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Abstract

We present Audiovisual Moments in Time (AVMIT), a large-scale dataset of audiovisual

action events. In an extensive annotation task 11 participants labelled a subset of 3-second

audiovisual videos from the Moments in Time dataset (MIT). For each trial, participants

assessed whether the labelled audiovisual action event was present and whether it was the

most prominent feature of the video. The dataset includes the annotation of 57,177 audiovi-

sual videos, each independently evaluated by 3 of 11 trained participants. From this initial

collection, we created a curated test set of 16 distinct action classes, with 60 videos each

(960 videos). We also offer 2 sets of pre-computed audiovisual feature embeddings, using

VGGish/YamNet for audio data and VGG16/EfficientNetB0 for visual data, thereby lowering

the barrier to entry for audiovisual DNN research. We explored the advantages of AVMIT

annotations and feature embeddings to improve performance on audiovisual event recogni-

tion. A series of 6 Recurrent Neural Networks (RNNs) were trained on either AVMIT-filtered

audiovisual events or modality-agnostic events from MIT, and then tested on our audiovisual

test set. In all RNNs, top 1 accuracy was increased by 2.71-5.94% by training exclusively on

audiovisual events, even outweighing a three-fold increase in training data. Additionally, we

introduce the Supervised Audiovisual Correspondence (SAVC) task whereby a classifier

must discern whether audio and visual streams correspond to the same action label. We

trained 6 RNNs on the SAVC task, with or without AVMIT-filtering, to explore whether

AVMIT is helpful for cross-modal learning. In all RNNs, accuracy improved by 2.09-19.16%

with AVMIT-filtered data. We anticipate that the newly annotated AVMIT dataset will serve

as a valuable resource for research and comparative experiments involving computational

models and human participants, specifically when addressing research questions where

audiovisual correspondence is of critical importance.

Introduction

Many events generate auditory and visual signals that evolve dynamically over time. To obtain

a more robust and reliable percept of the environment human observers integrate redundant

and complementary information across sensory modalities [1]. For instance, audiovisual
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integration facilitates speech comprehension in noisy and adverse environments [2]. As work

in the area of deep learning has progressed, researchers have looked to take advantage of addi-

tional information available across multiple modalities to improve recognition performance.

In speech recognition, for instance, researchers have developed deep neural networks (DNNs)

to leverage audiovisual correspondences [3, 4]. To solve audiovisual speech recognition,

DNNs rely on large labelled datasets with high levels of audiovisual correspondence [4, 5].

In the domain of action recognition, audiovisual events produce corresponding audio and

visual signals, and these correspondences could be used to improve recognition rates [6].

Despite the improved recognition rates available, annotations for the most popular large action

recognition datasets are either visual-only or modality-agnostic (occurring in either/both

modalities) [7–11]. This leads to a lack of audiovisual correspondence in available datasets, as

an event may have only occurred in a single modality, or the auditory and visual signals may

have accurately represented the labelled action despite being generated by different events.

Although the majority of action recognition datasets are not annotated for audiovisual

events (an event with both an auditory and visual signal) [7–11], some researchers have begun

to target the audiovisual domain in their data collection/annotation. [12] carried out a large-

scale annotation task that assessed whether an event is present in both the audio and visual

streams. But this annotation scheme only ensured that audio and visual signals corresponded

to the label, not that they were caused by the same event. [13] released the Audio-Visual Event

Dataset (AVE) of 4,143 audiovisual event videos, but videos can be up to 10 seconds long and

are only confirmed to have at least 2 seconds of the labelled audiovisual action, with only

66.4% of videos containing the labelled audiovisual action throughout their duration. Simi-

larly, [14] produced the Look, Listen and Parse Dataset of 11,849 YouTube video clips. But the

train set again contains 10 second videos and is only confirmed to have audio/visual events for

1 second or more, with only the test set containing more fine-grained audiovisual labels.

Another audiovisual action recognition dataset is Epic-Kitchens [15] with videos depicting

egocentric (1st person) hand object interactions in kitchens. But the deep learning community

still lacks a high quality allocentric (3rd person) audiovisual action dataset.

To facilitate deep learning research in the audiovisual domain, we present Audiovisual

Moments in Time (AVMIT), a set of 57,177 audiovisual annotations for the Moments in Time

dataset (MIT) [9]. To obtain AVMIT, we take a subset of the MIT dataset and run a large-scale

annotation regime. Growing research reveals noncompliance [16, 17] of participants on Ama-

zon Mechanical Turk [18], including [19] were 49% of turkers were found not to be wearing

headphones despite reporting they did. To ensure high quality annotations, we elected to train

raters and have them perform the task in a controlled lab setting. AVMIT contains 3 indepen-

dent participant ratings for 57,177 videos (171,630 annotations). We further screened MIT

videos to select a highly controlled audiovisual test set of 960 videos across 16 action classes,

named the AVMIT test set. The AVMIT test set is suitable for human and DNN experimenta-

tion, particularly for studies concerned with audiovisual correspondence. Finally, to lower the

computational requirements to train DNNs on audiovisual problems, we provide two sets of

audiovisual embeddings that can be used to further train audiovisual DNNs. To obtain each

set of audiovisual embeddings, we use convolutional neural networks (CNNs); VGGish [20]

(audio) and VGG-16 [21] (visual) or YamNet [22] (audio) and EfficientNetB0 [23] (visual)

and extract features from all AVMIT annotated videos.

