen@bannerhealth.com,

Kewei.chen@asu.edu

Funding information

Arizona Department of Health Services

(ADHS), Grant/Award Number: CTR057001

Abstract

INTRODUCTION: Machine learning (ML) can optimize amyloid (Aβ) comparability

among positron emission tomography (PET) radiotracers. Using multi-regional flor-

betapir (FBP) measures and ML, we report better Pittsburgh compound-B (PiB)/FBP

harmonization of mean-cortical Aβ (mcAβ) than Centiloid.
METHODS: PiB-FBP pairs from 92 subjects in www.oasis-brains.org and 46 in

www.gaain.org/centiloid-project were used as the training/testing sets. FreeSurfer-

extracted FBP multi-regional Aβ and actual PiB mcAβ in the training set were used

to train ML models generating synthetic PiB mcAβ. The correlation coefficient (R)

between the synthetic/actual PiBmcAβ in the testing set was assessed.
RESULTS: In the testing set, the synthetic/actual PiB mcAβ correlation R = 0.985

(R2
= 0.970) using artificial neural network was significantly higher (p ≤ 6.6e-4) than

the FBP/PiB correlation R = 0.927 (R2
= 0.860), improving total variance percentage

(R2) from 86% to 97%. Other ML models such as partial least square, ensemble, and

relevance vector regressions also improved R (p= 9.677e−05/0.045/0.0017).

DISCUSSION:ML improvedmcAβ comparability. Additional studies are needed for the

generalizability to other amyloid tracers, and to tau PET.
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Highlights

∙ Centiloid is a calibration of the amyloid scale, not harmonization.

∙ Centiloid unifies the amyloid scale without improving inter-tracer association (R2).

∙ Machine learning (ML) can harmonize the amyloid scale by improving R2.
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∙ ML harmonization maps multi-regional florbetapir SUVRs to PiB mean-cortical

SUVR.

∙ Artificial neural networkML increases Centiloid R2 from 86% to 97%.

1 INTRODUCTION

The research community has the consensus that a standardized com-

mon scale is needed1–5 for measuring cerebral β-amyloid (Aβ) burden
with various positron emission tomography (PET) tracers including

C11 Pittsburgh compound (PiB),6–10 F18 florbetapir (FBP),11 F18

florbetaben,12 F18 flutemetamol,13 and F18 NAV4694.4 The widely

used amyloid measure is the standard uptake value ratio (SUVR),

essentially the raw PET count ratio of region-of-interests (ROIs) over

a reference region such as the cerebellum.7,14,15 Based on prede-

fined ROIs composed of cortical areas, the so-called mean-cortical

SUVR (mcSUVR) was used as a measurement of global Aβ burden

for a given tracer.14–16 It is well recognized that the existence of

different radioactive tracers and wide variation in PET data acqui-

sition/processing introduce mcSUVR heterogeneity.5,17,18 Even when

great efforts are made to standardize image acquisition, processing,

and analysis pipelines across multiple centers for a given study such as

ADNI and other multisite clinical trials,19–22 heterogeneity still exists.

To meet this challenge, the Centiloid Working Group created the

common Centiloid (CL) scale5 via linear regression, scaling together

with a calibration dataset for a given tracer and the reference PiB

tracer to convert the tracer/pipeline-specificmcSUVR into standardCL

(see also Schwarz et al., 201823). With CL, the average amyloid burden

measurement is 0 for young controls and 100 in typical Alzheimer’s

disease (AD) patients.5,17,18 Ideally, CL can be used independently of

tracer, scan protocol, and analysis pipeline. In a sense, the Aβmeasures

from one PET tracer “Y” are the same as from another PET tracer “X,”

that is, Y=X inCL, or Y= kX+bwith the slope k=1and intercept b=0

statistically. The unit slope and zero intercept, however, has nothing to

do with the goodness of fit (GOF) or how tightly the scaled mcSUVR

pairs are scattered around Y = kX + b.23 GOF, defined as the square

of the correlation coefficient, R2, between twomeasures, is intrinsic to

the data and would not be altered by a linear transformation such as

CL. To facilitate discussion, we will refer to a process as “calibration”

if it brings the amyloid measures to a common scale with their intrin-

sic fixed GOF. In contrast, we refer to a process as “harmonization” if

it attempts to optimize GOF (reducing the scattering around the fitted

curve). Thus, CL is only a process of calibration.

