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Abstract

INTRODUCTION: In 2013, the ALzheimer’s and FAmilies (ALFA) project was estab-

lished to investigate pathophysiological changes in preclinical Alzheimer’s disease

(AD), and to foster research on early detection and preventive interventions.
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METHODS:We conducted a comprehensive genetic characterization of ALFA partic-

ipants with respect to neurodegenerative/cerebrovascular diseases, AD biomarkers,

brain endophenotypes, risk factors and aging biomarkers.Weplacedparticular empha-

sis on amyloid/tau status and assessed gender differences. Multiple polygenic risk

scoreswere computed to capture different aspects of genetic predisposition.We addi-

tionally compared AD risk in ALFA to that across the full disease spectrum from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI).

RESULTS: Results show that the ALFA project has been successful at establishing a

cohort of cognitively unimpaired individuals at high genetic predisposition of AD.

DISCUSSION: It is, therefore, well-suited to study early pathophysiological changes in

the preclinical AD continuum.
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Highlights

∙ Prevalence of ε4 carriers in ALzheimer and FAmilies (ALFA) is higher than in the

general European population

∙ The ALFA study is highly enriched in Alzheimer’s disease (AD) genetic risk factors

beyond APOE

∙ AD genetic profiles in ALFA are similar to clinical groups along the continuum

∙ ALFA has succeeded in establishing a cohort of cognitively unimpaired individuals at

high genetic AD risk

∙ ALFA is well suited to study pathogenic events/early pathophysiological changes in

AD

1 BACKGROUND

In 2013, the ALzheimer’s and FAmilies (ALFA) project was launched

by the Barcelonaβeta Brain Research Center with the aim of enhanc-

ing our understanding of the pathogenesis and pathophysiology of

Alzheimer’s disease (AD) at its early preclinical stages.1 The ALFA

project consists of the ALFA parent cohort (NCT01835717), and

the nested ALFA+ cohort study (NCT02485730). The ALFA parent

cohort is composed of 2743 cognitively unimpaired participants aged

between 45 and 74 years at the time of recruitment who underwent

cognitive testing, clinical history, magnetic resonance imaging (MRI),

environmental and lifestyle questionnaires, and blood sampling. A sig-

nificant feature of ALFA is that it is a genetically enriched cohort of

cognitively unimpaired individuals, as ∼50% of them are adult children

of patientswithADdementia diagnosedbefore the ageof75years. The

recruitment strategy of the ALFA parent cohort has resulted in a pop-

ulation that is enriched in genetic risk factors for AD, the most notable

of which is the apolipoprotein E (APOE)-ε4 allele. A subset of the ALFA

parent cohort participants were invited to participate in a nested lon-

gitudinal long-term study, which is referred to as ALFA+. This study

involved more detailed phenotyping, including fluid (blood and cere-

brospinal fluid [CSF]) and positron emission tomography (PET). ALFA+

participants were selected according to their age, sex, and APOE-ε4
carriership to cover the full range of the AD risk spectrum.

In a pilot study (NCT02198586), ∼575 ALFA parent cohort partic-

ipants underwent MRI to investigate the effects of APOE variants on

different cerebral phenotypes. As a result of this project, we found that

ε4-homozygous displayed an age-related increase in radial but not axial

diffusivity, consistent with a reduced myelin sheath in several white

matter regions.2,3 When assessing gray matter volumes in APOE-ε4
homozygous, we found reductions in brain regions known to undergo

atrophy in symptomatic AD stages4 and dose-dependent protective

effects of the APOE-ε2 allele.5 We also showed, as suggested in previ-

ous studies, that APOE-ε4 reversed the association between cognitive

performance and brain morphology, similar to aging, suggesting that

this risk allele leads to an accelerated biological phenotype of brain

aging.6 Furthermore, ε4-homozygous displayed reduced connec-

tivity between networks in areas typically susceptible to amyloid

deposition in the early AD continuum, and altered effects of amyloid

on brain structure.7,8 Additional results indicated that cognitively

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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unimpaired APOE-ε4 homozygous were at significantly higher risk of

having pathological levels of white matter hyperintensities (WHM)

than heterozygotes,9 and observed a protective effect of the ε2 allele

on global WMH.10 We also found a higher prevalence of cerebral

microbleeds in APOE-ε4 carriers,11 although no association was found

between APOE-ε4 and the enlargement of perivascular spaces.12

These findings have encouraged us to extend the genetic char-

acterization of the ALFA parent cohort beyond APOE to deepen

our understanding of the biological mechanisms associated with

genetic predisposition to AD at preclinical stages, which may aid in

the implementation of prevention programs. In this article, we present

the rationale, methods, and genetic characterization of participants

of the ALFA parent cohort. In addition, we assessed AD genetic risk

prediction across the spectrum of the disease by including data from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) project.13