Beyond building audiovisual recognition models, AVMIT can be used for audiovisual sepa-

ration [24] (using audiovisual information to separate sounds from different sources), audiovi-

sual localisation [13, 24–26] (finding the sound source in the visual context), audiovisual

correspondence learning [25, 27] (discerning if the audio and visual signal emanated from the

same source/type of source), audiovisual synchronization learning [24, 28] (detecting

PLOS ONE Audiovisual moments in time: A large-scale annotated dataset of audiovisual actions

PLOS ONE | https://doi.org/10.1371/journal.pone.0301098 April 1, 2024 2 / 19

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0301098


misalignments between audio and visual streams), audiovisual parsing [14, 29] (parsing a

video into temporal event segments and labelling them as either audible, visible, or both) and

audiovisual generation [12, 30] (generating audio from visual or visual from audio) and any

other tasks that exists only in the audiovisual domain. Further, AVMIT serves as a valuable

resource for research and comparative experiments involving computational models and

human observers that are known to rely on audiovisual correspondences [1]. As DNNs are

now commonly used as predictive models of human behaviour in vision [31] and audition

[19], AVMIT supports this research to take a step into the audiovisual domain.

Methods

Participants

To rate the videos, eleven participants (10 females; mean age 26.18, range 19-63 years) were

recruited over the period starting 6th September 2018 and ending 22th May 2019. Participants

were first asked to complete a safety questionnaire and provided with an instruction sheet.

Instructions were further explained verbally before participants gave informed, written con-

sent to take part in the experiment. No participants were excluded. Each participant annotated

a subset of the candidate videos. All reported normal hearing and normal or corrected-to-nor-

mal vision. Participants were reimbursed for their participation in the task at a rate of £6 per

hour, plus a bonus of 10p paid for correct classification of randomly interspersed ground

truths (further detailed in the Bonus Section). Participants on average earned a total (hourly

payment + bonus) of less than £7 per hour. The research was approved by the University of

Birmingham Ethical Review Committee.

Annotation workspace

Participants were seated at a desk in an experiment cubicle or quiet area to complete this task.

The experiment was presented on a Dell Latitude 5580 laptop with 15.6” screen and Linux

Ubuntu 18.04.2 LTS operating system. Auditory stimuli were presented via a pair of Sennhei-

ser HD 280 Professional over-ear headphones. The experiment was programmed in Python 2

[32] and Psychopy 2020.2.10 [33].

Selection of MIT videos

Prior to the annotation task, we carried out a selection process to obtain a subset of MIT videos

that were more likely to contain audiovisual actions. We first obtained the labelled training

(802,264 videos) and validation (33,900 videos) sets of the MIT dataset. The events depicted in

these videos unfold over 3 seconds. For many of the classes in the MIT dataset, audio data

would not help recognition of the labelled event (e.g. “imitating”, “knitting”, “measuring”). We

carefully curated a subset of 41 audiovisual classes (corresponding to 88,579 training videos

and 4,100 validation videos) that offer a wealth of informative audio and visual correspon-

dences, enabling enhanced classification through the integration of these signals.

To increase the number of videos in our selected AVMIT classes, we obtained videos from

similar, but excluded, MIT classes, relabelled them, and added them to our annotation task.

Incorrectly relabelled videos would be annotated by our participants as not containing the

labelled audiovisual event. Table 1 displays those AVMIT classes alongside the other MIT clas-

ses that were relabelled and added to the annotation task. To ensure that candidate videos

included audio and video components, we removed videos without audio streams or whose

amplitude did not exceed 0 (digital silence).
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Annotation procedure

Next, we created a video annotation task that could be carried out by multiple trained partici-

pants to identify if videos contained the labelled audiovisual event and whether it was the most

prominent feature. This procedure was similar to the annotation procedure carried out in [12]

to produce the VEGAS dataset.

Participants were presented with a series of audiovisual videos and were instructed to pro-

vide a button response after each had finished playing. On each trial, participants were pre-

sented with a 3 second video and then classified it as 1:“unclean”, 2:“moderately clean” or

3:“very clean”. To provide a classification, participants were trained to use the following

logic:

1. Was the labelled audiovisual event present?:

No: give a 1 rating

Yes: move to the next question

2. Was the labelled audiovisual event the most prominent feature?:

No: give a 2 rating

Yes: give a 3 rating

For this task, an event was considered to be the most prominent feature if it was of longer

duration and higher intensity than any other event in the same video. Intensity related to

amplitude of event audio and size of the event’s region of interest. Each video was rated by at

least 3 participants.

During video presentation, the screen displayed the suggested action label at the top, the

video in the bottom-left (videos had different resolutions so they were each given a common

left edge position and bottom edge position) and a bonus counter in the bottom right (Fig 1).

Together with the video, participants were presented with the audio via headphones. After the

video and audio stopped playing, the program waited until the participant pressed a key. The

options were; 1, 2, 3, space, where the numbers referred to the classification system described

above and the space key would replay the video. Participants were able to replay the video and

audio any number of times they like before making a classification. If the participant made a

classification while the video was still playing, a warning screen would fill the display, instruct-

ing the participant not to press a key too early. This was particularly important given that the

audiovisual video content after an early classification may change the answer to question 2.

After a classification was made, the bonus counter would be updated, and the new label title

and audiovisual video would appear.

Table 1. Relabelled MIT classes.

