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Abstract 

Colorectal cancer (CRC) is a highly heterogeneous cancer and exploring novel therapeutic options is a pressing 
issue that needs to be addressed. Here, we established human CRC tumor-derived organoids that well represent 
both morphological and molecular heterogeneities of original tumors. To efficiently identify repurposed drugs for 
CRC, we developed a robust organoid-based drug screening system. By combining the repurposed drug library and 
computation-based drug prediction, 335 drugs were tested and 34 drugs with anti-CRC effects were identified. More 
importantly, we conducted a detailed transcriptome analysis of drug responses and divided the drug response signa-
tures into five representative patterns: differentiation induction, growth inhibition, metabolism inhibition, immune 
response promotion, and cell cycle inhibition. The anticancer activities of drug candidates were further validated 
in the established patient-derived organoids-based xenograft (PDOX) system in vivo. We found that fedratinib, tra-
metinib, and bortezomib exhibited effective anticancer effects. Furthermore, the concordance and discordance of 
drug response signatures between organoids in vitro and pairwise PDOX in vivo were evaluated. Our study offers an 
innovative approach for drug discovery, and the representative transcriptome features of drug responses provide 
valuable resources for developing novel clinical treatments for CRC.

Keywords colorectal cancer, organoids, drug repurposing, patient-derived organoids-based xenograft, mechanism 
of action

Introduction
Colorectal cancer (CRC) is one of the most commonly 
diagnosed malignant cancers worldwide, with an 
increasing incidence and mortality (Sung et al., 2021). By 
2030, the burden of CRC is predicted to increase by 60% 
(Arnold et al., 2017). As the research on CRC continue 
to progress, increasing targeted drugs and therapeutic 
regimens were successfully developed and proven to be 

effective in the clinical treatments of CRC. For example, 
patients carrying BRAFV600E mutation can benefit signif-
icantly from the targeted therapy (Sveen et al., 2020). 
Also, KRAS/BRAF-wild metastatic colorectal cancer 
(mCRC) patients’ survival can be largely extended by 
the combination of anti-EGFR therapy and chemother-
apy (Biller and Schrag, 2021). Since CRC is a highly het-
erogeneous and complex disease, patients with different 
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molecular characteristics often respond very differently 
to the same treatment strategy. Especially, during the 
progression of cancer, tumor cells tend to acquire dif-
ferent signatures and generally become more hetero-
geneous. Therefore, although targeted therapies have 
significantly improved the overall survival of mCRC, 
there is still a large number of patients lacking effec-
tive targeted drugs or exhibiting drug resistance during 
treatment. Given the prevalence of CRC and limita-
tion in their treatments, improving the current clinical 
approaches and developing new therapeutic agents are 
therefore imperative.

Drug repurposing for cancer therapy is a promising 
strategy for drug discovery. In comparison with de novo 
drug development, drug repurposing as an ideal replace-
ment, significantly shortens the time, cuts the invest-
ments, and improves the success rates of preclinical 
drug discovery (Gonzalez-Fierro and Duenas-Gonzalez, 
2021). Anticancer drug repurposing has moved from the 
“pre-genomic era” to the “genomic era”. Instead of dis-
covering drugs empirically, integrating with the exist-
ing drug signature databases [CTRP (Basu et al., 2013; 
Seashore-Ludlow et al., 2015), CMap (Lamb et al., 2006; 
Subramanian et al., 2017), GDSC (Yang et al., 2013), etc.] 
and disease signature transcriptomic databases (such 
as TCGA) to predict the potential drugs enable the dis-
covery process to be more efficient. Moreover, combining 
them with additional experimental approaches such as 
phenotypic screening would improve the identification 
of repurposed drugs (Pushpakom et al., 2019). However, 
the current drug screening is mainly based on traditional 
cancer cell lines, which experience genome changes such 
as genetic drift after long-term in vitro culture and lose 
the original molecular characteristics of the parental in 
vivo tumors eventually.

Patient-derived organoids provide an ideal preclinical 
model for cancer research, which faithfully recapitu-
lates the molecular characteristics and the heterogenei-
ties of parental tumor tissues (van de Wetering et al., 
2015; Broutier et al., 2017; Sachs et al., 2018; Yan et al., 
2018; Kopper et al., 2019). Recently, many studies have 
shown that organoids can precisely predict the patients’ 
responses to targeted therapies and chemotherapies 
(van de Wetering et al., 2015; Ooft et al., 2019; Yao et 
al., 2020; Yin et al., 2020). CRC organoids have been suc-
cessfully established and the culture conditions have 
been well evaluated (van de Wetering et al., 2015; Fujii 
et al., 2016; Wang et al., 2022). Several studies have uti-
lized the organoid-based platform to conduct antican-
cer drug screening. Nevertheless, the screening assay is 
mainly based on the measurement of cell growth, and 
the biological mechanisms of drugs underlying the anti-
cancer effects remain largely elusive. Furthermore, the 
anticancer mechanisms of the drugs have been sparsely 
described at the in vivo level.

In order to efficiently discover repurposed drugs for 
CRC, we first established long-term stably cultured, 
highly representative CRC organoids. The consistencies 
between organoids and parental tumors have been well 
confirmed by multi-omics sequencing approaches. We 
then established a robust organoid-based screening plat-
form, a total of 335 approved small-molecule drugs and 
computationally predicted drug candidates were tested. 
According to the drug inhibitory efficiencies, 34 drug 
candidates were successfully selected out and validated 
to be effective in killing CRC organoids. Notably, by tak-
ing advantage of RNA-seq, we described the biological 
mechanisms of drugs and classified the drug response 
patterns of CRC organoids into five prevalent and repre-
sentative groups, which represent the general respond-
ing features of CRC to different drugs. Furthermore, the 
therapeutic capacities of the screened drug candidates 
were validated in patient-derived organoids-based xeno-
graft (PDOX) models in vivo. Trametinib, bortezomib, and 
fedratinib displayed powerful tumor inhibitory effects, 
which is comparable to 5-fluorouracil (5fu), the first-
line drug for clinical treatments of CRC. In addition, the 
similarity and discordance of drug response features 
were well evaluated between organoids in vitro and pair-
wise PDOX in vivo. We also evaluated the feasibility of 
applying our CRC organoid culture platform to explore 
potential drug combination therapy and found that the 
bortezomib and fedratinib have potential synergistic 
effects for killing CRC organoids.

In summary, we conducted robust organoid-based 
drug screening, profiled drug responding signatures of 
CRC organoids, identified potential repurposed drugs, 
and assessed the in vitro and in vivo drug screening sys-
tem based on transcriptome features, which provided a 
sequencing-based drug identification strategy that will 
accelerate the development of clinical trials of CRC.

Results
Long-term cultured human CRC organoids 
remain the histological features and molecular 
characteristics of the parental tumors
To identify repurposed therapeutic agents for CRC, we 
designed experiments that combined organoid-based 
drug screening and transcriptome sequencing-based 
evaluation (Fig. 1A). First, we established a human CRC 
organoid culture system based on the previously pub-
lished protocols (see Methods). With several modifi-
cations of the culture medium, a total of eight tumor 
organoid lines were successfully derived from eight 
patients with different types of CRCs (Table S1). All of the 
organoids could stably maintain long-term expansion 
capacities (>3 months), with a 1:4 or 1:5 passage ratio. We 
observed that the morphologies of patient tumor tissues 
differed from each other, and corresponding organoids 
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represented the heterogeneous morphologies of tumor 
tissues (Figs. 1B and S1A).