As such, CL has two related limitations: (1) the inconsistent amyloid

positivity thresholds for two different tracers; and (2) the inconsistent

Aβ burden reading from the two tracers. Based on a different dataset,

themcSUVRcutoff of 1.17 forFBPdetectsmoderate-to-frequentbrain

amyloid burden determined pathologically14 and can be converted to

a CL cutoff of 37.117 while the corresponding threshold is 20.1 CL for

PiB24 and19CL for florbetaben.25 Using the head-to-head comparison

data from the DIAN-TU cohort and a common positivity cutoff crite-

rion of 95% specificity, the positivity cutoff for PiBwas 6.0 CL and 26.1

CL for FBP. If we apply the same approach to the PiB-FBP Centiloid

calibration dataset used in this study (see Methods below for details),

the positivity cutoff for 95% specificity would be 10.2 CL for PiB and

19.1 CL for FBP. These differences are partially compounded also by

the variation of the analysis pipeline and pathological assessment from

different researchers. The second limitation is related to individual-

level deviation of the mcSUVR pair from the fitted Y= kX+ b line. This

will be especially problematic if the readings are close to the positiv-

ity threshold or if CL will be used as a clinical trial outcomemeasure. In

fact, both limitations are related to the intrinsic GOF, with or without

CL calibration.

Unlike the linear regression which only computes GOF, this study

aims to usemachine learning (ML) to improveGOFby harmonizing, not

just calibrating, Aβ PETmeasurements over different tracers. We note

that R2 is complementary to the linear slope which reflects the mag-

nitude of the specific amyloid signal of a tracer relative to PiB,5 and

that the slope can be scaled for a common range. Our harmonization

strategy to improve R2 involves utilizing multiple regional SUVRs for

a tracer, in this case, FBP, to optimally map to PiB mcSUVR using ML

techniques such as the artificial neural network.

2 METHODS

2.1 Subjects and image preprocessing

A training set of PiB-FBP head-to-head comparison data was obtained

from theOpenAccess Series of Imaging Studies (OASIS) in theOASIS-3

release.26 The OASIS-3 release incorporates data from 1098 partic-

ipants covering the adult life span aged 42–95, including cognitively

normal individuals and individuals with early-stage AD dementia from

the Knight Alzheimer Disease Research Center atWashington Univer-

sity St. Louis. TheOASIS-3 release includes T1-weighted structural and

functional MRI (magnetic resonance imaging), amyloid and metabolic

PET imaging, neuropsychological testing, and clinical data. A total of 92

participantswith bothPiB andFBP collectedwithin threemonthswere

included in this study.

The FBP-PET data for these 92 participants were from the PET-

MR scanner. The version of the data used for sharing in OASIS and for

our report was reconstructed using computed tomography (CT)-based

attenuation maps by theWashU team, the same as the PiB-PET.27 The

T1-weighted structuralMR image (T1w-MRI) associatedwith eachPET

scan was used to provide anatomical reference and help analyze PET
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data. FreeSurfer (FS) v5.3 (http://surfer.nmr.mgh.harvard.edu/) soft-