2 METHODS

2.1 Design

On the September 17, 2012, a press conference was held where the

main aims of the ALFA project were presented along with detailed

inclusion and exclusion criteria.1 Briefly, participants had to be cogni-

tively unimpaired Spanish and/or Catalan-speaking individuals aged

45–74 who agreed to undergo clinical interviews and questionnaires

associated with dementia risk factors, cognitive tests, a blood sample

extraction for DNA analysis, andMRI. A total of 2743 individuals were

recruited in the ALFA parent cohort, with 86.3% reporting a diagnosis

of AD in at least one of their parents. When considering a more strict

family history encoding, 47.4% of the ALFA study participants had at

least one of their parents that had been diagnosed with AD before the

age of 75 years. In total, 2686 participants were genotyped, as 57 indi-

viduals were excluded since blood extraction could not be performed

or sufficient DNA could not be obtained to perform the genotyping.

The genetic data processing procedure is detailed in Figure S1. Sum-

mary information on project participants (Figure 1), DNA extraction,

RESEARCH INCONTEXT

1. Systematic review: The ALFA (ALzheimer and FAmi-

lies) project prospectively follows cognitively unimpaired

late-/middle-aged participants, most of whom are adult

offspring of Alzheimer’s disease (AD) patients, with the

aim of investigating pathophysiological events that occur

during the preclinical stages of AD and to test preventive

interventions. We aimed here to genetically character-

ize ALFA participants and to describe AD risk prediction

across the disease spectrum.

2. Interpretation: The ALFA study population is highly

enriched for AD genetic risk factors beyond apolipopro-

tein E (APOE), defined by individuals in the early stages of

AD.ALFA studyparticipants showheterogeneous genetic

profiles similar to clinical groups along the AD contin-

uum. Results support that the ALFA parent cohort and,

evenmore,ALFA+arehighly enriched for genetic risk fac-

tors for AD. This made them suitable for investigating the

early pathophysiological alterations in AD.

3. Future directions: Integration with other -omic data

modalities and risk factors, as well as collaborating with

global initiatives will be crucial to discover underlying

diseasemechanisms.

genotyping, and data availability is described in Supplementary meth-

ods. A subset of ALFA parent cohort (N = 380), referred to as ALFA+,

also underwent lumbar puncture to determine biomarkers in CSF,

enhanced MRI, more detailed cognitive testing, blood sampling for

biomarker determination, 18F-fluoro-2-deoxyglucose PET, amyloid,

and tau PET imaging. Participants were classified into A/T groups

defined by their biomarker profile according to the A/T framework

described in Ref.14 Briefly, CSF amyloid-β 42 (Aβ42) levels of ≤1098

pg/ml were designated as A+, and phosphorylated tau (pTau) levels of

≥24 pg/ml were designated as T+.15

F IGURE 1 Summarized information of the characteristics of project participants.
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2.2 Genetic quality control and imputation

Quality control (QC) of genetic data was performed with the PLINK

software. Samples with a call rate of less than 98%, mismatched genet-

ically determined sex (from X-chromosome heterogeneity) versus that

coming from demographic data, or excess of heterozygosity (four stan-

dard deviations from the mean) estimated by an F statistic, were

excluded from the analyses. Individuals at high genetic relatedness (at

the level of cousins or closer relatives), sharing proportionally more

than 18.5% of alleles (IBD > 0.185), were also excluded. After com-

pletion of sample level QC, genetic variants with low minor allele

frequency (MAF < 1%), a Hardy-Weinberg equilibrium (p < 10−6),

and missingness rates >5% were also excluded. Population stratifica-

tion was checked by clustering the samples using principal component

analysis. After the QC procedure, a total of 2527 cognitively unim-

paired individuals from the ALFA parent cohort were genetically

characterized.