AVMIT class Additional MIT class

Giggling Laughing

Frying Cooking, Boiling

Inflating Blowing

Pouring Spilling, Drenching, Filling

Diving Swimming, Splashing

Raining Dripping

Excluded MIT classes that were relabelled and added to the annotation task.

https://doi.org/10.1371/journal.pone.0301098.t001
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Quality control

In order to ensure the quality of the AVMIT dataset, we opted to use trained participants in a

controlled environment rather than Amazon Mechanical Turk. Participants were required to

complete the training exercise, before they could participate in the annotation task. Before

starting, each participant was given a set of instructions that outlined the task on a sheet of

paper. These instructions were then verbally explained to them. The participants then under-

took a training exercise whereby a video from each class was presented and the possible classi-

fication and reasoning was discussed with the author (MJ) of the study. The participants were

then screened to ensure that they understood the task by classifying another set of videos (1

video per class) under the observation of the author. Of these videos, the participants needed

to classify 38 of the 41 videos according to the author’s ground truth. Of the 11 participants

that completed the training and testing exercise, all participants passed and went on to take

part in the annotation task.

Another strategy we employed, was to provide bonus payments to participants in order

to ensure engagement and provide positive feedback. A bonus payment of 10p (GBP) was

given for each classification of a video for which a ground truth was available. To obtain

ground truths, 2,000 videos were uniformly sampled from the set of candidate videos prior

to the annotation task and then classified by one of the authors (MJ). These audiovisual vid-

eos were distributed throughout the annotation task and participants were unaware of the

possibility of a bonus when completing a trial. If the participant gave a matching classifica-

tion for one of these previously classified audiovisual videos, they would receive a bonus,

which was added to their total in the bottom right of the screen (Fig 1). This bonus accumu-

lated over their sessions and was paid at the end of participation alongside their hourly

compensation.

Quality of annotations was further ensured by using at least 3 participants to rate each

video, in line with the procedure of other large dataset annotation schemes [9, 10, 12]. As the

AVMIT annotation scheme was run using videos from an existing dataset, AVMIT benefits

from the quality assurances of two cleaning processes.

Fig 1. Annotation task schematic. Task screen displays a chopping video with label and accumulated bonus. Video

plays for 3 seconds alongside audio stimuli. Participants watched and listened to the audiovisual video before

providing a rating.

https://doi.org/10.1371/journal.pone.0301098.g001
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Test set

We ran further screening to obtain a highly controllable test set for human and deep neural

network experiments. This process was 2 stages; class filtering and video filtering. Many classes

did not contain a sufficient number of clean audiovisual videos for training and testing a deep

neural network (Fig 2). We used a majority vote criteria to obtain those videos containing the

labelled audiovisual event as a prominent feature. Classes with 500 or more videos that meet

this criteria were accepted into the test set. Just 16 of 41 classes met this criteria, although this

is in line with test sets in the humans vs. DNN literature [34]. With test classes obtained, we

then applied video filtering. In order to ensure reliability, we set as a criterion that all partici-

pants must agree that the audiovisual event was present and the key feature of the video. In

order to ensure a level of homogeneity in the dataset, we obtained those audiovisual videos

with a visual frame rate of 30fps and further cleaned them, removing videos that:

• Had been edited to appear as though something supernatural had occurred (such as some-

thing appearing or disappearing instantaneously)

• Had an excessive number of time-lapses

• Contained frames with excessive watermarks or writing on the frames

• Consisted of 2 video streams

Fig 2. AVMIT annotations. Number of MIT videos in each class that obtained a ‘yes’ vote from 0,1,2 or 3 participants

when asked the following questions: (a) Was the labelled audiovisual event present? (b) Was the labelled audiovisual

event the most prominent feature?.

https://doi.org/10.1371/journal.pone.0301098.g002
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• Were not naturalistic (depicting cartoons or simulations)

From the subset of filtered videos, 60 videos were uniformly sampled from each class and

used to provide the AVMIT test set (60 videos per class, 16 classes, 960 video test set). By com-

parison, naturalistic stimuli sets for human experiments in the area of psychology and neuro-

science often have far fewer stimuli [6, 35, 36] and these may be further manipulated

according to a variety of conditions to effectively multiply test set size. After filtering train vid-

eos with AVMIT in our experiments, this test set formed approximately 12% of our total

samples.

Neural network embeddings

We created 2 sets of audiovisual embeddings; those obtained using VGGish [20] and VGG-16

[21] and a second set obtained using YamNet [22] and EfficientNetB0 [23]. Both VGG-16 and

EfficientNetB0 were trained on ImageNet [37] and VGGish and YamNet were trained on

AudioSet [38]. Prior to feature extraction by these CNN models, audio and visual data was

preprocessed.

If the audio was stereophonic rather than monophonic, a monophonic stream was obtained

using pydub.AudioSegment.set_channels [39], taking the mean of the left and right channels

(Eq 1). Where Snew is the new monophonic audio sample, SL is the original left sample and SR

is the original right sample.

Snew ¼ 0:5 � SL þ 0:5 � SR ð1Þ

Audio data of a depth other than 16 bits was cast to 16 bits using pydub.AudioSegment.

set_sample_width [39]. These int16 audio samples were then mapped from the range [-32768,

32767] (215 with one bit dedicated to sign) to the range [-1.0, 1.0] by dividing by the maximum

value of 32768.0. The audio was then resampled to 16 kHz before spectrograms were

calculated.

