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Abstract

Background—Deep learning models may combat widening racial disparities in heart failure 

outcomes through early identification of individuals at high risk. However, demographic biases in 

the performance of these models have not been well studied.

Methods—This retrospective analysis used 12-lead ECGs taken between 2008 – 2018 from 

326,518 patient encounters referred for standard clinical indications to Stanford Hospital. The 

primary model was a convolutional neural network model trained to predict incident heart failure 

within 5 years. Biases were evaluated on the testing set (160,312 ECGs) using area under the 

receiver operating curve (AUC), stratified across the protected attributes of race, ethnicity, age, and 

gender.

Results—59,817 incident cases of heart failure were observed within 5 years of ECG collection. 

The performance of the primary model declined with age. There were no significant differences 

observed between racial groups overall. However, the primary model performed significantly 

worse in Black patients aged 0 – 40 compared to all other racial groups in this age group, with 

differences most pronounced among young Black women. Disparities in model performance did 

not improve with integration of race, ethnicity, gender, and/or age into model architecture, by 

training separate models for each racial group, nor by providing the model with a dataset of equal 

racial representation. Using probability thresholds individualized for race, age, and gender offered 

substantial improvements in F1-scores.

Conclusion—The biases found in this study warrant caution against perpetuating disparities 

through the development of machine learning tools for the prognosis and management of heart 

failure. Customizing the application of these models by using probability thresholds individualized 

by race/ethnicity, age, and gender may offer an avenue to mitigate existing algorithmic disparities.
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Introduction

Heart failure remains one of the leading causes of death in the US, currently affecting 6.2 

million adults1. The burden of the disease varies greatly by age, race, and gender2. Despite 

advances in medical care that have allowed incidence to stabilize or decline3, disparities in 

outcomes persist; in fact, the gap in age-adjusted death rates between Black patients and 

White patients has widened from 1999–2017, especially among younger patients4. Heart 

failure may be underdiagnosed at higher rates in Black patients and women in the outpatient 

setting5. Earlier detection and closer monitoring of high-risk individuals may aid in reducing 

occurrence and improving prognosis of the disease to ultimately combat these disparities.

Several studies have used machine learning algorithms to identify cardiovascular conditions 

from electrocardiograms (ECGs)6–8. Deep neural networks can outperform cardiologists 

in recognizing several abnormalities from 12-lead ECG recordings, achieving F1-scores 

above 80% and specificity above 99%9. They can also achieve superior performance 

when compared to commercial rule-based methods, such as GE Healthcare’s MUSE ECG 

insights10. The application of artificial intelligence to ECG data has additionally been used 

to identify conditions that are not typically detected by the human eye. Deep learning 

models have been successfully developed to screen for asymptomatic left ventricular 

dysfunction (area under the receiver operator curve (AUC) of 0.93)11, atrial fibrillation 

(AUC of 0.87)12, aortic stenosis (AUC of 0.884)13 and anemia (AUC of 0.923)14, illustrating 

the broad potential of this non-invasive tool.

However, the performance and applicability of these models is highly contingent on the 

quality of the training data used, as well as the populations from which they are derived, 

and therefore may be prone to perpetuating implicit biases15. Several instances of this 

have been noted in the medical field: higher rates of underdiagnosis in chest radiographs 

among intersectional underserved populations16, significantly worse AUC values reported 

for dermatology artificial intelligence algorithms when tested on diverse datasets17, lower 

risk scores for Black patients equally as ill as White patients18, and a 50% reduction 

in diagnostic accuracy of skin lesions among darker-skinned patients19. On the other 

hand, there have been cases of machine learning algorithms producing less biased results 

in comparison to other scoring methods20. Nonetheless, the presence of such biases 

remains largely understudied, particularly in the realm of machine learning applications 

for cardiovascular data.

In the case of ECG data specifically, disparities may be exacerbated by baseline differences 

due to age, race, and sex.21,22 Several studies have particularly noted benign variations 

in ECG patterns among Black patients: higher QRS voltages among healthy young 

black males22, ST segment flattening in young Black women23, greater ST-elevation 

thresholds in Black patients than White patients24, and biphasic T-waves in Black women25. 

The differences in ECG characteristics may also carry prognostic significance, showing 

inconsistent association with mortality independent of confounding risk factors, which 

holds implications for race-specific reference ranges and cardiovascular risk.26 Few studies 

have evaluated the disparities present in machine learning models applied to ECG data. 

Noseworthy et al. noted that in spite of racial differences in ECG data, a convolutional 
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neural network trained on a homogenous population generalizes well to detecting low 

ejection fractions for several racial subgroups27. However, the effects of the intersectionality 

of age, gender, and race/ethnicity on model performance have not been well-studied.