ware processed the T1w-MRI and performed cortical parcellation and

subcortical segmentation todefineROIs in individual space.28 Regional

SUVR measurements of PiB and FBP uptake were obtained for each

FS ROI and composite regions of the gyrus rectus, temporal cortex,

occipital cortex, and prefrontal cortex using the cerebellar cortex as

the reference region (commonly used but one of several choices) and

our in-house PET processing pipeline.15,18 As the global index of amy-

loid burden,15 the mcSUVR was calculated as the average SUVR of

the gyrus rectus, temporal cortex, prefrontal cortex, and precuneus. A

total of 90 regional, composite, and global SUVR measures were gen-

erated from our pipeline for each PET scan where corresponding left

and right hemispheric regions were averaged. These measures were

used as the input to theMLmodels to estimate synthetic PiB mcSUVR

fromFBPmeasurements.Alternatively, FS-based regional SUVRswith-

out averaging left and right brain regions were also examined in an

exploratory analysis as the input to the ML models. Conversion to the

CL scale was performed for the global mcSUVRmeasure as previously

described,18,29 and performance evaluationwas assessed based on the

converted CLmeasures.

The Global Alzheimer’s Association Interactive Network (GAAIN)

PiB-FBP CL calibration dataset from AVID with 13 young controls and

33 elderly subjects17 was obtained from the GAAIN website (http://

www.gaain.org/centiloid-project), preprocessed the same way and

used as an independent testing set. The demographic and clinical char-

acteristics of the participants in these two datasets are summarized in

Table 1.

2.2 ML methods

The larger dataset with 92 PiB-FBP pairs from OASIS (https://www.

oasis-brains.org/) was used as the training set. The smaller indepen-

dent dataset with 46 PiB-FBP pairs from AVID was used as the

testing set. Both FBP and PiB images were reconstructed using the

CT-derived attenuation map.27 We considered four ML methods: (1)

partial least square regression (PLSR), (2) ensemble regression (ER),

(3) relevance vector regression (RVR), and (4) artificial neural net-

work (ANN). The Deep Learning and Statistics and Machine Learning

toolboxes in MATLAB (release 2020a, www.mathworks.com) were

used to carry out ER, PLSR, and ANN (see below for RVR). As a

post hoc analysis, we switched the training and testing datasets, and

repeated the assessment of the ML methods to further confirm our

findings.

2.2.1 Partial least square regression (PLSR)

We have been using the partial least square procedure for analyz-

ing dual-modal imaging data to examine the covarying spatial patterns

between imagingmodalities and therefore to increase statistical power

in the preclinical study of AD.30,31 Our use of PLSR in this study, how-

ever, is one of the means to map FBP multi-regional SUVR values to

RESEARCH INCONTEXT

1. Systematic review: The authors searched traditional

sources (eg, PubMed) for all pertinent literature using

keywords such as “Centiloid,” “amyloid PET harmo-

nization,” “amyloid PET standardization,” “amyloid mea-

sure harmonization,” “harmonization,” “machine learn-

ing,” “artificial neural network,” and “artificial intelli-

gence.”

2. Interpretation: Our results demonstrated improved per-

formance with machine learning-based amyloid harmo-

nization compared to the Centiloid calibration. It not only

brought the amyloid measurements from different PET

tracers into a common scale, but it also improved the

inter-tracer amyloid measure consistency (measured as

the squared correlation coefficient, R2). The generaliz-

ability of our harmonization method is demonstrated in

an independent dataset.

3. Future directions: Themanuscript proposes a framework

for theharmonizationbetweenFBPandPiBamyloidmea-

surements. Future studies will examine the framework’s

generalizability to other amyloid PET tracers, to perform

harmonization for different tau tracers and to apply this

cross-sectional framework to longitudinal data.

the mcSUVR of PiB. Instead of the commonly used linear regression,

the PLSR will account for the collinearity among the multiple regional

SUVR measures. For our data, the collinearity exists not only because

the number of subjects is less than the number of FS-defined regions

from which we extract the FBP SUVR data, but also from the fact that

regional amyloid PET SUVRs are highly correlated. As essentially a

linear mapping, PLSR gives a reference (baseline) metric to compare

the performance of nonlinear mappings such as ANN, RVR, and ER.

For carrying out PLSR in MATLAB, we chose the outputs of the first

three components as the mapped outcome measures, consistent with

our previous studies.30,31 All other MATLAB settings for PLSR were

default.