To further characterize the molecular features, we 
assessed the concordance between organoids and 

parental tumor tissues at the multi-omics level. As for 
the single nucleotide variations (SNVs), the whole-ex-
ome sequencing (WES) provided a global profile of 
tumor-specific genetic mutations. We identified key 
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Figure 1. Colorectal tumor organoids preserve the histological architecture and genomic characterization of primary tissues. (A) 
Experimental workflow. Mainly include establishing CRC organoids, evaluating the culture system, screening repositioned drugs, 
analyzing drug mechanisms and validating drug efficiency in vivo. (B) H&E staining of four patients’ primary tumors (left) and 
brightfield of corresponding organoids (right). (C) Comparison of the gene mutations of eight original tumor tissues with corresponding 
organoids cultured in short-term (1 week) or long-term (~2 months). Different color represents different types of mutations. (D) 
Expression levels of cancer-related pathways of four patient tumor tissues and corresponding organoids.

https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad038#supplementary-data


288 | Mao et al.

Pr
ot

ei
n

 &
 C

el
l

driver mutations in both organoids and correspond-
ing tumor tissues, which are frequently mutated genes 
in CRC. These mutations are classified into different 
types according to the signaling pathways or related 
genes, such as Wnt/β-catenin, RAS/MAPK, PI3K/AKT, 
TGF, TP53-related pathways, JAK/STAT. Key driver genes 
of CRC such as APC and TP53 are two common muta-
tions detected in CRC, which were identified in all these 
eight organoid lines we established. Three out of eight 
organoid lines harbored the well-known mutations 
of KRAS. In addition to these driver mutated genes, 
other mutated genes of different signaling pathways 
were also retained in organoids compared to pairwise 
tumor tissues in vivo. We also captured one organoid 
derived from a microsatellite unstable patient (P4), 
which harbored MLH1 and ACVR2A mutations (Fig. 1C). 
With respect to the maintenance of the key gene muta-
tions, these cultured organoids can well recapitulate 
the genetic signatures of tumors in vivo. To investigate 
the conservation of mutations during long-term cul-
ture, four organoid lines were additionally analyzed by 
WES after 2 months of culture, and it was shown that 
mutations were in general sustained, which can be pre-
sented by mutations of TP53, EGFR, BRCA2, etc. in P2, P3 
and P6 (Figs. 1C and S1B). Also, the high Jaccard index of 
short- and long-term cultured organoids also confirmed 
the maintenance of mutations. Furthermore, by using 
whole genome sequencing (WGS), we found that the 
copy number variations (CNVs) of organoids cultured in 
vitro were well consistent with the corresponding tumor 
tissues in vivo (Fig. S1C). The above results analyzed a 
diverse range of genomic features of organoids which 
represent the heterogeneities of CRC patients and veri-
fied that organoids could faithfully maintain the muta-
tions and CNV features of the corresponding tumor 
tissues of CRC patients.

At the transcriptome level, organoids well preserved 
the expression levels of tumor-related important sign-
aling pathways, such as PI3K/AKT, Wnt/β-catenin and 
TP53 pathway (Fig. 1D). Furthermore, we integrated 
DNA methylome sequencing data and focused on the 
features of specific genes. It was found that the orga-
noid cultured in vitro could largely maintain the DNA 
methylation patterns of gene promoter regions as those 
of in vivo tumor tissues, including the genes BCL2L1, 
IMPDH2, and TGFBI, which have been reported to be 
associated with CRC progression (Sillars-Hardebol et 
al., 2012; Duan et al., 2018; Chiavarina et al., 2021) (Fig. 
S1D). Collectively, these results demonstrate that the 
organoids we cultured well resembled the correspond-
ing matching tumor tissues in vivo, including both the 
histological, genomic and epigenomic features, which 
is critical for the subsequent anticancer drug screening 
and interpretation of the drugs’ mechanisms of action 
(MOA).

The prediction and screening of repurposed 
drugs to suppress CRC patient-derived organoids
Organoids we established displayed a closer recapitula-
tion of tumor tissues and could serve as an ideal model 
for anticancer drug screening. In an attempt to identify 
potential drugs for CRC therapy effectively, we developed 
an approach that combined computation-based drug 
prediction with experiment-based drug screening using 
organoids. First of all, we established an organoid-based 
drug screening platform. To improve the reproducibility 
between different wells, we optimized the present drug 
screening protocols (Driehuis et al., 2020): organoids were 
dissociated into single-cell suspension and then seeded 
into 96-well plates after precise counting of cell numbers. 
After about 2 days, when the organoid cells re-formed 
into spherical structures, the drugs were added and the 
treatment was maintained for 5 days. Celltiter-Glo 3D 
was used to measure the ATP values of cells. Traditional 
criteria used to access drug responses such as IC50 have 
limitation that they vary widely with the changes of pro-
liferation rates. Growth rate inhibition (GR) metrics has 
been reported to be a more desirable measure for in vitro 
drug screening, eliminating the disturbance of cell pro-
liferation rate on drug sensitivity by normalizing growth 
rate inhibition of cells (Hafner et al., 2016). GR50 is the 
concentration of drugs at which GR value equals 0.5. 
Therefore, the GR50 value was calculated to represent the 
sensitivity of the drugs in our screening platform (Fig. 2A).

Then, we developed a computation-based drug pre-
diction approach (see Methods). Recent progress in high 
throughput sequencing has provided a rich resource for 
disease research and drug discovery. Taking advantage 
of the available transcriptome database, we conducted 
a ridge regression-based approach to predict drugs with 
potential inhibitory effects on CRC (Fig. 2B). The drug 
response signatures obtained from CTRP, PRISM, GDSC1, 
and GDSC2 databases and the disease signatures obtained 
from TCGA were used as training sets and test sets respec-
tively. Transcriptome signatures of malignant epithelial 
cells and normal epithelial cells from a published sin-
gle-cell transcriptome dataset were used to predict the 
potential drug responses for CRC (Lee et al., 2020). Based 
on differences between malignant epithelial cells and nor-
mal epithelial cells as well as correlations of predicted IC50 
values with tumor signatures and prognosis, five drugs 
including mocetinostat, trametinib, nobiletin, bortezomib, 
and altretamine were stringently screened out (Fig. 2C).

With the aim of discovering drugs with less adverse 
effects, we employed a compound library of clinically 
tested drugs that were barely used in CRC clinical tri-
als according to the clinicaltrial.gov database (Table 
S2). A total of 335 drugs, including five drugs that were 
computationally predicted, were used for further orga-
noid-based screening (Figs. 2D, S2A and S2B). All of these 
drugs have passed phase I clinical trial for at least one 
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Figure 2. Drug prediction and organoid-based drug screening. (A) Schematic diagram displaying the experimental procedure of 
drug screening. Organoids were dissociated into single cells and were further seeded in 96-well culture plate (3,000 cells/well) at 
day 0. Drugs were added at day 2. 10 μmol/L of drugs were used in preliminary screening. 34 Drugs with great anti-tumor effects 
were selected out for secondary screening, and 2 positive control drugs (5-fluorouracil and regorafenib) were also used in secondary 
screening. The concentration gradients were set for the secondary screening. To get better interpretable value, drugs were diluted at 
3.16 (half-log) times, 2 times, 5 times or 10 times respectively, depending on the sensitivity of the organoids’ response to the drugs. 
ATP values at the beginning and the end of drug treatment were measured respectively, which were used for the calculation of GR50. 
Different color stands for different drugs. Three replicates were set up for each drug treatment. (B) Drug prediction procedure. Three 
screening conditions were marked in green boxes. (C) Prediction results. Candidate drugs were marked in the figure. Different dot 
color represents drugs predicted from different databases. (D) Distribution of the total and selected drug-targeted pathways. The 
classification of 34 drug candidates was presented in red. (E) Preliminary screening result for patient 2-derived organoid. (F) Cell 
viability of selected 34 drugs and 2 positive control drugs (5-fluorouracil and regorafenib) in both patient 2- and 3-derived organoids. 
Different colors stand for different patient-derived organoids. (G) Representative brightfield of organoids exposed to vehicle (NC), 
romidepsin, trametinib, and bortezomib. Scale bars, 100 μm. (H) Drug dose-response curves of eight CRC patient-derived organoids 
treated with the two positive control drugs (5-fluorouracil and regorafenib). Each point indicates the mean value of three replicates.
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type of human disease. Due to the heterogeneities of 
organoids, we used organoid lines established from two 
representative patient cases of CRC (P2 and P3) for pre-
liminary screening simultaneously. Drugs on either of 
these two different organoid lines with cell viability of 
less than 30% (5fu was used as positive control) after 
treatment were considered to have significant inhibitory 
effects on CRC organoid cells. Among these 335 drugs, 
34 drugs were successfully screened out (Figs. 2E, 2F and 
S2C). As expected, 27 out of these 34 drugs were antican-
cer drugs, targeting DNA damage and repair, and tyros-
ine kinase signaling, etc. The remaining drugs, although 
initially developed for the treatment of non-cancer 
diseases, also showed significant suppression for CRC-
derived organoids in our screening (Fig. S2B).