Next we carried out a short-time Fourier transform (STFT) to provide a frequency decom-

position over time. We used a frame size of 25ms (the period over which signals are assumed

to be stationary) and a 10ms stride (the frequency with which we obtain a frame). Overlapping

frames help to ensure that any frequency in the signal that may exist between otherwise non-

overlapping frames are captured in the spectrum. A Hann filter was applied to each of the

frames before a fast Fourier transform (FFT) was carried out. A log mel spectrogram was then

obtained using a mel filter bank of 64 filters, over the range 125-7500 Hz, and then finding the

logarithm of each spectrum (plus a small delta of 0.01 to avoid taking the log of 0; Eq 2).

log mel spectrogram ¼ logðmel spectrogramþ 0:01Þ ð2Þ

The log mel spectrograms were windowed into smaller 960ms spectrograms, ready for the

CNN. Audio preprocessing deviated between the VGGish and YamNet embeddings in this

final stage of preprocessing in accordance with their training regimes [20, 22]. For VGGish,

the stride was 960ms between windows, for YamNet, the stride was 480ms.

For visual processing, we sampled frames according to the frequency of the complementary

audio features; 960ms for VGG-16 and 480ms for EfficientNetB0. This was to provide a similar

number of audio and visual embeddings per sample. Frames were then resized to dimensions

of 224x224x3 using OpenCV [40] in line with the expected input size of the CNN models. For

VGGish the images were then zero centred, but for EfficientNetB0, images were rescaled, nor-

malised and then zero-padded.
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Dataset statistics

The focus of the AVMIT project was to provide a large, annotated audiovisual action dataset

to facilitate the training of deep neural networks in the audiovisual domain. AVMIT contains

annotations for 57,177 videos (171,630 annotations; Fig 2) that can be used for training deep

neural networks where audiovisual correspondence is key. AVMIT is confirmed to contain

23,160 videos (19.3 hours) of labelled audiovisual actions, of which 17,891 (14.9 hours) are the

prominent feature of the video, according to majority participant vote. These annotations also

provide insight into the quality of MIT labels in the audiovisual domain. For instance, the

majority of MIT videos were confirmed to not feature the audiovisual action described by the

label (Fig 2a).

Motivated to better understand the quality of AVMIT annotations, we sought to quantify

the audiovisual correspondence of the annotated videos. For this, we employed the multimodal

versatile network (MMV) from [41] as a method to measure the similarity of a video’s audio

and visual stream.

MMV is trained to project audio and visual signals onto a common embedding space

where cross-modal comparisons can be made. The multimodal contrastive loss used to train

MMV causes co-occurring audio and visual signals from a video to be similar in embedding

space, and signals from different videos to be dissimilar. The audiovisual similarity is calcu-

lated by taking the dot product of the audio and visual embedding [41]. Thus the audiovisual

similarity reported as part of our analysis is an MMV estimate of the likelihood of co-occur-

rence in a video, as described in [41]. A large similarity score indicates that the audio and

visual signals co-occurred, a low (or negative) similarity score indicates that they are less likely

to have co-occurred and may pertain to different events (Fig 3).

Fig 3. Examples of MMV audiovisual similarity estimates. Visual frames from a video (above) with 4 possible audio streams below. Each audio

stream has a corresponding audiovisual (AV) similarity score, estimated by MMV, when combined with the visual stream. The original audio stream

leads to the highest AV similarity, which is decreased by introducing temporal asynchrony (shifting audio 1.6 seconds). Increasing the semantic

distance between the audio and visual stream further decreases the AV similarity (from ‘train’ to ‘vehicle’ to ‘instrument’).

https://doi.org/10.1371/journal.pone.0301098.g003
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First, we considered the utility of AVMIT annotations by measuring the audiovisual simi-

larity before and after they were used for filtering. For this we prepared a dataset, MIT-16, con-

taining all original MIT videos from the 16 AVMIT test classes. We then used the AVMIT

annotations to retain only those videos rated as containing the audiovisual event as a promi-

nent feature by the majority of participants. Those MIT-16 videos without audio information

were removed for this analysis (Fig 4a) and the audiovisual similarity was estimated only on

those videos with both audio and visual streams. The average audiovisual similarity score, as

estimated by MMV, is higher for AVMIT-filtered videos across all classes (Fig 4b). This indi-

cates that AVMIT annotations of prominent audiovisual actions correspond to higher proxim-

ity in MMV embedding space (are more similar).

To further consider how AVMIT and MIT-16 compare to other popular audiovisual

action datasets in the literature, we used MMV to measure their audiovisual similarity (Fig

5). We ran this analysis on Kinetics-Sounds [27], VGG-Sound [42] and AVE [13], finding

AVMIT to have a considerably higher average audiovisual similarity score (Fig 5a). We also

find the distribution of audiovisual similarity scores across AVMIT to be superior to other

measured datasets, with far fewer videos that have highly dissimilar audiovisual content

(Fig 5b).

Whilst the audiovisual similarity scores provided by MMV demonstrate the utility of

AVMIT against other popular datasets, we further outline AVMIT’s place in the literature in

Table 2. AVMIT is the only large, annotated audiovisual action dataset to our knowledge to

provide a controlled audiovisual test set appropriate for human experiments. AVMIT is also

the largest audiovisual action dataset annotated with trained participants. We include Epic-

Fig 4. AVMIT vs MIT-16. Comparison of MIT videos, corresponding to 16 AVMIT test classes, before and after filtering with AVMIT annotations.