This work aims to holistically investigate the existence of algorithmic biases as they pertain 

to age, race, ethnicity, and gender in a deep learning model trained to predict heart failure 

from ECG data and further explore how various modifications to the training and application 

of the model affect its performance.

Methods

Study Population and Data Sources

Because of the sensitive nature of the data collected for this study, requests to access 

the dataset from qualified researchers trained in human subject confidentiality protocols 

may be sent to the corresponding author. This study was approved by the Stanford 

University Institutional Review Board. There were 326,518 12-lead ECGs used in this 

retrospective analysis derived from patients referred for standard clinical indications to 

Stanford University Medical Center. A total of 954,817 ECGs taken between March 2008 

and May 2018 were extracted from the Phillips TraceMaster system. All ECGs were saved 

as 10 second signals from all 12 leads of the ECG, sampled at 500Hz. Band pass and 

wandering baseline filters were applied to the signals, normalized on a per-lead basis, and 

down sampled to 250Hz.

Race, ethnicity, and gender were derived from self-report by the patients at the time 

of hospital enrollment. Follow-up heart failure from March of 2008 to February of 

2022 was queried from STARR-OMOP28 (Stanford Medicine Research Data Repository 

- Observational Medical Outcomes Partnership), a common data model for accessing 

electronic health records. Our primary outcome of interest was incident heart failure, defined 

as a first instance of heart failure within five years of the ECG. Heart failure was defined 

following prior work to include SNOMED (Systematized Nomenclature of Medicine) code 

84114007 (heart failure) and all descendants, excluding 82523003 (congestive rheumatic 

heart failure)29. Patients with prior heart failure were excluded. During training and testing, 

positive cases were defined as patients who developed heart failure within five years of the 

ECG; negative cases were defined as patients with no heart failure within five years of ECG, 

given at least five years of follow-up evidenced by measurement, admission, or mortality.

Model development and training

The primary model was a convolutional neural network trained to predict occurrence of 

heart failure within 5 years of the ECG recording from solely the input of 12-lead ECG data. 

A detailed model architecture can be found in Figure S1. Model development was performed 

using Python 3.9 and PyTorch 1.11, and models were trained on single Nvidia Titan Xp 

Graphics Processing Units using Stanford’s Sherlock computing cluster. Hyperparameters 

were tuned by learning from the training set and evaluating on the validation set, which 

comprised 164,630 ECGs (Figure S2). The parameters were set using a batch size of 128, 

a weight decay hyperparameter of 10−4, and the Adam optimizer. The learning rate was 
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initialized to 10−3 and reduced by a factor of 10 each time the validation loss plateaued for 

more than five epochs, limited at a lower bound of 10-6. After establishing hyperparameters, 

four more models were trained using cross-validation; the dataset was partitioned into five 

different subsets such that one of the five would be excluded from training and used as 

validation in each model. The outputs of these five models were averaged to generate 

predictions on the testing data (160,312 ECGs), which was then used for the analyses below.

Statistical Analysis

A fair model would be expected to have equal predictive capacity across demographic 

divisions; the existence of group-based disparities in model performance constitutes bias. 

Age, race, ethnicity, and gender were chosen as the protected attributes across which to 

evaluate intersectional biases in model performance. Analyses focused on the four largest 

racial/ethnic groups: Non-Hispanic White, Hispanic, Black, and Asian patients. Bias was 

defined as significant differences in area under the receiver operating curve (AUC) across 

demographic subgroups. Age was discretized into four groups: 0–40 years, 40–60 years, 

60–80 years, and >80 (80+) years. AUC was computed in a stratified manner for each 

demographic division. The receiver operating characteristic curves, AUC values and 95% 

confidence intervals were computed using the pROC R package30. Unless otherwise noted, 

AUC values were computed at a five-year time horizon, comparing all examples with an 

event of incident heart failure within five years against all examples with follow-up data at 

five years.

To assess differences in overdiagnosis versus underdiagnosis, calibration curves were 

graphed for each demographic subgroup using the Python Scikit-learn package31 as follows: 

the predicted probabilities were binned and plotted against the proportion of individuals in 

that bin that were observed to develop heart failure. The ideal model would show a 1:1 

correlation; a slope of less than one indicates overdiagnosis and a slope of greater than one 

indicates underdiagnosis.

The optimal threshold used in this model was based on F1-score using data from the entire 

population; precision, recall, and negative predictive value were computed within subgroups 

of race and gender. Moreover, the distribution of positive and negative ground truth labels 

for each subgroup was plotted against the probabilities assigned to the cases by the model.