To further confirm the anticancer efficiency of the 
drugs for a diverse set of CRCs with different molec-
ular types, we tested the drugs in all eight established 
organoid lines. We found that different patient-derived 
organoids showed diverse sensitivities to these 34 drug 
candidates (Fig. S2D and S2E). Triglycidyl isocyanurate, 
quizartinib, and fenbendazole were the three drugs that 
had the greatest response differences among different 
organoid lines, indicating the diverse responding signa-
tures of different tumors to the same drug. Romidepsin, 
trametinib, and bortezomib were the drugs that had the 
greatest inhibition rates (Fig. 2G). 5-Fluorouracil and 
regorafenib, two drugs commonly used in CRC clini-
cal treatment, were used as the positive controls in our 
study. Varying sensitivities of these two clinical agents 
were also observed. P4 organoid was the most sensitive 
to 5-fluorouracil, while P8 was the least sensitive (Fig. 2H).

Patient-derived organoids showed strong 
heterogeneities of drug responses
The organoids that we established well recapitulated 
the molecular characteristics of parental tumors and 
exhibited diverse gene mutations enabling us to observe 
the heterogeneities among different organoid lines. 
First, based on the drug sensitivity represented by the 
GR50 value, we observed that the sensitivities of differ-
ent drugs with the same target were highly consistent 
across organoid lines, indicating the reliability of the 
drug screening system in our study (Fig. 3A and 3B). For 
instance, donafenib and sorafenib tosylate both target 
vascular endothelial growth factor receptor (VEGFR), and 
the sensitivity to both drugs showed high consistency 
among different organoid lines, with higher sensitivity 
in P2, P3 and P8 patient-derived organoid lines compared 
to other organoid lines. In addition, two anthelmintic 
drugs, fenbendazole, and albendazole, also showed simi-
lar drug sensitivities in eight lines of the organoids, with 
P8 being insensitive to both drugs. The same accordance 
was also observed in two estrogen receptor inhibitors 
(tamoxifen and clomifene citrate) and two MEK inhib-
itors (selumetinib and trametinib), confirming that our 

screening system provides a nice demonstration of 
inter-organoid (inter-patient) drug sensitivity. And these 
results also suggest that it is the inherent heterogenei-
ties of biological features among different patient-de-
rived organoid lines that lead to the differences in drug 
response profiles.

Next, we compared the differential drug sensitivities 
among patient-derived organoids. We found distinct dif-
ferences in drug sensitivities for the same organoid line 
treated with different drugs, as well as different sensitiv-
ities among diverse organoid lines treated with the same 
drug, indicating the biological heterogeneities among 
different CRC patients (Figs. 3A and S3). Interestingly, 
we found that some patients were specifically insensi-
tive to a class of drugs. For example, the P8 organoid line 
was very insensitive to drugs that target DNA damage 
and repair-related pathways. Moreover, the P2 organoid 
line displayed insensitive to MEK-target inhibitors, tra-
metinib, and selumetinib.

Drug response signatures were classified 
into five representative patterns based on 
transcriptomic characteristics
In an attempt to decipher the MOA of drug candidates 
that potentially inhibit CRC, we performed RNA-seq for 
organoids treated with all these 34 drug candidates we 
screened out as well as the two positive controls (5-fluo-
rouracil and regorafenib). PCA analysis and correlation 
analysis revealed that organoids of different patient 
origins clustered individually, indicating that the differ-
ences in transcriptomes between organoids from differ-
ent patients were greater than the differences induced by 
drugs (Fig. S4A and S4B). Moreover, we observed heteroge-
neities in drug responses for the same drug among differ-
ent patient-derived organoid lines compared to organoids 
from the single patient (Fig. S4C). Therefore, to compre-
hensively reveal the MOA of these 34 drug candidates 
and exclude interference of the heterogeneities of drug 
responses, we integrated all the transcriptome data to 
explore the drug-induced changes in terms of the distur-
bance of tumor-related signaling pathways, expression 
of CRC characteristic genes, expression of drug resist-
ance-related genes and the degree of cell differentiation.

Gene set enrichment analysis (GSEA) was performed to 
investigate the expression patterns of tumor-related sig-
naling pathways in organoids treated with different drug 
candidates. We classified the tumor-related pathways into 
four groups based on their functions: cell proliferation, 
immune activation, stress response and metabolism. We 
found that almost all drugs (31 of 36) significantly inhib-
ited cell cycle-related pathways, such as E2F targets and 
G2M checkpoints pathways, and 26 drugs exhibited the 
activation of apoptotic pathways. In addition, the distur-
bance of signaling pathways was consistent for drugs with 
the same targets, such as estrogen receptor inhibitors (clo-
mifene and tamoxifen), histone deacetylation inhibitors 
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(mocetinostat and romidepsin) and inhibitors related to 
inhibition of microtubule action (albendazole and fen-
bendazole), confirming that the accuracy of our transcrip-
tome-based analysis for MOA signatures (Fig. 4A).

Interestingly, although all these 34 drug candidates 
demonstrated a significant suppressive effect against 
tumor organoids, different drugs interfered with dif-
ferent pathways, indicating that they acted in different 
ways to inhibit the viability of CRC organoids. According 
to the expression of the tumor-related signaling, we iden-
tified five distinct patterns of drug response signatures.