Filtering retained only videos containing the audiovisual event as a prominent feature, according to the majority of participants. (a) Shows the percentage

of MIT-16 and AVMIT videos with an audio stream across each class (b) Shows the average similarity score, as estimated by MMV, for AVMIT and MIT-

16 across 16 classes.

https://doi.org/10.1371/journal.pone.0301098.g004
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Kitchens [15] in Table 2 as a large audiovisual action dataset, although it is egocentric and so

not directly comparable.

Data description

AVMIT consists of 4 components; audiovisual annotations of 57,177 MIT videos, a selection

of 960 MIT videos designated as the AVMIT test set and 2 sets of audiovisual feature embed-

dings. All of these are available at https://zenodo.org/record/8253350.

The AVMIT annotations are available in the file named video_ratings.csv. Each row in the

csv file corresponds to a video (containing all corresponding ratings from participants). Each

video was rated 3 times. Videos rated less than 3 times were removed. The video_ratings.csv

Fig 5. AVMIT vs other datasets. Audiovisual similarity scores, as estimated by MMV, across a series of audiovisual

action recognition datasets; AVMIT (ours), MIT-16, Kinetics-Sounds, VGG-Sound and AVE. (a) Average audiovisual

similarity score across entire datasets. (b) Rain cloud plot showing the distribution of audiovisual similarity scores for

each dataset.

https://doi.org/10.1371/journal.pone.0301098.g005

Table 2. Statistics of popular audiovisual action datasets.

Dataset Year Controlled Test Set Annotation Modality Trained In-house Annotators Perspective Hours Videos

AVMIT 2023 True Audiovisual True Allocentric 48 57,177

AVE 2018 False Audiovisual True Allocentric 12 4,143

EPIC-KITCHENS-100 2021 False Audiovisual False Egocentric 100 700

Kinetics-Sounds 2017 False Modality-Agnostic False Allocentric 556 20,000

VGG-Sound 2020 False Audio False Allocentric 560 200,000

https://doi.org/10.1371/journal.pone.0301098.t002
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fields are described in Table 3. The annotations are visualised in Fig 2. The test set details are

provided in test_set.csv, fields are described in Table 4.

There are 2 archived feature embedding directories; AVMIT_VGGish_VGG16.tar contains

the audiovisual embeddings, extracted by VGGish (audio) and VGG-16 (visual) for all

AVMIT videos, AVMIT_YamNet_EffNetB0.tar contains the audiovisual embeddings

extracted by YamNet (audio) and EfficientNetB0 (visual) for all AVMIT videos. Both sets of

feature embeddings have the same directory structure, containing 1 subdirectory per action

class (e.g. ‘barking’) for all 41 classes. Inside each class sub-directory lies a.tfrecord file for each

AVMIT video. Each tfrecord contains a number of context features; filename, label, number of

audio timesteps, number of visual timesteps and 2 sequence features; audio data and visual

data. For YamNet-EffNetB0 embeddings, audio data has dimensions (timesteps, 1,024) and

visual data has dimensions (timesteps, 1,280). For VGGish-VGG16 embeddings, audio data

has dimensions (timesteps, 128) and visual data has dimensions (timesteps, 512).

Usage notes

AVMIT is available at https://zenodo.org/record/8253350. To use the audiovisual feature

embeddings, provided as part of this work, directly. An example python script, feature_extrac-

tor/read_tfrecords.py, is provided at https://github.com/mjoannou/audiovisual-moments-in-

time to demonstrate how to read these tfrecords into a tensorflow.data.Dataset. AVMIT anno-

tations in video_ratings.csv can be used to filter these embeddings for audiovisual content, and

test_set.csv can be used to identify those embeddings intended for testing.

To use raw videos, one needs to download the well-established Moments in Time dataset

by visiting http://moments.csail.mit.edu/ and fill out a form before access to the dataset is

sent via email. Once access to the MIT dataset is granted, AVMIT annotations, available in

video_ratings.csv, can be used to filter videos according to audiovisual content prior to

Table 3. Description of data in video_ratings.csv.

Field Description

filename “MIT class subdirectory/ video name”

r1 number of ‘1’ ratings given

r2 number of ‘2’ ratings given

r3 number of ‘3’ ratings given

AVMIT_label as displayed to participants in annotation task

MIT_label original dataset label

video_location training or validation directories of MIT

tfrecord_filename subdirectory and filename of corresponding audiovisual feature embeddings

https://doi.org/10.1371/journal.pone.0301098.t003

Table 4. Description of data in test_set.csv.

Field Description

filename “MIT class subdirectory/ video name”

AVMIT_label as displayed to participants in annotation task

MIT_label original dataset label

video_location training or validation directories of MIT

new_filename “AVMIT label subdirectory/ new video name”

tfrecord_filename subdirectory and filename of corresponding audiovisual feature embeddings

https://doi.org/10.1371/journal.pone.0301098.t004
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training computational models. The AVMIT test set can also be used alongside the MIT vid-

eos, identifying 960 videos suitable for testing computation models and human participants

alike. If one wishes to extract tfrecords, in a similar manner to our work, this is demonstrated

in feature_extractor/extract_features.py.