Imputation of genetic variants was carried out using the Michi-

gan Imputation Server with the Haplotype Reference Consortium Panel

(HRC r1.1 2016)16,17 following default parameters and established

guidelines. Mismatched and monomorphic genetic variants were

removed during pre-imputation filtering. Genetic variants with invalid

alleles were switched and flipped in the genome-wide association

studies (GWAS) sets (Human Reference Panel: GRCh37 hg19 b37

humanG1Kv37). Phasing was performed using the EAGLE software

v.2.4, and imputation results were rechecked using standard Michi-

gan imputation server QC parameters (imputation quality >0.2 and

MAF>1%).

2.3 Statistical analysis

Differences in demographic characteristicswere assessed according to

APOE-ε4 carriership, AT groups and sex, using chi-square tests for cat-

egorical variables and parametric (t-test, ANOVA) and non-parametric

tests (Wilcox test or Kruskal-Wallis) for continuous normally and

non-normally distributed variables, as appropriate. Pairwise compar-

ison p-values were also provided, adjusted for false discovery rate

correction.

Polygenic risk scores (PRS) were computed using PRSice version

218 to assess polygenicity. PRSice computes PRS by summing all SNP

alleles carried by participants, weighting them by the SNP allele effect

size estimated in a previous GWAS, and normalizing the score by the

total number of SNPs included. PRS were calculated in representa-

tive genetic variants per linkage disequilibrium block (LD) (clumped

variants), using a cutoff for LD of r2 > 0.1 in a 250-kb window. For

PRS calculation of AD and AD CSF biomarkers, the APOE region was

additionally excluded (chr19:45,409,011-45,412,650; GRCh37/hg19).

Resultswere displayed at a restrictive threshold, 5×10−6. A total of 40

PRS were calculated based on recently published GWAS, distributed

in 6 main categories of diseases and conditions: AD biomarkers,19

neurodegenerative diseases,20–22 cerebrovascular diseases,23–24

brain endophenotypes of AD,25–27 AD risk factors,28–35 and aging

biomarkers.36–39 Further details on the PRS can be found in Table

S1. In addition, individuals were classified into three groups based on

the distribution of PRS for AD, Aβ42, and pTau: low genetic predis-

position (PRS ≤ percentile 10), intermediate genetic predisposition

(percentile 10 < PRS ≤ percentile 90), and high genetic predispo-

sition (PRS > percentile 90). Additionally, significant differences in

the median values (Wilcoxon test) and variances (Levene test) of

the PRS were evaluated between APOE-ε4 carriers, AT groups in

the ALFA+ cohort, and sex. Finally, the AD predisposition in ALFA

was compared (pairwise median test) to that across the full disease

spectrum in the ADNI database by including controls (CN) (N = 530),

amyloid positive individuals with mild cognitive impairment (MCI)

(N= 598), and AD dementia patients (N= 205). ALFA+ and ADNI par-

ticipants were further stratified according to amyloid status (ALFA+:

A+ N = 134, A- N = 246; ADNI: CN A+ N = 96, MCI A+ N = 264,

ADA+N= 132).

3 RESULTS

3.1 Demographic characteristics and APOE
genotype distribution

A characteristic feature of the ALFA study is the high prevalence

of APOE-ε4 carriers compared with the general European population

(35.6% vs. 14%; p < 0.001),40 and the high prevalence of homozy-

gotes in the ALFA+ subsample (Table 1, Figure 2). Significant differ-

ences in demographic characteristics were found between APOE-ε4
non-carriers (N = 1624; 64.39%) and carriers (N = 898; 35.61%).

Non-carriers were on average older than ε4-homozygous individuals

(p = 0.024). The percentage of women in the non-carrier group was

higher than in the APOE-ε4 heterozygous one (p = 0.038). We also

observed a higher percentage of individuals with a family history of

AD in APOE-ε4 heterozygous compared to non-carriers (p < 0.001)

(Figure 2A, Table S2). In ALFA+, a total of 8% (N= 31) of the individuals

were APOE-ε4 homozygous. Moreover, among APOE-ε4 carriers, 8.2%

of individuals were A+T+ (vs. 7.5% among non-carriers), 41.3% were

A+T- (vs. 10.9% among non-carriers), and 50.5% were A-T- (vs. 81.6%

among non-carriers) (Figure 2B, Table S3, and S4). Notably, there was a

higher percentageofA+ individuals amongAPOE-ε4 carriers compared

with non-carriers (49.5% vs. 18.4%; p < 0.001). Similar to the overall

sample, the proportion of women was higher in the non-carrier group

compared to the APOE-ε4 heterozygous one (p= 0.029). No significant

differences were found in the distribution of individuals according to

family history of AD.