Pattern 1 (G1) was annotated as a differentiation induc-
tion group, which is characterized by higher expression 
of marker genes for different intestinal epithelial cell 
types. Gene function enrichment analysis revealed that 
downregulated genes mainly enriched for positive reg-
ulation of the WNT signaling pathway and cell division 
(Fig. 4B). And upregulated genes enriched for regulation 

of cell growth and cell adhesion (Fig. S5B). Meanwhile, 
CHGB, S100A9, SLC17A7 and SLC8A2, which participated 
in intestinal absorption and secretion functions were 
upregulated significantly (Fig. 4C). SLC2A9 and SDHC, low 
expression of which correlated with the worse survival 
of CRC, were significantly upregulated in this study (Fig. 
S5C). Moreover, it has been reported that the stemness 
of tumor cells correlates with tumor progression and 
metastasis, targeted which has great potential to induce 
tumor regression (Fumagalli et al., 2020). Thus, we spec-
ulated that drugs in G1 cluster may both inhibit the pro-
liferation of tumor cells and promote cell differentiation. 
In addition, G1 contains two inhibitors targeting histone 
deacetylase (HDAC): mocetinostat and romidepsin. Both 
of the drugs have a stronger differentiation induction 
capability in tumor cells compared to other drugs in 
this class and have a greater ability to kill tumor cells 
(average GR50 values of these two drugs were 1.3 μmol/L 
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Figure 3. Distinct heterogeneity of drug sensitivity was observed among different patient-derived organoids. (A) Heatmap of 
normalized GR50 values for 34 drug candidates and 2 positive control drugs (5-fluorouracil and regorafenib) used to treat 8 CRC 
organoids. Green to red indicates sensitivity to insensitivity. (B) Dose-response curves displaying that the selected drugs with the 
same targets showed high consistency in drug sensitivity. Each point indicates the mean value of three replicates.
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and 3.7 nmol/L respectively). HDAC is known to repress 
chromatin opening and transcription factor binding by 
removing charged acetyl groups, which eventually affect 
cell growth. It has been reported that HDAC inhibitors 
promote the expression of genes involved in the syn-
thesis of acetyl-coenzyme A (acetyl-CoA) from citrate 
and acetate (Srivatsan et al., 2020). In the present study, 
HDAC inhibitors’ treatment resulted in downregulation 
of the expression of ACSS2 and ACLY, in agreement with 
the reported results, indicating that HDAC inhibitors 
interfered with acetyl-CoA synthesis and disturbed the 
function of HDAC (Fig. S5A). The above results showed 
that HDAC inhibitors were highly effective in inhibiting 
the viability of tumor cells, and consistent with the pub-
lished work, HDAC inhibitors could stimulate the differ-
entiation of intestinal epithelial cell types (Wang et al., 
2017), which verified the reliability of the drug-response 
signatures based on the transcriptome analysis in this 
study.

Compounds in Pattern 2 (G2) significantly repressed 
the growth factor responses and the regulation of MAPK 
signaling pathways (Fig. 4B), so we identified G2 as a 
growth inhibition group. DUSP6 and FFAR4, which are 
involved in the MAPK pathway, were downregulated (Fig. 
4C). DRD4 and SLC9A3R2, two genes associated with poor 
prognosis of CRC were downregulated (Fig. S5C).

Pattern 3 (G3) was identified as the metabolism inhibi-
tion group. Drugs in this cluster inhibited the expression 
of metabolism-related pathways of CRC organoids, par-
ticularly the glycolytic pathway. Genes downregulated 
in this cluster were enriched for functions such as car-
bohydrate metabolism and amino acid metabolism (Fig. 
4B). Moreover, metabolism-related genes such as FUT3, 
GCAT, GLCE, and NAAA were clearly downregulated after 
drug treatment (Fig. 4C). Also, genes (GRIA3 and ENO2) 
correlated with poor prognosis were observed downregu-
lated in G3 (Fig. S5C). The positive control, 5-fluorouracil, 
a commonly used clinical drug for CRC treatment, was 
also in this group.

Pattern 4 (G4) exhibited an interesting signature that 
the immune response- and stress response-related path-
ways were activated. GSEA results revealed that the dif-
ferentially expressed genes in this cluster were enriched 
in neutrophil degranulation, antigen presentation (Fig. 
4A). This suggested that drugs in this class not only 
inhibit tumor cell proliferation but also promote the 
immune system to attack the tumor cells by enhancing 
the antigen presentation signatures of the tumor cells. 
Therefore, G4 was annotated as an immune response 
promoting group. HLA-B and IL2RG, genes participated 
in immune responses were significantly upregulated in 
G4 (Fig. 4C). Meanwhile, poor prognosis gene ZEB1 was 
downregulated (Fig. S5C).

Pattern 5 (G5) was identified as the cell cycle inhibition 
group, which revealed the strongest phenotype displaying 

a decline in the cell cycle and DNA replication (Fig. 4B). 
In addition, genes that were upregulated in this group 
enriched for unfolded protein response pathways (Fig. 
S5B). A variety of markers of the cell cycle, such as CDK1, 
CDKN3, CENPE, and TOP2A were significantly downregu-
lated (Fig. 4C). PARD6G, which was correlated with worse 
survival of CRC was significantly downregulated in this 
group (Fig. S5C). The positive control, regorafenib, a com-
monly used clinical drug for CRC treatment, was also in 
this group.

Additionally, we randomly selected ten out of these 
drug candidates to treat organoids at high, medium, and 
low concentrations respectively, and collected the drug-
treated organoids for transcriptome sequencing analysis 
subsequently. The numbers of up and downregulated 
genes of each drug increased with drug concentrations, 
and the overlap part of differential expressed genes 
(DEGs) accounted for a large proportion of all the DEGs 
in the high and median concentration groups, indicating 
that the drug response signature is dose-dependent (Fig. 
S6).

Overall, we elucidated five representative drug 
response patterns based on the altered transcriptome 
profiles, and we further annotated these five patterns as 
differentiation induction group, growth inhibition group, 
metabolism inhibition group, immune response promot-
ing group, and cell cycle inhibition group (Table S3). We 
also elaborately described the different characteristics 
of drug response signatures and the MOA of drug can-
didates that target CRC organoids, which provide clues 
for selecting potential drugs for clinical combination 
therapy.

Validations of tumor suppression effects of drug 
candidates in vivo
To assess the performance of the drugs in the in vivo 
environments, PDOX models were successfully estab-
lished in this study. By taking into consideration of the 
GR50 information and clinical toxicity of the drugs, one or 
two drugs with low GR50 values and low toxicity in clini-
cal use were selected out from each drug response group 
(7 drugs in total) for tumor suppression experiments on 
PDOX. Besides, 5fu was used as a positive control. By 
counting the tumor weight in mice after drug treatment, 
we found that the median tumor masses were reduced 
after treatment with all of these eight drugs, indicat-
ing that consistent with the results of in vitro screening 
experiments, all the drugs we screened had potential 
tumor-suppressive effects. In addition to the commonly 
used clinical drug (5-fluorouracil, 44% reduction, P-value 
= 0.032), trametinib (41% reduction, P-value = 0.023), 
fedratinib (42% reduction, P-value = 0.033) also showed 
significant reduction in the tumor weight compared to 
the controls (Fig. 5A and 5B). Through immunoblotting 
experiment, we found that the p-ERK and p-STAT3 was 

https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad038#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad038#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad038#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad038#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad038#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad038#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad038#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad038#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad038#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad038#supplementary-data
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Figure 5. Validation of anticancer effect of selected drugs on PDOX model. (A) Anticancer effect of selected drugs. Fedratinib was 
administered at a concentration of 120 mg/kg twice daily (morning and evening) by oral gavage (4 mice). Bortezomib was administered 
at a concentration of 1 mg/kg twice weekly by intraperitoneal injection (4 mice). Tamoxifen was administered at a concentration 
of 50 mg/kg by oral gavage (6 mice). Trametinib was administrated at 1 mg/kg once daily by intraperitoneal injection (4 mice). 
1.5 mg/kg romidepsin was administered twice weekly by intraperitoneal injection (3 mice). 20 mg/kg selinexor was administered 
three times a week by intraperitoneal injection (3 mice). Mocetinostat was administered at a concentration of 90 mg/kg by oral 
gavage (3 mice). Left plots showing tumor growth. Data are presented as mean ± SD. Right plots display xenograft tumor weight 
after treatment with vehicle versus selected drugs. P-values were determined by two-side t-test. (B) Images of mice and dissected 
tumors treated with different drugs. The side length of squares on the white paper background was 1 cm. (C) Representative images 
of KI67 staining in bortezomib-treated PDOX. Corresponding tumor weight was marked on the pictures. (D) Immunohistochemical  
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reduced during treatment of trametinib and fedratinib, 
respectively, indicating that the activity of MAPK path-
way was disturbed through trametinib treatment in 
CRC organoids, and fedratinib may inhibit CRC growth 
by inhibiting the JAK/STAT pathway (Figs. 5F and S7). 
Meanwhile, to further validate the anticancer effects 
of drug candidates, we conduct immunohistochemical 
(IHC) staining and found that the percentage of KI67 pos-
itive proliferating cells clearly decreased after the treat-
ment by bortezomib (Fig. 5C and 5D). The above results 
suggest that the drugs we screened out might be promis-
ing candidates for clinical therapy of CRC patients.