2.2.2 Ensemble regression (ER)

ER is another ML algorithmic method.32 According to Moreira

et al., ensemble learning (in our case, regression) is a process that

uses a set of models, each of them obtained by applying a learn-

ing process to the given problem.33 This set of models (ensem-

ble) is integrated in some way to obtain the final prediction. ER

is based on a random forest with individual regression trees.32 In

this study, we ensembled these individual regression trees using the

aggregation method of least-square boosting (LSBoost) https://www.

mathworks.com/help/stats/fitrensemble.html. With LSBoost at every

http://surfer.nmr.mgh.harvard.edu/
http://www.gaain.org/centiloid-project
http://www.gaain.org/centiloid-project
https://www.oasis-brains.org/
https://www.oasis-brains.org/
http://www.mathworks.com
https://www.mathworks.com/help/stats/fitrensemble.html
https://www.mathworks.com/help/stats/fitrensemble.html
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TABLE 1 Demographic and clinical characteristics of the study participants.

OASIS (n= 92) AVID (n= 46) p-value

Age at PiB scan (range) 68± 8.8 (43–88) 58± 21.4 (21–89) 9e-05

Sex (M/F) 44/48 27/19 0.22

APOE genotype (NC/HT/HM) 60/27/5 31/13/2 0.95

MMSE 29.2± 1.0 (26–30) 25.8± 4.9 (8–30) 2e-09

Abbreviations: APOE, apolipoprotein E gene, ε4 allele; AVID, the Centiloid project dataset downloaded from the GAAIN website

(http://www.gaain.org/centiloid-project); HM, homozygotes; HT, heterozygotes; MMSE, Mini-Mental State Examination; NC, non-carriers; OASIS, Open

Access Series of Imaging Studies; PiB, Pittsburgh compound.

step, the ensemble fits a new learner to the difference between

the observed response and the aggregated prediction of all learn-

ers grown previously. The ensemble fits to minimize mean-squared

error. In carrying out the analysis, we turned on the hyperparame-

ter auto-determination feature, but all others were MATLAB default

settings.

2.2.3 Relevance vector regression (RVR)

The general relevance vector machine (RVM) is an ML technique that

uses Bayesian inference to obtain parsimonious solutions for both

regression and probabilistic classification.34 RVM has previously been

used to estimate continuous clinical scores from brain images.35,36

For our application, we used it for regression (ie, RVR). The RVM has

an identical functional form to the support vector machine/regression

(SVM/SVR) with specified kernel functions but provides probabilistic

classification/regression.

In this study, we ran the RVR MATLAB program downloaded

from https://ww2.mathworks.cn/matlabcentral/fileexchange/69407-

relevance-vector-machine-rvm and used a Gaussian kernel with a

width of 7 and all other default settings. Though the Bayesian formula-

tion of the RVMavoids the set of free parameters that the SVMusually

requires for cross-validation-based post-optimizations, the RVM uses

an expectationmaximization-like learningmethod and is at risk of local

minima. We thus also ran SVR (with fitrsvm implemented in MAT-

LAB with all default settings) to compare the results. The RVM is

patented in the United States by Microsoft, but expired September

4, 2019.

2.2.4 Artificial neural network (ANN)

Neural network methods are able to learn abstract and complex

features from high dimensional input data sets based on partially

analyzing the progressive layer-to-layer non-linear transformations to

learn the variable degrees of importance of these features and to find

automatically the optimal way to combine them. Given the sample

size and relatively simple question, we considered the use of shallow

ANN.37 In contrast to the popularDeep Learning neural networkwhich

has many hidden layers, shallow ANN has only several hidden layers

in addition to the input layer to which the regional FBP SUVRs from

multi-ROIs are fed, and an output layer which generates the synthetic

PiBmcSUVR as a continuous variable.