Reducing Model Biases

Three primary avenues in the design and application of the algorithm were investigated to 

reduce model biases: optimizing training data (pre-processing), modifying the architecture 

of the model, or tailoring application of the model (post-processing) (Figure S3).

In optimizing training data, a series of experiments were performed to modify the subset of 

training data presented to the model; the efficacy of these variations in reducing disparities 

in model performance was assessed through stratified AUC values. The first approach 

involved training a separate model for each racial subgroup and each age subgroup. Four 

individual models were trained and tested on datasets consisting solely of Non-Hispanic 

White patients, Black patients, Asian patients, and Hispanic patients (e.g., the AUC value 

reported for Asian patients reflects performance of a model trained only on ECGs from 
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Asian patients). Similarly, four individual models were trained and tested on datasets 

consisting solely of patients aged 0 – 40, 40 – 60, 60 – 80, and > 80. The second approach 

entailed providing the model with a dataset that has equal representation from each racial 

subgroup. Stratified sampling was applied to the full set of ECGs to take the same number 

of patients from each of the predominant four racial groups: using the size of the smallest 

group (Black patients) as the sampling quantity, this produced a test set of 27,176 ECGs.

In modifying the architecture of the model, demographic variables were incorporated 

through early and late fusion. In early fusion, the model is passed demographic data as 

an additional channel of input data. For example, a model trained on ECG and gender would 

be passed 13 channels of data, where the first 12 correspond to the 12-lead ECG and the 

13th is 0 where the patient is male and 1 if the patient is female (Figure S4a). In late fusion, 

demographic data is appended to an intermediate layer of the model, after the convolutional 

layers and before the fully connected layers, allowing for some mingling of information 

without passing the demographic data through the convolutional backbone (Figure S4b). 

AUC values were compared across the demographic subgroups to validate the effectiveness 

of these approaches in reducing model bias.

In tailoring the application of the model, the probability threshold for classification of a 

case as a positive label was optimized separately for each demographic subgroup based on 

F1-score. F1-score is a metric that can be used to assess precision and recall (the percentage 

of heart failure cases identified by the algorithm) once the model’s outputs of risk scores are 

translated to binary predictions of whether a patient develops heart failure; it is computed 

as follows: F1 = precision * recall
precision + recall . For each demographic subgroup, the differences were 

computed between metrics (precision, recall, negative predictive value) that resulted from 

using the threshold value individualized for that group versus the overall optimal threshold 

value.

Results

Study Population

There were 326,518 patient ECGs derived from patients who were followed for an average 

of 6.8 years. The baseline characteristics stratified by incident heart failure are described in 

Table 1. The patients were on average 59.3 years old and comprised 49.7% women. The 

racial and ethnic composition consisted of Non-Hispanic White (56.5%), Asian (14.2%), 

Black (4.0%), Hispanic (12.3%), Native Hawaiian/Pacific Islander (1.2%), and American 

Indian or Alaskan Native (0.2%).

Incidence of Heart Failure

There were 59,817 incident cases of heart failure within 5 years of ECG collection. The 

fraction of patients who developed heart failure within 5 years increased from 9.0% in the 

youngest age group of 0–40 year-olds to 36.6% in those over 80 years of age. The fraction 

of women (16.4%) developing heart failure within 5 years was lower than that of men 

(20.2%). The incidence of 5-year heart failure was higher among Black patients (23.5%) 
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than White patients (19.0%), Hispanic patients (17.5%), or Asian patients (18.6%) (Table 1). 

Breakdowns of incidence rates by race/ethnicity, age, and gender can be found in Table S1.

Comparisons of Model Performance

The performance of the primary model declined significantly with age. The model 

performed significantly better in those 0 – 40 years old (AUC 0.80 [0.79 – 0.81]) compared 

to those who were >80 years old (AUC 0.66 [0.65 – 0.66]) (Figure 1a). The model 

performed slightly worse in men (AUC 0.77 [0.77 – 0.77]) compared to women (AUC 

0.78 [0.78 – 0.79]) (Figure 1b). There were no significant differences observed in model 

performance between racial groups (Hispanic patients AUC 0.79 [0.79 – 0.80], Asian 

patients 0.78 [0.77 – 0.79], Non-Hispanic White patients 0.77 [0.77 – 0.78], Black patients 

0.78 [0.77 – 0.79]) (Figure 1c).