Promoted by these results, we further validated the 
tumor suppression effects of the drugs at the transcrip-
tome level. We dissected the tumors in mice after drug 
treatment and conducted RNA-seq. It was found that 
drugs were classified into two groups based on transcrip-
tome characteristics. Drugs with better tumor-inhibition 
effects clustered together. In addition, trametinib, borte-
zomib, and fedratinib led to a significant downregulation 
of cell cycle-related pathway genes (Fig. 5E). Overall, by 
establishing the PDOX model in vivo, we found that all 
the drugs we screened out had the potential ability to 
inhibit CRC, validating the reliability of our drug screen-
ing system. In conclusion, transcriptomic data and pro-
tein level validation results complement each other and 
together confirmed the anticancer efficacy of drug can-
didates. And drugs with significant tumor suppression 
effects are likely to be useful in the treatment of CRC and 
may be used as a complement to the treatment regimen 
of current clinically used drugs.

Comparison of the drug responses between CRC 
organoids in vitro and pairwise PDOX in vivo
Next, we further investigated the drug response differ-
ences between the in vitro and in vivo systems (organoid 
and pairwise PDOX models). To exclude the influence of 
the heterogeneities among patients, we compared the 
drug responses of PDOX and its corresponding organoids 
(Table S4). Inconsistent changes in the transcriptome 
of drug-treated cells in vivo and in vitro systems were 
observed, including the clinical-commonly used drug 
5fu (Fig. 6A). We found that only approximately 10% of 
DEGs were overlapped between organoids in vitro and 
corresponding PDOX models in vivo, and the expres-
sion of the disturbed pathways differed between them 
(Figs. 6B, 6C and S8A). Meanwhile, the concordance 
expression of cancer-related pathways between these 

two screening systems varied among different organoid 
lines and different drug treatments (Fig. S8B). We spec-
ulate that it might be caused by the underdose of the 
drug treatment in vivo, which rendered the modulation 
of the signaling pathways and expression of the genes. 
Since the size of the tumors in mice is much larger than 
that of the in vitro cultured organoids, the extent of pen-
etration of drug molecules into the tumors may be rela-
tively reduced. To test this hypothesis, we extracted the 
top 250 genes strongly upregulated or downregulated 
in both CRC organoids and pairwise PDOX models. We 
found that in one of the organoid lines, the correlation 
coefficient of gene expression was on average of 0.48 (Fig. 
6D). However, we did not get the same result in the other 
organoid line (Fig. S8C), indicating that the underdose 
could only partially explain the divergent transcriptomic 
features between organoids and pairwise PDOX models, 
and whether the inherent biological differences between 
these two systems (such as the exposure of oxygen, pres-
ence of vessels and the recruitment of microenviron-
ment cells) influence the gene expression changes need 
to be investigated further.

Organoid system combining with drug 
prediction could help discovering potential drug 
combinations
Next, we want to further investigate whether the drug pre-
diction approach and organoid-based drug screening sys-
tem could be used to obtain valuable clues for the drug 
combination treatment for CRC (Fig. S8D). Among drugs 
with potential tumor suppression effect, we found that fed-
ratinib is of great interest. Fedratinib was initially developed 
for the treatment of myelofibrosis (Mullally et al., 2020). In 
our study, Fedratinib showed significant inhibition of CRC 
tumor organoids. Thus, we utilized the LINCS database to 
predict the drugs that may have synergistic effects with 
fedratinib. We obtained two drugs that combined with fed-
ratinib which may have better tumor suppression effects. 
Bortezomib was the top-ranked drug candidate (Fig. 7A). 
To test the effectiveness of the drug combination, we first 
set gradient concentration of the combination of the drugs 
based on two patient-derived organoid lines. The tumor 
suppression effect of the combination group was greater 
than those of individual drugs, indicating that the combi-
nation of fedratinib and bortezomib might have a greater 
tumor-inhibition effect (Figs. 7B and S8E).

We further verified the synergistic effects in the PDOX 
model. Since the combination of the drugs was toxic to 

analyses of KI67 expression in NC and bortezomib-treated PDOX. P-values were calculated by two-sided t-test. Bortezomib-1 and 
bortezomib-2 represent two different mice that treated with bortezomib. (E) Heatmap showing the expression levels of drug-disturbed 
tumor-associated signaling pathways and intestinal cell type marker genes of PDOX treated with eight drugs. (F) Capillary-based 
immunoassays of phospho-STAT3 and total JAK2 for organoids treated with fedratinib (2.5 μmol/L) for 96 h (left); capillary-based 
immunoassays of phospho- and total ERK for organoids treated with trametinib (0.1 μmol/L) for 96 h and mouse administrated with 
1 mg/kg trametinib once daily (right).

https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad038#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad038#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad038#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad038#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad038#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad038#supplementary-data
https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad038#supplementary-data
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mice, so we used the half dose for each drug. Although 
the significant suppression effect was not obtained when 
we reduced drugs’ concentration (Fig. S8F), we verified 

the synergistic effects at the transcriptomic level. The 
tumors were dissected from the mice after the drug 
treatment and were used for transcriptome sequencing 
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analysis. Proteasome subunits such as PSMA2, PMSB4, 
PMSB6, and PMSB10 were identified as the targets of 
bortezomib, and PLK4, TBK1, RIP5K1A, and STK17B were 
the downstream targets of fedratinib. In the combination 
group, both groups of these drug target genes were signifi-
cantly downregulated (Fig. 7C). More importantly, among 
the DEGs after drug treatment, we identified key genes 
that participated in cancer-related pathways in both the 
single drug treatment group and the combination treat-
ment group (Fig. 7D). Combining with transcriptome 
data and experimental validations both in vitro and in 
vivo, we observed the synergistic effect of our predicted 
drug combination group, indicating that organoid model 
system combining with drug prediction could help dis-
covering potential combination drug treatment.

Discussion
As a valuable alternative to traditional monolayer cul-
tures and PDX models, the organoid systems have shown 
clear advantages in being more cost-effective and better 
reproducing the characteristics of in vivo tumor tissues. 
It has been widely reported that patient-derived orga-
noids have been proved well predict the drug responses 
of cancer patients, indicating that the organoid model 
has great values for applications in drug discovery 
(Vlachogiannis et al., 2018; Yao et al., 2020). However, the 
MOA of drugs based on organoid culture system have not 
been well described, and there is a great need conduct-
ing individualized drug screening. Here, we successfully 
established a CRC organoid-based drug screening sys-
tem. To increase the likelihood of screening out prom-
ising therapeutic drug candidates for CRC, we combined 
computational drug prediction with experimental val-
idations both in vitro and in vivo. More importantly, by 
performing transcriptomic analysis, we have provided 
valuable clues to dissect the MOA of drug candidates 
targeting CRC.