Experiments

Train sets

Two train sets were prepared for both of our experiments; an audiovisual train set using

AVMIT annotations and a larger modality-agnostic (audio and/or visual) train set of MIT

embeddings named MIT-16. Both train sets contained embeddings corresponding to the 16

AVMIT test set classes. To prepare the audiovisual train set using AVMIT annotations, we

obtained only those embeddings that contained the labelled audiovisual event as a prominent

feature, according to majority participant vote. To construct the second train set, all MIT

embeddings corresponding to the 16 AVMIT classes were obtained. Embeddings correspond-

ing to the AVMIT test were then removed from both train sets. Finally, the number of train

embeddings across each class was balanced by sampling the maximum possible number of

embeddings (AVMIT: 456 per class, MIT-16: 1,406 per class).

Experiment 1: Audiovisual action recognition

Outline. Increased statistical similarity between train and test set leads to increased test

set performance for DNNs. We assert that in order to obtain a model with high audiovisual

action recognition performance, one should optimise DNNs on audiovisual action recognition

rather than modality-agnostic action recognition. In this way, DNNs may learn to better lever-

age audiovisual correspondences.

In this experiment we explored the performance benefits associated with training on purely

audiovisual actions using AVMIT annotations. We created a series of DNNs and trained one

instance on MIT-16 (modality-agnostic data) and another instance on AVMIT-filtered data.

Each trained model was then tested on an audiovisual action recognition test set; the AVMIT

test set of audiovisual action events. This is a similar protocol to [14] in that we use a carefully

curated test set. We hypothesised that AVMIT models would obtain higher audiovisual action

recognition rates.

DNN architectures. Each architecture effectively consisted of a (frozen) AudioSet-trained

CNN, a (frozen) ImageNet-trained CNN, some shared (trainable) audiovisual operations fol-

lowed by a (trainable) RNN. For the CNNs, architectures either used VGGish [20] (audio) and

VGG-16 [21] (visual) or YamNet [22] (audio) and EfficientNetB0 [23] (visual). Although prac-

tically, we provide these embeddings as part of this work and we trained on them directly.

These architectures allowed us to leverage powerful pretrained unimodal representations but

ensure that any learnt audiovisual features would arise from training on AVMIT/MIT-16

alone. We select similar architectures in each set of embeddings to help prevent overpowered

unimodal representations in the trained classifiers and ensure both auditory and visual embed-

dings are useful.

As the audio and visual embeddings are of different sizes, we added batch-norm convolu-

tional layers and global average pooling operations to each, individually, prior to concatena-

tion. We refer to this series of processes as a multimodal squeeze unit (Fig 6). This is to ensure

that there are an equal number of RNN connections dedicated to the processing of auditory

and visual information. Following the multimodal squeeze unit, was one of three well-known

RNN architectures; fully-recurrent neural network (FRNN, also known as a ‘basic’ or ‘vanilla’

RNN), gated recurrent unit [43] or a long short-term memory unit [44].
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Hyperparameter search and training. We ran a hyperparameter search (random search)

on each embedding-set/RNN combination with the MIT-16 dataset. To use MIT-16 for both

the train and test set of the hyperparameter search, we elected to use the bootstrap method;

sampling the train set from MIT-16 with replacement, and evaluating it on the out-of-bag

(OOB) samples. By optimising the hyperparameters on the MIT-16 dataset, we biased the

experiment in favour of MIT-16 trained RNNs, thus strengthening any observed AVMIT

related performance gains. For each embedding-set/RNN combination (2 x 3 = 6), we created

300 surrogate models, each with a particular combination of hyperparameter values that were

uniformly sampled from the hyperparameter sets or intervals.

We searched over the following hyperparameters; number of filters, nbottleneck, in the audio-

visual bottleneck (1x1 2D Convolution) where nbottleneck 2 {32, 64, 128, 256}, the activation

function, a, of the audiovisual bottleneck, where a 2 {relu, swish}, the number of Recurrent

Neural Network units, nRNN, where nRNN 2 {32, 64, 128, 256}, the dropout rate, d, for the

RNN, where d 2 {0.1, 0.2, 0.3, 0.4, 0.5} and the learning rate, l, of the model, where l 2

[1.0x10−5, 5.0x10−3]. During the random search, RNNs were trained in the same manner

(Adam optimiser [45] and exponential learning rate decay) as during final training, the only

exception being that early stopping was reduced from 20 epochs to 8 in order to save time dur-

ing the random search. The best performing configurations for each RNN (Table 5) were

selected for comparison across all experiments.

For each hyperparameter combination, we trained one RNN instance (row in Table 5) on

AVMIT, and another instance on MIT-16. The cross-entropy loss function was used as a mea-

sure of loss, and the RNN was trained with backpropagation and the Adam optimiser [45].

Each RNN was trained for up to 200 epochs with a batch size of 16 samples, although with an

early stopping of 20 epochs, all RNNs executed training before that point. All learned parame-

ters were then fixed in place throughout testing.

Fig 6. Audiovisual action recognition task architecture. Processing stream for the audiovisual action recognition

task. Audio and visual representations are transformed to be the same size and concatenated at each timestep before

processing with an RNN and softmax layer.

https://doi.org/10.1371/journal.pone.0301098.g006
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Evaluation method. The AVMIT controlled test set was used for testing. As the test set

had been well filtered to include only prominent audiovisual events, any learnt audiovisual fea-

tures should be beneficial to performance. The loss, top 1 classification accuracy (the propor-

tion of trials in which the model gave the highest probability to the correct action class) and

the top 5 classification accuracy (the proportion of trials in which the correct action class was

assigned one of the top five probabilities) was used to measure performance on this set.