3.2 Polygenic characterization of ALFA
participants

PRS of AD (PRS-AD) showed the highest variability in the sample

(IQR = 0.25) as well as frontotemporal dementia (FTD) subtypes

(IQR > 0.035), sleep risk factors and biological aging phenotypes
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TABLE 1 Demographic characteristics and APOE genotypes distribution in the ALFA parent cohort as well as in the ALFA+ subsample

ALFA parent cohort

(N= 2527) N ALFA+ subsample (N= 380) N

Age (years, median) 56.00 [51.00;62.00] 2527 57.00 [53.75;61.00] 380

Sex (n, %): 2527 380

Men 932 (36.88%) 149 (39.21%)

Women 1595 (63.12%) 231 (60.79%)

Education (years, median) 12.00 [10.00;17.00] 2527 12.00 [11.00;17.00] 380

MiniMental State Exam (0-30, median) 29.00 [28.00;30.00] 803 30.00 [29.00;30.00] 68

APOE-ε4 load (n,%) 2522 380

Non-carriers 1624 (64.39%) 174 (45.79%)

One ε4 allele 810 (32.12%) 175 (46.05%)

Two ε4 alleles 88 (3.49%) 31 (8.16%)

APOE-ε4 status (n, %) 2522 380

Non-carriers 1624 (64.39%) 174 (45.79%)

Carriers 898 (35.61%) 206 (54.21%)

Family history (FH) of AD (n,%) 2527 380

No 294 (11.63%) 28 (7.37%)

Yes 2233 (88.37%) 352 (92.63%)

Parental family history of AD (n,%) 2527 380

Both 97 (3.84%) 19 (5.00%)

Father 679 (26.87%) 107 (28.16%)

Mother 1457 (57.66%) 226 (59.47%)

No Family History of AD 294 (11.63%) 28 (7.37%)

Family history of AD (n,%) 2527 380

age of onset< 75 1436 (56.83%) 232 (61.05%)

age of onset>= 75 866 (34.27%) 120 (31.58%)

at least one < 75 72 (2.85%) 16 (4.21%)

both>= 75 45 (1.78%) 7 (1.84%)

No FH 108 (4.27%) 5 (1.32%)

Amyloid status (n, %) 380

Aβ42/Aβ40- 246 (64.74%)

Aβ42/Aβ40+ 134 (35.26%)

AT classification (n, %) 380

A-T- 246 (64.74%)

A+T- 104 (27.37%)

A+T+ 30 (7.89%)

CSF Aβ142 (pg/ml, median) 1160.00 [852.80; 1563.50] 376

CSF pTau181 (pg/ml, median) 14.18 [11.09; 18.59] 377

Centiloids (whole cerebellum) (median) −1.32 [−6.52; 5.30] 324

Note: A total of 5 individuals presented NA values in APOE-ε4 characterization. A total of 13 individuals with A-T+ profile were excluded from the ALFA+

subsample. Available CSF biomarkers data after outliers removal. A total of 56 individuals presented NA values in Centiloids. Amyloid positivity is defined as

Aβ42/Aβ40< 0.071.

Abbreviations: ALFA, ALzheimer’s and FAmilies;APOE, apolipoprotein E; CSF, cerebrospinal fluid.
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F IGURE 2 Distribution of APOE-ε4 carriers in the ALFA and ALFA+ samples. ALFA, ALzheimer’s and FAmilies; APOE, apolipoprotein E.

(IQR > 0.04), whereas Parkinson’s disease (IQR = 3⋅10−5), cere-

bral infarction (IQR = 8⋅10−5), and intracerebral hemorrhage

(IQR = 2⋅10−5) were the main conditions in which subjects had

more homogeneous scores (IQR∼ 0) (Figure 3, Table S5).

Weobserved that ε4homozygoushadhigher scores forADandFTD,

ADbiomarkers, and somebrain endophenotypes, risk factors and aging

conditions compared with heterozygotes and non-carriers (Figure S2).

Moreover, we observed that A+T- individuals had higher scores for

PRS-AD (p = 0.006) as well as lower median PRS of CSF Aβ42 levels

than A-T- (p ∼ 0). In addition, A+T- showed higher genetic predisposi-

tion to WMH than A-T- (p = 0.006). Similarly, A+T- showed a higher

median for the risk score of microbleeds and longer sleep duration

than A-T- (p < 0.018) (Figure S3, Table S6). Finally, only significant dif-

ferences were found between sex for genetic predisposition to social

isolation and sleep duration (Figure S4, Table S7).