With transcriptome and genome data, we first eval-
uated the molecular characteristics of the established 
CRC tumor organoids. We revealed that tumor organoids 
could well preserve both the morphological features 
and molecular features of the patients’ tumor tissues in 
situ. Notably, as previously reported, the gene mutations 
could be well preserved even after long-term culture and 
expansion in vitro, which is imperative for subsequent 
interpretations of drug response mechanisms. Moreover, 
organoid biobank covered different mutation subtypes, 
and its application in drug screening could yield key 
associations between mutation types and drug sensitivi-
ties, such as CRC organoids harbored TP53 mutation was 
insensitive to MDM2 inhibitors (van de Wetering et al., 
2015), the missense mutations of ARID1A in pancreatic 
cancer are associated with increased sensitivity to dasat-
inib (Hirt et al., 2022), which showed a great potential 

for finding drugs targeting specific type of patients. Here, 
we demonstrate the comprehensive mutational patterns 
of our established organoid lines, and the distinct muta-
tion types of tumor organoids enable us to observe het-
erogeneous drug responses among different lines of CRC 
organoids. However, due to the large heterogeneities of 
CRC and limited sample numbers, it prevented us from 
drawing important patterns and conclusions on the cor-
relations between gene mutations and drug sensitivities. 
In the future, a larger panel of organoids with various 
types of mutations and organoids derived from differ-
ent tumor sites of same patient are required for further 
investigations.

Drug sensitivity databases are gradually serving as 
valuable resources for facilitating the discovery of anti-
cancer drugs (Seashore-Ludlow et al., 2015; Subramanian 
et al., 2017). In this study, we conducted a ridge regres-
sion-based strategy to predict potential drugs for CRC 
clinical therapies. By incorporating disease signatures 
and drug-response signatures, we obtained five drug 
candidates, three of which have been further validated 
having potential tumor suppression effects. Meanwhile, 
we presented an organoid-based screening platform and 
conducted a repurposing drug screening. A total of 335 
drugs that have already passed phase I clinical trial for 
at least one human disease were screened. Since the 
safety of the screened drugs has been well-validated, the 
risk of adverse effects was largely reduced. In addition, 
PDOX that we successfully established provided valida-
tions of our screening results in vivo. Although the drugs 
we screened out by organoid-based screening system 
were previously approved for the treatment of tumor- or 
non-tumor diseases (Voorhees et al., 2003; Mullally et 
al., 2020), they exhibited potential CRC tumor-suppress-
ing effects. The above results suggested that computa-
tion-based prediction approaches and experiment-based 
approaches could complement each other, improving 
the screening success rate. Comparing with current drug 
screening methods which only conduct screening on 
the experiment level, our established strategy combined 
with computation-based drug prediction to narrow down 
the target screening drugs, and provided a novel way to 
discover potential drugs more efficiently.

More importantly, we provided a transcriptome profile 
of organoids treated with potential drug candidates and 
we further divided the drug response signatures into five 
representative patterns (differentiation induction group, 
growth inhibition group, metabolism inhibition group, 
immune response promoting group, and cell cycle inhi-
bition group), which provided a better understanding of 
the MOA of the drugs. We demonstrated that drugs in 
different groups exhibited distinct response signatures. 
For example, organoids treated with drugs in Pattern 1 
(differentiation induction group) showed an upregula-
tion of the expression of genes that participated in cell 
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differentiation. It has been reported that the frequency 
of stem-like cells was associated with the maintenance 
and progression of tumors (Fumagalli et al., 2020), inhib-
iting which may resulting in tumor regression (Ordonez-
Moran et al., 2015). So, we assumed that Pattern 1 drugs 
could suppress the growth through induce the differen-
tiation of the tumor cells. Interestingly, we yielded an 
immune-related Pattern 4 (immune response promoting 
group), drugs in which group could both suppress the 
growth and promote the antigen presentation effects 
of the tumor cells, which may enhance the recruitment 
of immune cells to attack these tumor cells. We found 
that this group of drugs is of great interest. Increasing 
evidences suggested that modulating immune microen-
vironment could help increasing cellular responses to 
immunotherapy (Yap et al., 2021). For example, MEK 
inhibitors could display both anticancer activities and 
promotion of antigen presentation activities, which 
could potentially enhance the immune therapeu-
tic effects (Limagne et al., 2022). We assumed that the 
drugs we screened out in Pattern 4 are potentially great 
candidates for combinational immunotherapy. Due to 
the relatively high number of drug candidates we ana-
lyzed, we speculated that these five identified patterns 
represent general responses of CRCs to small-molecule 
drugs. To our knowledge, our study is the first to describe 
a drug response transcriptome analysis based on CRC 
patients-derived organoid culture system, providing a 
sequencing-based strategy for drug discovery and pro-
vides clues to the selection of potential drugs for clinical 
combination therapy. Further integrated transcriptomic 
analysis with clinical data could accelerate the discov-
ery of drugs that target specific subtypes of CRC or help 
to find inhibitors that can overcome the resistance of 
chemotherapeutic drugs.

Furthermore, previous studies have shown that xeno-
grafted tumors undergo mouse-specific evolution under 
the in vivo mouse environment, resulting in altered char-
acteristics of the tumor itself (Ben-David et al., 2017). In 
this study, discordant transcriptome profiles of in vitro 
and in vivo tumor cells after drug treatment were cap-
tured, including the first-line clinical drug 5fu, which 
also displayed diverse mechanisms on these two screen-
ing systems. By comparing the expression of top variable 
genes in vitro and in vivo, we found that the influence 
of drug dose could only partially explain the differences 
between them. Therefore, whether mouse microenvi-
ronment-specific tumor evolution occurs in our orga-
noid-based xenograft system and whether organoids 
perform better on exploring the underline mechanism of 
drugs required further exploration.

Overall, we constructed a drug repurposing screen-
ing system for the discovery of anticancer drugs and 
screened out 34 drugs that could be potential therapeu-
tic drug candidates for CRC, highlighting the value of our 

computation-based screening approach. More impor-
tantly, integrating with transcriptome sequencing, the 
mechanism of action of drug candidates was success-
fully revealed. Meanwhile, the resulting transcriptome 
profiles serve as a valuable resource for the repurposed 
drug discovery.

Materials and methods
Establishment of patient-derived tumor 
organoids
CRC specimens were provided by the Peking University 
Third Hospital. Fresh tumor samples were stored in the 
antibiotic-containing DMEM medium with 10% fetal 
bovine serum (C04001-500, VivaCell) after surgically 
resected and transported to the laboratory at 4°C for 
immediate processing. The establishment and culture of 
colorectal tumor organoids was performed as previously 
described (Wang et al., 2022). Briefly, after being washed 
gently at least five times with pre-chilled 1X DPBS, tumor 
tissues were cut into small pieces using surgical scissors 
and digested with 2.5 mg/mL type II and type IV colla-
genase (17101015 and 17104019, Invitrogen) to obtain 
single-cell suspensions. After digestion, the suspension 
was passed through a 40 μm cell strainer to remove 
undigested parts, and then centrifuged at 800 ×g for 5 
min. The pellet was resuspended with Matrigel (356231, 
Corning) and dispensed into a 24-well cell culture dish. 
After 30 min of solidification of Matrigel, conditioned 
medium was then added. Conditioned medium was 
prepared according to the previously reported protocol 
(Miyoshi and Stappenbeck, 2013). At early passages, 10 
μmol/L ROCK inhibitor Y-27632 (S6390, Selleck) was sup-
plemented to the medium.