Results. All models obtained a top 5 classification accuracy of approximately 100%. Mod-

els trained on AVMIT obtained a lower loss and higher top 1 accuracy than their MIT-16

trained counterpart in all cases (Table 6). This result indicates that training a DNN exclusively

on audiovisual action events is beneficial for audiovisual action recognition, even outweighing

a three-fold increase in training data (additional audio or visual events). A final observation is

that the YamNet+EfficientNet-B0 embeddings consistently provided higher performances

than VGGish+VGG-16 embeddings.

Experiment 2: Supervised Audiovisual Correspondence

Outline. In the previous experiment, we showed that higher audiovisual action recogni-

tion rates can be achieved by training exclusively on audiovisual events (AVMIT), rather than

a larger set of modality-agnostic events (MIT-16). Next, we enquired whether DNNs could

more effectively learn about audiovisual correspondences with AVMIT than MIT-16. We

hypothesised that this would indeed be the case, due to AVMIT’s high levels of audiovisual

similarity (Figs 4b and 5) and high quality audiovisual annotations (Fig 2).

Table 5. Hyperparameter search results: Selected hyperparameters.

Embeddings RNN RNN Units Bottle Units Act. Dropout LR Trainable Params

YamNet + EffNetB0 FRNN 128 256 swish 0.3 7.05 x 10-5 675,472

YamNet + EffNetB0 GRU 128 64 swish 0.5 7.25 x 10-5 248,976

YamNet + EffNetB0 LSTM 64 256 swish 0.3 4.10 x 10-5 740,112

VGGish + VGG-16 FRNN 256 256 swish 0.4 1.05 x 10-4 366,352

VGGish + VGG-16 GRU 128 256 relu 0.5 3.92 x 10-4 413,968

VGGish + VGG-16 LSTM 256 256 swish 0.5 1.74 x 10-4 956,944

https://doi.org/10.1371/journal.pone.0301098.t005

Table 6. Action recognition performance.

Training Set Embeddings RNN Loss Top 1 Acc. (%) Top 5 Acc. (%)

AVMIT YamNet + EffNetB0 FRNN 0.1841 94.58 99.90

MIT 16 YamNet + EffNetB0 FRNN 0.2973 89.79 99.90

AVMIT YamNet + EffNetB0 GRU 0.1600 95.73 99.90

MIT 16 YamNet + EffNetB0 GRU 0.2430 92.29 99.90

AVMIT YamNet + EffNetB0 LSTM 0.1674 95.52 99.79

MIT 16 YamNet + EffNetB0 LSTM 0.2366 92.81 100

AVMIT VGGish + VGG-16 FRNN 0.2980 90.73 99.79

MIT 16 VGGish + VGG-16 FRNN 0.4388 84.79 99.58

AVMIT VGGish + VGG-16 GRU 0.2917 91.04 99.79

MIT 16 VGGish + VGG-16 GRU 0.4108 85.83 99.69

AVMIT VGGish + VGG-16 LSTM 0.2892 90.94 99.90

MIT 16 VGGish + VGG-16 LSTM 0.3527 86.98 99.90

https://doi.org/10.1371/journal.pone.0301098.t006
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To investigate, we explicitly trained a series of DNNs on an audiovisual correspondence

task. Thus far, the unsupervised audiovisual correspondence (UAVC) task has been intro-

duced in the literature as a means to utilise unlabelled/poorly labelled audiovisual data [25,

27]. The UAVC task is a binary classification task that requires the classifier to detect whether

a video has intact audiovisual data (corresponds) or if the audio stream has been shuffled

between videos (does not correspond). As annotations are not used in this task, audio streams

could be shuffled between videos of the same action class and still be considered “non-corre-

sponding”. We introduce the supervised audiovisual correspondence (SAVC) task, whereby

audio and visual streams are sampled from the same action class (corresponds) or different

action classes (does not correspond). In this way, a “corresponding” video contains an audio

stream and a visual stream from the same action class, but not necessarily the same video. This

requires that the classifier learn about semantic correspondence only, without temporal corre-

spondence. The SAVC task allows us to leverage AVMIT’s high quality audiovisual annota-

tions whilst effectively multiplying our train set without causing imbalances (many

corresponding and non-corresponding samples can be generated for the same visual stream

through this shuffling strategy).

AVC tasks provide an interesting test bed for AVMIT; a dataset predicated on having high

levels of audiovisual correspondence. Clearly, the “corresponding” samples will be high qual-

ity, with the action event confirmed by AVMIT annotations to contain the labelled action. The

“non-corresponding” samples, however, may be more limited in AVMIT than in the noisy

label case (MIT-16). For instance, MIT-16 will have a broader set of incongruences available

during training, which may provide for more robust detection of incongruent samples.

DNN architectures. As in experiment 1, we used either VGGish [20] (audio) and VGG-16

[21] (visual) or YamNet [22] (audio) and EfficientNetB0 [23] (visual) as CNN feature extractors.