Therewere a fewhyperparameters to decide on prior to running the

ANN, including the number of hidden layers and the number of neu-

rons in each hidden layer. The maximal number of hidden layers in our

investigationwas set tobe four, and themaximal numberof neurons for

each hidden layer was variable depending on the number of layers. For

a system with two hidden layers, for example, the maximal number of

neurons in each hidden layer was set to be 15. Similarly, for three, four,

and five hidden layers, the maximal number of neurons in each hidden

layerwas set tobe four. The loss functionwas thedefaultmean squared

error.

2.3 ML performance assessments and
comparisons

The primary objective assessment is the improved correlation coeffi-

cient, RML, between the synthetic-PiBmcSUVR and the PiBmcSUVR in

comparison to the correlation coefficient RCL between FBP mcSUVR

and the PiBmcSUVR in the independent testing dataset. Note that the

subscript ML in RML can indicate the correlation coefficient based on

PLRS, RVR,ANN, or ER, and the subscriptCL inRCL stands forCentiloid

as RCL is invariant under the linear conversion from themcSUVR to CL

scale. To test if RML is significantly higher than RCL, we used the Steiger

test to compare correlation coefficients while accounting for the exist-

ing correlation—the multi-regional FBP SUVR-based mapping mea-

sures (synthetic-PiB mcSUVR) and the FBP mcSUVR. In addition, we

also reportRML versusRCL results in the trainingdata set for the consis-

tency of findings between the training and the testing datasets. Though

our hypothesis is directional (RML is significantly higher than RCL), our

significance is two-tailed at p = 0.05 to be statistically conservative.

We also report the squared R (RML
2 or RCL

2) value as it is a measure

of the GOF (how tightly the data dots are distributed around the fitted

regression line) in our simple regression model, and it represents the

percentage of the total variance the model explains. All the analyses in

this study arebasedon the commonly used (ordinary) linear regression,

although the Deming regression accounts for measurement errors in

both tracers (treated as dependent or independent variable); it was

found that the difference between the two approaches is negligible.23

Regardless, the R2 or R values are not affected by the regressionmodel

choice.

https://ww2.mathworks.cn/matlabcentral/fileexchange/69407-relevance-vector-machine-rvm
https://ww2.mathworks.cn/matlabcentral/fileexchange/69407-relevance-vector-machine-rvm
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TABLE 2 ML results for left/right combined ROI data with
OASIS/AVID as training/testing datasets.

Training dataset (OASIS) Testing dataset (AVID)

MLmethod R p-value R p-value

CL (ref) 0.9047 N/A 0.9274 N/A

ER 0.9862 <1e-31 0.9536 0.04

PLSR 0.9651 1e-08 0.9634 10e-05

RVR 0.9623 10e-08 0.9728 2e-06

ANN (3) 0.9794 2e-10 0.9745 4e-07

ANN (2) 0.9905 <1e-31 0.9847 8e-08

Note: The Steiger test was used to compare the PiB/FBP correlation coef-

ficient (R) between the Centiloid (as reference) and each ML method. The

comparisonwas performed separately for the training and testing datasets.

Abbreviations: ANN(n), artificial neural network with n hidden layers;

AVID, the Centiloid project dataset downloaded from the GAAIN website

(http://www.gaain.org/centiloid-project); CL (ref), Centiloid reference; ER,

ensemble regression; FBP, florbetapir; ML, machine learning; OASIS, Open

Access Series of Imaging Studies; PiB, Pittsburgh compound-B; PLSR, par-

tial least square regression; ROI, region of interest; RVR, relevance vector

regression;.

3 RESULTS

Table 1 includes the participants’ demographic and clinical characteris-

tics for the two datasets. As stated in theMethods, the training dataset

consisted of 92 PiB-FBP pairs obtained from OASIS in the OASIS-3

release.26 The testing dataset consisted of 46 scans from the GAAIN

PiB-FBP Centiloid calibration study by AVID with 13 young controls

and 33 elderly subjects.17 We note that the two study cohorts differed

in terms of age and Mini-Mental State Examination (MMSE) scores;

however, this mismatch is less a concern for this study as we are more

interested in examining the generalizability of the results generated

from one cohort to another.