3.3 Characteristics of individuals with AD genetic
predisposition

Wefound significant differences in thepercentageof ε4 carriers among

individuals classified at high (81%), intermediate (33.3%), and low
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F IGURE 3 Distribution of genetic scores in the ALFA parent cohort. ALFA, ALzheimer’s and FAmilies.

(7.94%) genetic predisposition to AD (p < 0.001) (Table S8). When

the APOE region was excluded from the PRS-AD, the proportion of

ε4 carriers and non-carriers was balanced. When classifying individu-

als based on both the PRS-AD and the PRS-ADnoAPOE, the proportion

of individuals with a positive family history of AD was higher in the

group with high genetic predisposition to AD compared to the rest of

groups. We did not find any differences in the proportion of women

and men across groups. In ALFA+, we also observed a higher per-

centage of ε4 carriers among individuals at high genetic predisposition

to AD (89.39%) compared to individuals at intermediate genetic pre-

disposition (50.53%, p < 0.001) and low (12.90%, p < 0.001) genetic

predisposition. In the high genetic group, 21.2% of the individuals

were 𝜀4-homozygous (Table S9). The proportion of A+T- and A+T+

was also significantly higher in the group at higher genetic predispo-

sition of AD compared to the intermediate and low groups (p < 0.05).

When removing the APOE region from the genetic score computation

these significant differences were no longer observed. When we clas-

sified individuals according to their genetic predisposition to higher

CSF-Aβ42 levels, we found that the proportion of APOE-ε4 carriers

and, specifically, homozygotes, was significantly higher in the geneti-

cally predisposed group to present abnormal levels of CSF-Aβ42 (low

genetic predisposition to higher CSF-Aβ42 levels) compared to the

other groups (p< 0.001). However, whenwe removed the APOE region

from the PRS-Aβ42, we did not observe significant differences in the

percentage of APOE-ε4 carriers among groups (Table S10). Similarly,

we found a higher proportion of APOE-ε4 carriers, and specifically,

homozygotes, in the group of individuals at higher genetic predispo-

sition to display higher CSF-pTau levels (at risk group) (p < 0.001).

However, we did not find these differences when removing the effect

of the genetic variants in the APOE region (Table S11). The above

results were also assessed for the subgroup of individuals with avail-

able CSF biomarkers from the ALFA+ study. Significant differences

were also found in the distribution of APOE-ε4 carriers among genetic

groups based on their genetic predisposition to CSF Aβ42 levels (Table
S12). As in the whole sample, higher percentages of both APOE-ε4 het-
erozygous and homozygous were found in the group at lower genetic

predisposition to higher CSF Aβ42 levels compared with the high and

intermediate groups (p < 0.001). Moreover, in this group we found a
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F IGURE 4 Distribution of genetic scores of AD along the AD continuum. (A) Subgroups fromALFA and ADNI within the AD continuum.
(B) Subgroups within the AD continuum stratifying ALFA participants by amyloid status. Pairwise comparisons are assessed to compare themedian
PRS-AD (Wilcoxon test) among groups. Significant results at nominal p-value are displayed (p-value< 0.05*; p-value< 0.01**, p-value< 0.001***).
AD, Alzheimer’s disease; ADNI, Alzheimer’s DiseaseNeuroimaging Initiative; ALFA, ALzheimer’s and FAmilies; PRS-AD, polygenic risk scores of AD.

higher percentage of A+ individuals compared with the intermediate

(p = 0.008) and high (p = 0.008) genetic groups. In the low genetic

group, we found a higher percentage of A+T+ individuals than in the

higher group (p = 0.012) but lower than in the intermediate group

(p = 0.005). These differences were not observed when removing

the APOE region. Significant differences were also observed between

genetic groups based on their genetic predisposition toCSF pTau levels

(Table S13). As in the whole sample, higher percentages of both APOE-

ε4 carriers and homozygous were found in the group showing high

genetic predisposition to higher CSF pTau levels compared with the

low and intermediate groups (p < 0.001). Moreover, in the high group,

we found a higher percentage of A+ individuals as well as a higher

percentage of A+T+ individuals compared with the low and interme-

diate genetic groups (pairwise comparisons p < 0.05). Non-significant

differences were observed after removing the APOE region.