We found that joining audio and visual feature embeddings at each timestep using our multi-

modal squeeze unit resulted in poor performance on the SAVC task. We instead employed the

audiovisual fusion method of AVE-Net [25], a model developed for the UAVC task. At each

timestep, the audio and visual features are individually passed through two 128 unit fully-con-

nected layers (sequentially), before they are L2-normalised and the Euclidean distance is calcu-

lated (Fig 7). The Euclidean distance values are passed to either an FRNN, GRU or LSTM

Fig 7. SAVC task architecture. Processing stream for the Supervised Audiovisual Correspondence task. Euclidean

distance between audio and visual representations is calculated at each timestep before processing with an RNN and

softmax layer.

https://doi.org/10.1371/journal.pone.0301098.g007
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before finally a 2-unit softmax layer gives the probability of corresponding/not-corresponding.

All RNN models had 256 units and used a dropout rate of 0.1 during training.

Training regime. The AVMIT and MIT-16 train sets were further processed as part of the

SAVC learning regime. For MIT-16, only audiovisual videos were retained (Fig 4a). Each train

set was prepared into 2 parts; the corresponding samples and non-corresponding samples,

these were represented equally throughout training to prevent classification biases. The corre-

sponding sample set was formed by pairing each audio stream with a visual stream from any

video of the same action class. The non-corresponding sample set was formed by pairing each

audio stream with a visual stream of a different action class. Many visual stream combinations

were used with each audio stream, in both the corresponding and non-corresponding sets.

The train set was shuffled and sampled at each epoch.

For each RNN, an instance was trained on this SAVC task using the AVMIT train set, and

another identical instance was trained using MIT-16. We use cross-entropy loss and the Adam

optimiser [45] with weight decay 10−5 and a learning rate of 0.0001 in line with [25]. Although

where [25] used a batch size of 2,048, we did not have sufficient resources and so used a batch

size of 512 samples. The checkpoint with the best validation accuracy was selected as the final

checkpoint for testing.

Evaluation and results. We report the cross-entropy loss and binary classification accu-

racy for the SAVC task. All models trained on AVMIT obtained a lower loss and higher accu-

racy than their MIT-16 trained counterparts (Table 7). The cleanliness of AVMIT’s

“corresponding” class allowed the DNNs to learn a better AVC representation despite the

wider range of possible incongruent cases afforded by MIT-16. We further observe that, as in

experiment 1, the architectures with older, VGGish+VGG-16, feature extractors performed

worse than those with more modern, YamNet+EfficientNet-B0 architectures. While we

selected these pretrained feature extractors due to having similar architectures in the audio

and visual domains, one may improve performance further by using more modern pretrained

feature extractors e.g. [46]. One may further improve performance on the SAVC task by fine-

tuning pretrained feature extractors end-to-end, rather than freezing their parameters.

Conclusion

We present Audiovisual Moments in Time, a set of audiovisual annotations and DNN embed-

dings for the Moments in Time dataset. AVMIT contains annotations of 57,177 videos across

Table 7. Supervised Audiovisual Correspondence performance.

Training Set Embeddings RNN Loss Acc. (%)

AVMIT YamNet + EffNetB0 FRNN 0.4223 81.30

MIT 16 YamNet + EffNetB0 FRNN 0.5371 73.33

AVMIT YamNet + EffNetB0 GRU 0.3971 81.82

MIT 16 YamNet + EffNetB0 GRU 0.5124 75.47

AVMIT YamNet + EffNetB0 LSTM 0.4006 82.24

MIT 16 YamNet + EffNetB0 LSTM 0.5143 74.17

AVMIT VGGish + VGG-16 FRNN 0.5352 73.18

MIT 16 VGGish + VGG-16 FRNN 0.5695 71.09

AVMIT VGGish + VGG-16 GRU 0.5289 72.92

MIT 16 VGGish + VGG-16 GRU 0.6921 67.19

AVMIT VGGish + VGG-16 LSTM 0.4671 77.55

MIT 16 VGGish + VGG-16 LSTM 0.7877 58.39

https://doi.org/10.1371/journal.pone.0301098.t007
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41 classes, each pertaining to the existence of an audiovisual event, and its prominence in the

video. We demonstrate the utility of AVMIT audiovisual annotations beyond unimodal anno-

tations by training a series of RNNs exclusively on audiovisual data vs. modality-agnostic

(audio and/or visual) data and observing an increase of 2.71-5.94% in top 1 accuracy on our

audiovisual action recognition task.

We further introduce a new task, the Supervised Audiovisual Correspondence (SAVC)

task, whereby a classifier must discern whether audio and visual streams correspond to the

same class. This is distinct from previous, unsupervised, AVC tasks whereby a classifier must

discern whether audio and visual streams correspond to the same video. Importantly in this

work, the SAVC task is able to leverage AVMIT’s high quality audiovisual annotations. We use

the SAVC task to explore whether AVMIT annotations can be used to explicitly learn more

powerful audiovisual representations. We find that training a series of RNNs using AVMIT fil-

tered data improved performance on the SAVC task, with an increase in classification accuracy

of 2.09-19.16% vs. unfiltered data.

Alongside AVMIT annotations, we additionally provide a set of 960 videos (60 videos over

16 classes), designated as a controlled test set. These videos can be manipulated for audiovisual

synchrony, semantic correspondence, visual or auditory noise etc. to produce a large suite of

test videos, suitable for experiments with DNNs and humans alike. Finally, we provide DNN

embeddings for AVMIT videos to lower the computational barriers for those who wish to

train audiovisual DNNs, thereby levelling the playing field for all. AVMIT provides a useful

resource for experiments concerned with audiovisual correspondence, and allows DNN com-

parisons against humans to take a step into the audiovisual domain.
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