Table 2 shows the results for each of the ML algorithms when the

SUVR data from 90 ROIs were used as the input to each ML model.

The values of RCL in the training and testing datasets were 0.9047

and 0.9274, respectively, andwere not statistically different from each

other (p = 0.2232). They each were used as the reference value in

the respective training and testing datasets to assess the correlation

coefficient improvement by eachML algorithm.

Among the various ML models evaluated, using the Steiger test we

foundmoderatebut significant improvementof the correlationbyER in

the testingdataset (RER=0.9536,p=0.04, vsRER=0.9862 in the train-

ing dataset, p< 1e−31).We observed significant improvement for PLSR

(with the first three components accounting for 96% of the total accu-

mulative variation) in the testing dataset (RPLSR = 0.9634 , p= 10e−05,

vsRPLSR=0.9651 in the trainingdataset,p=1e−08). ForRVRwith a sin-

gle kernel,weobservedRRVR =0.9728 in the testing dataset, p=2e−06,

versus RRVR = 0.9623 in the training dataset, p = 10e−08. In compar-

ison to the RVR, the SVR was RSVR = 0.9530 in the testing dataset,

p= 0.001, versus RSVR = 0.9696 in the training dataset, p= 2e−13.

Among the shallow ANN models we evaluated with the number of

layers ranging from one to four, Figure 1 illustrates the ANN model

with two layers.ANNmodels performedbetter than theotherMLmod-

els in general, with the RANN values ranging from 0.9762 to 0.9847

in the independent testing dataset. The better performance, however,

was not associated withmore layers. Corresponding to RANN = 0.9847

in the independent testing dataset and generated with two hidden

layers (Figure 1), the value of R2 or the shared variance percentage

was RANN
2
= 0.9696 (for the training dataset, RANN = 0.9905 and

RANN
2
= 0.9811). Figure 2 plots the linear regression with R and R2

values for this ANN performance in the training (top of Figure 2) and

testing (bottom of Figure 2) datasets. We used the CL scale in the

graphs, noting the R and R2 values are the same for mcSUVR and CL.

The 97% of the total variance explained is in contrast with the 91%

of the total variance for ER (RER = 0.95363 and RER
2
= 91%, Table 2).

More importantly, this 97%R2 forANN is an increaseofmore than10%

in contrast to the 86% of the total variance explained with the original

CL approach (Table 2). Results in Table 3 for each of theML algorithms

when the SUVR data from the separate bilateral ROIs were used were

similar to those in Table 2with the combined left/right ROI data.

The performance of theseMLmethodswas further confirmedwhen

we switched the training and testing datasets for our post hoc analysis.

For ANN in the switched independent testing dataset, RANN = 0.9721

and RANN
2
= 0.945 (Figure S1 and Table S1). As shown in Table S1,

significant improvements were also observed for PLSR and RVR, but

not for ER. In addition to the improved R2, we also explored the

inter-tracer bias issue which essentially led to the creation of the Cen-

tiloid. Between the ML-based synthetic mcSUVR for FBP and the PiB

mcSUVR, the inter-tracer regression line’s slope is closer to 1.0 and

intercept closer to 0.0 prior to the level-1 and level-2 Centiloid conver-

sion as shown in Figure S2 and Table S2.We observed that the original

FBP mcSUVR values deviate the most from the target PiB mcSUVR

particularly around the higher SUVR range on the y-axis (eg, 1.2 and

above), versus the tighter fit seen with the synthetic SUVRs generated

from eachML algorithm.

4 DISCUSSION

This study introduces approaches to harmonize amyloid plaque bur-

den measurements among different amyloid PET tracers. For FBP-PiB

tracer pairs, we showed stronger correlations, or equivalently, bet-

ter GOF (ie, higher percentage of the total variance accounted for)

between the FBPmulti-ROI SUVRmapped synthetic PiB mcSUVR and

the actual PiB mcSUVR in contrast to the correlations between the

two tracers using the Centiloid calibration approach. This significant

improvement was observed using either OASIS or AVID as the testing

dataset.