3.4 AD genetic risk prediction in the whole
disease spectrum

The median value of the PRS-AD increased along the AD continuum

(Figure 4). In ADNI (Table S14), significant differences in the median

score of PRS-AD were observed between CN and MCI (p < 0.001)

and between CN and AD (p < 0.001). Significant differences were also

found between MCI and AD subjects (p < 0.05). When participants

from the ALFA parent cohort were included in the spectrum, we found

that the median value of the PRS-AD in ALFA participants was higher

than in CN from ADNI (p < 0.001) although was significantly lower

than in MCI (p < 0.01) and AD (p < 0.001) (Figure 4A). When ADNI

and ALFA+ individuals were stratified by Aβ status, we found that the

genetic predisposition to AD was higher in ALFA+ A+ than in ALFA+

A- (p < 0.001) (Figure 4B). Moreover, the median PRS-AD in ALFA+

A+ individuals was higher compared both to CN A- (p < 0.001) and

CN A+ (p < 0.05). Although there were no significant differences

between them, ALFA+ A+ individuals showed a higher median value

of the PRS-AD than MCI A+. Non-significant differences were found

between ALFA+ A+ and AD individuals (Table S15). Comparisons

stratifying by other risk factors were assessed (Figure 5). We found

significant differences among APOE-ε4 groups for all disease-stage

groups (Figure 5A). The higher the number of ε4 alleles, the higher the

median value of the PRS-AD. Neither in ALFA A- nor in A+ significant

differences were found in the median PRS-AD between ε4 allele

heterozygous and homozygous. Nonetheless, in both groups, both ε4
allele heterozygous and homozygous displayed higher values for the

median PRS-AD than non-carriers (p < 0.001). Differences were also

assessed stratifying by A/T profiles (Figure 5B). In the ALFA+ sample,

A+T- individuals showed higher median PRS-AD than A-T- (p< 0.001).

In ADNI, CN that were A+T+ displayed higher median values than

A-T- (p< 0.01). InMCIs, significant differences were found between all

pairwise comparisons (p < 0.05), while in AD patients, non-significant

differences were found in the median value of the PRS-AD among AT

groups. Finally, we did not observe significant sex-differences within

ADNI nor in ALFA groups (Figure 5C). Moreover, when removing

the APOE region, the median score was significantly lower (p < 0.05)

in CN A- compared to AD A+ from ADNI (Figure S5A, Table S16).

Also, we consistently observed a higher median score in ALFA+ A+,

MCI A+, and AD A+ groups, specifically for less restrictive inclusion

thresholds (Tables S17–S20). An extended characterization of other

neurodegenerative and aging-related scores along the AD continuum

can be found in the Supplementary Results documentation.
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F IGURE 5 Distribution of genetic scores of AD along the AD continuum stratified by risk factors. (A) Distribution stratified by APOE-ε4
carriership. (B) Distribution stratified by AT group. (C) Distribution stratified by sex. Pairwise comparisons are assessed to compare themedian
PRS-AD (Wilcoxon test) among groups. Significant results at nominal p-value are displayed (p-value< 0.05*; p-value< 0.01**, p-value< 0.001***).
AD, Alzheimer’s disease; APOE, apolipoprotein E; PRS-AD, polygenic risk scores of AD.

4 DISCUSSION

The genetic characterization of ALFA parent cohort participants

enabled us to investigate the genetic predisposition to neurodegener-

ative and other complex diseases in cognitively unimpaired individuals,

many of whom were in the preclinical AD continuum. Our results

showed a significant enrichment of genetic risk factors for AD in the

ALFA parent cohort, further highlighting its suitability for studying

early pathophysiological alterations in AD. Specifically, we observed a

substantial genetic predisposition to AD in ALFA participants, even in

the absence of the APOE-ε4 allele. These findings suggest that other

genetic variants, independent of APOE, may play a role in modulating

the risk of AD and potentially compensate for or complement the

effect of APOE in genetic predisposition to the disease. Our results

align with previous studies,41,42 emphasizing the importance of con-

sidering additional APOE-independent mechanisms when exploring

genetic predisposition to AD. This illustrates how the use of PRS

can reveal additional pathophysiological pathways with potential for

prevention,43 which is relevant since the pathophysiology of AD has

not yet been fully elucidated and the best biological characterization

to date focuses on the determination of AD biomarkers.44,45 However,

it is important to emphasize the contribution of APOE to the observed

genetic enrichment.APOE has beenwell-established as amajor genetic

risk factor for AD, primarily associated with early alterations in Aβ42
metabolism.46 In our study, individuals at genetic predisposition to AD

displayed abnormal CSF Aβ42 levels and were enriched for APOE-ε4
homozygosity. These findings support the notion that APOE plays a

crucial role in the early pathogenesis of AD, while also suggesting that

additional genetic variants contribute to theoverall genetic risk profile.