Preparation of pharmaceutical compounds
All 335 pharmaceutical compounds utilized for the in 
vitro screening were purchased from Selleck. The drugs 
were stored at −80°C and repeated freezing and thaw-
ing were avoided. For in vitro screening assay, the con-
centration of the drugs used in the primary screening 
was 10 μmol/L. And six-point dose dilution series was 
set for the secondary screening. To get better interpret-
able value, drugs were diluted at 3.16 (half-log) times, 2 
times, 5 times or 10 times respectively, depending on the 
sensitivity of the organoids’ response to the drugs. Three 
replicates were set up for each drug treatment, and 50 μL 
of the diluted drug was added to each well.

As for in vivo assay, drugs were diluted in different ways 
according to their characteristics. Dilution of fedratinib 
(S2736, Selleck): Fedratinib was administered at a concen-
tration of 120 mg/kg twice daily (morning and evening) by 
oral gavage (Geron et al., 2008). 100 mg powder of fedrati-
nib was dissolved with 0.16 mL of DMSO to make a con-
centrated reservoir of 625 mg/mL and was thoroughly 
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mixed and dissolved at 37°C. Fedratinib storage was fur-
ther diluted with corn oil (405435000, Acros) and prepared 
for administration. Dilution of bortezomib (S1013, Selleck): 
Bortezomib was administered at a concentration of 1 mg/
kg twice weekly by intraperitoneal injection (Stewart et 
al., 2017). 25 mg of drug powder was dissolved with 1 mL 
of DMSO, which was diluted 100-fold with 0.9% saline 
to obtain a working solution of 0.25 mg/mL. Dilution of 
tamoxifen (T5648, Sigma-Aldrich): Tamoxifen was admin-
istered at a concentration of 50 mg/kg by oral gavage. 100 
mg of tamoxifen was dissolved with 10 mL of corn oil. 
After incubated in a rotating incubator at 37°C, tamoxifen 
was well dissolved for about 1 h. Dilution of trametinib 
(S2673, Selleck). Trametinib was administrated at 1 mg/kg 
once daily by intraperitoneal injection (Dizdar et al., 2019). 
10 mg of trametinib was dissolved with 0.5 mL of DMSO, 
which was then diluted 100-fold with corn oil for admin-
istration. Dilution of romidepsin (S3020, Selleck): 1.5 mg/
kg drug was administered twice weekly by intraperitoneal 
injection (Jiang et al., 2020). 10 mg of powder was dissolved 
with 333 μL of DMSO to obtain 30 mg/mL of concentrated 
stock, which was then diluted with 0.9% saline to obtain 0.3 
mg/mL of working solution. Dilution of selinexor (S7252, 
Selleck): 20 mg/kg drug was administered three times a 
week by intraperitoneal injection (Etchin et al., 2013). 50 
mg of drug was resuspended with 0.5 mL to make a 100 
mg/mL concentrate, and was then diluted 25-fold in 0.9% 
saline. Dilution of mocetinostat (S1122, Selleck): adminis-
tered at a concentration of 90 mg/kg by oral gavage (Bonfils 
et al., 2008). A working solution of 18 mg/mL was obtained 
by adding 0.111 mL of DMSO to 50 mg of powder, diluting 
25-fold with corn oil and administering by gavage to mice 
after resuspension in corn oil.

ATP-based cell viability assay
A total of eight organoids were used for drug screening. The 
procedure for drug screening was as follows: tumor orga-
noids were first digested with TrypLE (12604021, Gibco) for 
5–8 min at 37°C. After confirming that most of the cells were 
digested into single cells under a microscope, we collected 
the cells by centrifugation at 800 ×g for 5 min. The superna-
tant was further removed and the cells were suspended in 1 
mL of culture medium. Cells were centrifugated after being 
filtered through a 70 μm filter and then resuspended with 
BME (3533-010-02, R&D Systems). Subsequently, single-cell 
suspension was dispensed into 96-well plate (approxi-
mately 3000 cells per well). After 10 min of solidification 
in the incubator at 37°C, 50 μL of the medium was added 
to each well. 48 h later, the medium that contained diluted 
drugs was replaced and the ATP values of the cells in three 
wells were measured as the initial values for calculating 
GR50. 0.1% DMSO was used as the negative control. To avoid 
evaporation, 200 μL of sterile water was added to the sur-
rounding wells. After 120 h of drug treatment, ATP values 
were examined using CellTiter-Glo 3D (G9683, Promega) 

reagent according to the manufacturer’s instruction. In 
the primary screening, the ratio of organoids treated with 
drugs compared to negative control was under 0.3 were 
considered significantly inhibit CRC organoids. ATP values 
at the start of the drug treatment and ATP values at the end 
of the drugs treatment were collected for GR value calcu-
lation. GR50 was finally calculated using the R package GR 
metrics.

Organoid-based xenotransplantation
Patient 2- and patient 3-derived organoids were har-
vested using cell recovery solution (354253, Corning), 
which could completely dissolve BME while keeping 
organoids intact. After centrifugation at 400 ×g for 5 min, 
organoids were resuspended with 5 mL of DPBS. After 
thorough mixing, 50 μL of the organoid was then taken 
from 5 mL and proceeded to digestion into single cells 
with TrypLE for cell counting. Depending on the number 
of mice, a certain number of organoids were taken and 
resuspended in 50% Matrigel. 100 μL of the mixture was 
injected into the subcutaneous of the right forelimb of 
4-week-old NOD/SCID mice with a 1 mL sterile syringe 
(3–4 million cells per mice). The rate of tumor forma-
tion differed from organoids and we routinely monitored 
the tumor size. When the tumor grew to 150–200 mm3, 
the mice were randomly grouped and the drug treat-
ment start. The mice were weighed routinely, and the 
length and width of the tumors were recorded to calcu-
late the tumor volume (tumor volume = length × width 
× width/2). When the tumor diameter exceeded 20 mm 
or significant weight loss occurred, the experiment was 
stopped and the mice were put to death. Mice were euth-
anized after a maximum of 40 d of treatment. The tumors 
that were dissected from mice were placed in Advanced 
DMEM/F12 containing 10% FBS and then divided into 
small pieces with scissors. Some of the pieces were put 
into RNAlater (AM7021, Invitrogen) solution for storage 
and the subsequent total RNA acquisition. The remain-
ing pieces were placed in 4% PFA (P110, Macgene) for fix-
ation and prepared for the IHC staining.

Capillary-based immunoassay
Organoids treated with fedratinib (2.5 μmol/L) or tra-
metinib (0.01 μmol/L) for 96 h were collected by TrypLE. 
As for PDOX, tumor that resected from mice after drug 
treatment were grinded and prepared for protein extrac-
tion. Cell lysis buffer contained protease inhibitor and 
phosphatase inhibitor were used to extracted protein. 
Protein separation and detection were performed on 
Simple Western system and Compass software (Protein 
Simple). Antibodies against the following proteins were 
used: ERK1/2 (#4695, CST, 1:50 diluted), phosphor-ERK1/2 
(T202/Y204) (#4370, CST, 1:50 diluted), JAK2 (#3230, CST, 
1:20 diluted), phosphor-STAT3 (Tyr705) (#9145, CST, 1:20 
diluted), and β-actin (#4970, CST, 1:50). HRP-conjugated 
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secondary antibody was used to detect the signals and 
results were visualized using proteinsimple software.

Immunohistochemical staining
Tumor tissues resected from mice were first fixed with 
10% neutral buffered formalin and further embedded 
in paraffin. Then, the embedded blocks were sectioned 
into 8-μm-thick slices. For antigen retrieval, slices were 
soaked in 0.01 mol/L citrate buffer and boiled for 30 min. 
After treatment with 3% hydrogen peroxide solution, the 
slices were blocked with 10% BSA at room temperature 
for 1 h. Primary antibody (KI67, ab15580, diluted in 1:200; 
p-JAK2, CST3776, diluted in 1:100) was then diluted and 
added to the slice. After incubation at 4°C overnight, 
the secondary antibody was added and then incubated 
at room temperature for 30 min. DAB substrate liquid 
was finally added to visualize the slices. The positive cell 
ratios of three random-picked pictures were calculated 
respectively with ImageJ 1.47v software. P-values were 
calculated by two-sided t-test. *P < 0.05. **P < 0.01.