For this study, our goal was to harmonize the global mcSUVR

between two tracers based on cortical amyloid burden SUVRmeasure-

ments from one tracer (FBP) mapped to the mcSUVR of another (PiB

as the reference). This method focuses directly on the global measure

as the final outcome, as does the CL approach. The tracer uptake from

multiple brain regions contains rich biological information of amyloid

burden in thebrain in addition tonon-specific binding andother factors
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F IGURE 1 Artificial neural network (ANN)model configuration with two hidden layers. b, bias; FBP, florbetapir; mcSUVR, mean-cortical
SUVR; PiB, Pittsburgh compound-B; ROI, region of interest; SUVR, standard uptake value ratio;W, weights.

that contribute to the tracer-specific amyloid PET measures. Logically,

this rich information contributed to the global mcSUVR estimation

directly and indirectly by the ML algorithms which served implicitly

as a filter to enforce the more adequate estimation of amyloid bur-

den for the given tracer, as well as capture the commonality measured

by different PET tracers such as FBP and PiB. In a related study, we

also developed a harmonization approach directly operating on the

imaging data themselves and generating synthetic PiB images from

FBP data, and achieved significant improvement in the agreement in

global mcSUVR, although to a lesser degree than accomplished by the

methods proposed in the current approach.38 Further investigation of

approaches that can achieve optimal harmonization at both voxel and

global level is warranted.

Instead of simply calibrating different mcSUVRs to the common CL

scale with GOF unchanged by Centiloid or by AMYQ39 (an alternative

to Centiloid), our approach attempts to optimize the GOF measured

as R2 or equivalently R. In this regard, our harmonization approach

is superior with 97% of the total variance explained via ANN versus

the CL-based approach (R2 is 86% for testing the AVID dataset). The

same conclusion was reached when we switched the training and test-

ing datasets. Though in theory the ideal 100% of the total variance is

not achievable,we expect better resultswhen larger datasets are avail-

able which allow more comprehensive search of model configurations

and the estimation of the model parameters. We acknowledge that

theML-harmonized amyloidmeasures were standardized using the CL

calibration procedure already established5; so was the AMYQ39 per-

formancewhich is compatiblewithCentiloid but easier to use as it does

not requireMRIor thedefinitionof a priori reference and cortical ROIs.

The nonlinearmapping of amulti-regional SUVRof one tracer to the

mcSUVR of another tracer is one way to improve the harmonization

of the global amyloid burden measure. Additionally, more adequate

SUVR quantification and imaging preprocessing such as proper par-

tial volume correction18 could also improve the harmonization. For

example, recent comparison studies demonstrated that the global amy-

loid burden measures between PiB and FBP have a shared variance

(the R2) ranging from approximately 70% to 90% depending on the

quantification pipelines and cohorts.16–18 In general, adequate pre-

processing can be used for CL alone or in conjunction with ML to

achieve better results. Potentially, ML especially ANN may be robust

enough to handle, to some degree, variability in acquisition, quantifi-

cation, and preprocessing. Further studies are needed to assess such

robustness or the need to build different ML models to handle such

variability.

This study does not intend to address the differential contributions

of regional SUVRs to the outcomes of ANN and other ML models. For

our simple shallow ANN model, it is feasible to further explore such

differential contributions, and consequently provide some insights on

regions where specific or non-specific bindings are seen and how they

were used in the mapping to the mcSUVR of PiB. In general, numerous

studies have demonstrated the power of the neural network approach

in solving difficult problems when traditional methods, including some

ML techniques assessed in this study, have failed. Continued efforts,

including those to better understand of how a model behaves (such as

the ones used in this study) and to explore more advanced models, will

aid the field andmakeuseofmultiple amyloid tracers frommulti-center

studies more feasible.