Furthermore, comparing the PRS-AD profiles of the ALFA+ par-

ticipants, particularly those already on the AD continuum (A+), with

clinical groups in ADNI, revealed that the ALFA participants exhibited

a higher genetic risk profile than CN in ADNI, and similar to that of

the clinical groups (MCI, AD). These results support the notion that

the ALFA cohort is well-suited for detecting early pathogenic events in

AD, encompassing both APOE-associated and independent biological
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pathways. The study also confirmed that CN individuals with abnor-

malADbiomarkers had ahigher genetic predisposition toAD, as shown

by the distribution of PRS-AD against AT groups. These results suggest

that PRS could be used as a proxy for risk stratification of unimpaired

individuals.47,48 However, further research is needed to establish the

additional information that PRS provide in addition to biomarkers and

their utility in research and clinical practice.

Moreover, individuals showing AD pathological changes (A+T-)

showed higher genetic predisposition to AD, WMH, long sleep dura-

tion, and microbleed counts compared to subjects with normal levels

of AD biomarkers (A-T-). We did not detect any differences in PRS

variability in T+ individuals, likely due to the low sample size of this

group at the moment. These findings suggest different patterns of

genetic predisposition in the Alzheimer’s continuum and/or increased

susceptibility to comorbidities .49,50 For instance, our results imply

a possible common pathological mechanism linking genetic predis-

position to cerebrovascular disease and sleep measurements to the

developmentof amyloid-betapathology at theearliest stagesof theAD

continuum. Further studies that consider scores regardless of the inclu-

sion of theAPOE regionwill additionally give insights into the biological

interpretation of the results.

We observed slight differences in variability of genetic scores

between sexes. Analyses using sex-specific summary statistics will

help to better determine the mechanisms associated with such dif-

ferences and to understand structural and functional differences in

the brain, as well as cognitive and age-related processes.51,52 In addi-

tion, previous studies suggest the influence of sex-specific variants

with small effects or more complex mechanisms involving epigenetic

changes, gene-environment interactions, or genetic variantswithin sex

chromosomes that should be incorporated into future studies.53,54

Methodological limitations also should be taken into account, such

as the subtle arbitrariness in the selection of the threshold for includ-

ing genetic variants in the computation of genetic scores, alongside the

threshold for categorizing individuals into genetic risk groups.

Our research aims to systematically address these challenges and

significantly impact the field by collaboratingwith global initiatives like

the UNITED (Uncovering Neurodegenerative Insights Through Eth-

nic Diversity) Consortium,55 the European Prevention of Alzheimer’s

Dementia (EPAD) cohort,56 and the Quantitative amyloid PET in

Alzheimer’s disease (AMYPAD) initiative,57 andusing publicly available

genetic data from other resources.58 This will manifest in increased

statistical power and precision in determining genetic variants for

score computation, as well as in a more profound understanding of the

genetic mechanisms underlying AD worldwide, while also considering

diverse populations.

By leveraging the ALFA cohort’s substantial genetic risk profile,

our research gains a unique advantage in unraveling the initial patho-

physiological alterations within the preclinical AD continuum. Through

the incorporation of multiple PRSs and focusing on distinct genetic

markers, our research not only advances the comprehension of the

genetic underpinnings of AD but also reveals promising additional

strengths for interventions at an early stage. The complex nature of

AD furthermore adds more value to the ALFA cohort, as it propels the

utilization of alternativemodalities, allowing us to characterize the bio-

logical pathways involved in AD processes. This multifaceted approach

enhances our understanding of how molecular differences correlate

with in vivo neuroimaging phenotypes.59 Additionally, our incorpora-

tion of techniques such asMendelian Randomization provides ameans

toestablish causal links betweenmodifiable risk factors andADpathol-

ogy, including its subsequent consequences,60 ultimately influencing

the potential to establish primary and secondary prevention strategies

during the primary and preclinical stages.61
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