Bulk transcriptome sequencing
Total RNA was extracted using the RNeasy Mini Kit 
(74104, Qiagen). For the drug-treated organoids: four 
organoids were collected after 120 h of drug treatment 
and proceed to RNA extraction respectively. To avoid 
cell loss and mechanical damage to the cells during col-
lection of the organoids, we used cell recovery solution 
(354253, Corning) to digest the Matrigel which preserv-
ing the integrity of the organoids. For the tumor tissues: 
tumor tissues that resected from the mice were stored 
in RNAlater solution (AM7021, Invitrogen). QIAshredder 
(79656, Qiagen) was used to filter the undigested clumps. 
After RNA extraction, mRNA was isolated and amplified 
according to the instructions of the NEBNext® Ultra™ II 
RNA Library Prep Kit (E7770L, NEB). Afterwards, DNA was 
quantified by Equalbit 1X dsDNA HS Assay Kit (EQ121-
01, Vazyme). Approximately 50 ng of amplified cDNA 
was used to perform library construction following the 
instructions of the KAPA Hyper Prep Kit (KK8054, KAPA).

Processing of bulk whole genome sequencing 
and whole exome sequencing data
For the WGS and whole exome sequencing (WES) data, 
we used fastp (version 0.23.1) to trim reads of low qual-
ity or with adaptors and used BWA (version 0.7.17-r1188) 
to map reads to the hg38 reference genome. As for the 
WGS data, Control-FRCC (version 11.6) was used to call 
CNV with the parameter ploidy set to 2. As for the WES 
data, the GATK (version 4.0.12) was used to call germline 
mutations following the manual of GATK. The Haplotype 
mode was used to identity germline mutations and ref-
erence SNV resources including hapmap_3.3, 1000G 
omni_2.5, 1000G phase1 snps, dbsnp138, mills and 
1000G gold standard indels were used to filter germline 
mutations. Only “PASS” germline mutations with high 

confidence were retained and the transformed maf files 
were used for further analysis.

Processing of bulk whole genome bisulfite 
sequencing data
Fastp (version 0.23.1) was used to trim and filter 
sequencing reads. Bismark (version 0.23.1) was used to 
map whole genome bisulfite sequencing (WGBS) data to 
the hg38 reference genome. The methylated C ratio of 
sites were also calculated and extracted by bismark. We 
used the R package methylKit (version 1.10.0) to iden-
tify differential methylated sites and differential meth-
ylated regions (DMR), with the differential methylation 
cutoff set to 0.25, q-value set to 0.01 and window length 
of DMRs set to 500 bp.

Processing of bulk RNA-seq data
We used fastp (version 0.23.1) to trim reads of low qual-
ity or with adaptors and used STAR (version 2.7.0f) to map 
reads to hg38 reference genome. FeatureCounts (version 
2.0.1) was used to calculate counts of every gene. The R 
package DESeq2 (version 1.24.0) was used to identify DEGs, 
and the gene count matrix was inputted. The adjusted 
P-value cutoff was 0.05, and genes with log2 of transcript 
per million (TPM) more than 1 were retained as DEGs of 
different conditions. The log2 of fold change were not con-
sidered to involve more DEGs in conditions. The principal 
component analysis (PCA) was performed by R packages 
factoextra (version 1.0.5) and FactoMineR (version 1.42).

Gene set enrichment analysis
The GO analysis was performed by clusterProfiler (ver-
sion 3.18.0) or the online tool Metascape (Zhou et al., 
2019). As for the GSEA analysis, the GSEA function of 
clusterProfiler (version 3.18.0) was used to perform the 
GSEA analysis (Yu et al., 2012). The hallmark gene sets 
and ontology gene sets were involved in GSEA analysis. 
And we used the GSVA (Gene Set Variation Analysis) 
enrichment scores to describe enrichment scores of gene 
sets and signatures through the R package GSVA (version 
1.32.0) (Hanzelmann et al., 2013). The “ssgsea” method of 
GSVA package was used. Related pathways or signatures 
were summarized from the KEGG database.

Comparison drug effects in vitro and in vivo 
based on correlations of gene sets
As for the selected gene sets or signatures, we calculated 
the Pearson correlation coefficient of the sample condi-
tions in vitro and in vivo. The correlation of in vitro and 
in vivo was used to assess the similarity based on the 
specific gene set or signature, which indicates the con-
sistency of the drug.

The survival analysis
Survival analysis of CRC samples from the TCGA dataset 
based on the expression status of identified genes was 
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carried out by the survival package (version 0.4.8) and 
the survminer package (version 2.44-1). The assump-
tion of the Cox proportional hazards model was tested 
using the Cox with 0.1 as the cutoff value, and the Cox 
proportional hazards model was fit using patient groups 
divided by the median gene expressing level.

Prediction of candidate drugs and targets of CRC 
for drug combinations
We mainly used a ridge regression-based method of 
the R package pRRophetic (version 0.5) to predict the 
IC50 AUC values of potential drug responses for CRC 
(Geeleher et al., 2014). The transcriptomic data of cell 
lines from CCLE and drug response data from CTRP, 
PRISM, GDSC1 and GDSC2 were utilized as training sets, 
which contains about 2,521 drugs and 1,969 cell lines. 
The gene expression dataset of CRC samples from a 
scRNA-seq data set (GSE144735) with about 6,226 epi-
thelial cells was used as the prediction dataset. And the 
predicted IC50 AUC values of involved drug candidates 
were as the predicted results through the calcPheno-
type function. Pseudo-tumor and normal samples were 
obtained by averaging of gene expression from single 
cells. The gene set associated with poor prognosis of 
CRC samples in TCGA dataset was also identified with 
the hazard ratio less than 0.6 and the adjusted P value 
less than 0.05. Three criteria were used to filter and 
identify the drug candidates of CRC. First, drugs that 
the log2 of fold change of the predicted IC50 AUC values 
between tumor and normal samples is less than −0.1, 
and the adjusted P values is less than 0.05 (under the 
t-test) could be retained. Second, drugs that the Pearson 
correlation of the predicted IC50 AUC value and the poor 
prognosis associated gene set score is less than −0.5 
could be retained. Third, the tumor gene set score was 
calculated according to the used scRNA-seq dataset. 
Drugs that the Pearson correlation of the predicted IC50 
AUC value and the tumor gene set score is less than −0.3 
could be retained. If all the three criteria were achieved, 
these drugs were retained as drug candidates of CRC.

As for the prediction of drug combination, we identi-
fied DEGs with their log2 of fold change of fedratinib and 
negative control. The GSEA method was used and drug 
binding gene sets of LINCS were used as inputs (Musa et 
al., 2019). In details, upregulated genes of fedratinib were 
viewed as the target of combination drug theoretically, 
and gene sets associated with drugs in which upregu-
lated signatures of fedratinib enriched were viewed as 
drug candidates for combination with fedratinib.

The similarity of drug responses in vitro and in 
vivo
The log2 of fold change values of drug-treated samples 
and control samples in vitro and in vivo were used to 
evaluate the similarity. Pearson correlation of the mean 

values of the log2 of fold changes in vitro and in vivo was 
calculated as the assessment of the similarity of drug 
responses in vitro and in vivo.
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