Our primary focus for this study is the improved harmonization

(GOF), measured by R2, between two tracers. The inter-tracer bias

issue was separated and adequately addressed by the integrated Cen-

tiloid level-1 and level-2 scaling/linear regression, so the inter-tracer

regression slope is 1.0 and intercept 0.0 in Centiloid scale. As part of

our post hoc exploratory analysis, we examined the linear regression

part of Centiloid standardization in terms of the slope and intercept

between raw FBP mcSUVR and the PiB mcSUVR, between the syn-

thetic PiBmcSUVR for FBP and the PiBmcSUVR.We noted bigger bias

between raw FBPmcSUVR and PiBmcSUVR, with a slope of 1.622 and

an intercept of −0.6900 as compared to, for example, ANN with two

hidden layers, which has a slope of 1.0081 and an intercept of−0.0100.

Future studies toexamine thebias in amore systematicwayareneeded

to see the consistent harmonization improvement and bias reduction.

While our datasets are small, they are adequate for the relatively

simpleML algorithmswe examined in the current study.Moreover, the

separation of the two naturally independent datasets, one as training

and the other as testing with the additional training/testing switch for

cross-validation, provides us with a certain level of assurance regard-

ing the generalizability of our results. Nevertheless, for ML models to

be adequate and generalizable, larger datasets are needed especially

for more complex models (eg, more layers and/or a greater number of

neurons in each layer for ANN) aiming for better results. New studies

are being actively planned with adequate or even larger sample sizes,

additional amyloid PET tracer pairs and/or different reference regions

to confirm, generalize, and further improve our findings. Additionally,
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F IGURE 2 Linear regression plot with displayed R and R2 values
for artificial neural network (ANN) performance with two hidden
layers in the training (top, OASIS) and testing (bottom, AVID) datasets.
The regression relates the ANNmapped florbetapir (FBP) Aβ burden
to PiB Aβ burden expressed in Centiloid (CL). Note that the R and R2

values remain the same for mcSUVR and for CL. Aβ, β-amyloid; AVID,
the Centiloid project dataset downloaded from the GAAINwebsite
(http://www.gaain.org/centiloid-project); mcSUVR, mean-cortical
SUVR; OASIS, Open Access Series of Imaging Studies; Pittsburgh
compound-B (PiB).

we also believe that our approach can be easily adopted for tau PET

tracer harmonization.

In summary, we demonstrated much improved inter-tracer harmo-

nization of PET measurement of amyloid burden with the use of the

multi-ROI amyloid measures of one tracer to map the global amyloid

burden of another tracer and the use ofML techniques as compared to

the linear regression-based CL calibration approach.

TABLE 3 ML results with separate left and right ROI data with
OASIS/AVID as training/testing datasets.

Training dataset (OASIS) Testing dataset (AVID)

MLmethod R p-value R p-value

CL (ref) 0.9021 N/A 0.9273 N/A

ER 0.9936 <1e-31 0.9532 0.03

PLSR 0.9654 9e-09 0.9642 5e-05

RVR 0.9750 2e-12 0.9651 0.001

ANN (3) 0.9620 6e-05 0.9838 7e-07

ANN (2) 0.9653 1e-05 0.9846 1e-07

Note: The Steiger test was used to compare the PiB/FBP correlation coef-

ficient (R) between Centiloid (as reference) and each ML method. The

comparisonwas performed separately for the training and testing datasets.

Abbreviations: ANN(n), artificial neural network with n hidden layers;

AVID, the Centiloid project dataset downloaded from the GAAIN website

(http://www.gaain.org/centiloid-project); CL (ref), Centiloid reference; ER,

ensemble regression; FBP, florbetapir; ML, machine learning; OASIS, Open

Access Series of Imaging Studies; PiB, Pittsburgh compound-B; PLSR, par-

tial least square regression; ROI, region of interest; RVR, relevance vector

regression.
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