However, the trends in race- and gender-based disparities differed when broken down by age 

group. The primary model performed significantly worse in Black patients aged 0 – 40 years 

old (AUC 0.69 [95% CI 0.64 – 0.75]) compared to all other racial groups in the same age 

group (Non-Hispanic White AUC 0.80 [0.78 – 0.81]; Hispanic AUC 0.81 [0.79 – 0.83]; and 

Asian AUC 0.82 [0.79 – 0.85]) (Figure 2). The racial differences in AUC were much less 

pronounced among men, whereas the AUC for Black women (AUC 0.69 [0.62 – 0.77]) was 

substantially lower than women of all other racial groups aged 0 – 40 years (Figure S5). 

Gender-based differences varied by age group (Figure S6).

The distributions of predicted probabilities for positive and negative labels vary between 

race and age subgroups (Figure S7). The overlap between healthy patients and heart failure 

patients increased substantially with age across all races. Among Black patients aged 0 – 40 

years, a lower predicted probability was more likely to correlate with incident heart failure 

compared to other race and gender subgroups.

The calibration curves indicate that the model is best calibrated for Asian and Non-

Hispanic White patients. The observed fraction of cases with heart failure exceeds the 

probability predicted by the model among Black patients, indicating greater underdiagnosis 

in comparison to other racial groups, especially among Black women (Figure 3).

Incorporating Race and Ethnicity in Model Building

The model was provided with different subsets of training data to determine if the disparities 

may have resulted from differences in racial and ethnic group sample sizes. Using a dataset 

with equal racial representation did not eliminate disparities between Black patients and 

patients of other racial groups in the 0 – 40 age group (Figure S8). The AUC values did 

not improve from the primary model. Similarly, there was no improvement in performance 

amongst the different race and ethnic subgroups when compared using models that were 

trained on the same race and ethnicity as the test set (Figure S9). Moreover, there was no 

improvement in age-related disparities when the models were trained and tested on data 

from separate age groups (Figure S10).

The incorporation of race/ethnicity, age, gender, or the combination of those three 

demographic variables into training did not significantly improve performance in any 
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subgroup of race and age. Nonetheless, there was a reduction in racial disparities among 

young patients from the combined effect of improving performance for Black patients and 

diminishing performance for other racial groups (Figure 4).

When selecting the probability threshold based on optimization of F1-score, the optimal 

threshold varied between subgroups of race/ethnicity, age, and gender (Figure S11). Black 

men and women in the 0 – 40 and 40 – 60 year age groups had a lower optimal probability 

score threshold than all other groups. The optimal probability threshold for the entire 

population was 0.20; the highest individualized optimal threshold was 0.30 for Asian men 

aged 0 – 40 years and the lowest was 0.10 for Black men aged >80 years. All racial and 

gender groups aged 0 – 40 years showed increases in F1-scores when using individualized 

thresholds (Figure 5). Black women in this age group showed the greatest improvement 

using an individualized threshold of 0.15 with an 11%-point increase in F1-score – a 3% 

increase in PPV and a 21% increase in recall. Black men aged >80 years showed a 10% 

increase in F1-score using an individualized threshold of 0.10 – a 1%-point decrease in PPV 

and a 27%-point increase in recall (Table S2).

Discussion

The utility of deep learning models for ECG data arises from a reduction in the demand 

for cardiologist labor, comparable or increased accuracy of the automated output, and the 

ability to provide insights above and beyond those typically detected by the human eye. 

They provide clinicians with a powerful tool in advising treatment and predicting prognosis.

In this study, we assessed the algorithmic biases present in a model designed to detect 5-year 

occurrence of heart failure. We used a range of approaches previously proposed to assess 

algorithmic equity: predictive parity, predictive equality (false positive error rate balance), 

equal opportunity (false negative error rate balance), equalized odds, conditional use 

accuracy quality, and Well-calibration32. Some of the proposed standards are mathematically 

incompatible (i.e., fairness in one metric may preclude fairness in another)33, underscoring 

the need for a holistic evaluation and consideration of factors that influence utility of the 

model’s application.

The differences in AUC across demographic subgroups confirms the hypothesis that 

disparities exist in model performance, and further indicates that these disparities reflect 

the intersectionality of race/ethnicity, gender, and age in cardiovascular disease. Using the 

metric of AUC, we found that the model performed slightly better for women than men, 

and significantly worse among the older population and the Black population aged 0 – 40 

than all other races. The small observed difference between men and women is notable given 

that there was a higher percentage of positive labels among men and consequently, less class 

imbalance in the data, which would be expected to enhance model performance34.

Upon further analyzing subgroups of race and gender, we found that the disparity observed 

among young Black patients stems primarily from the model’s diminished performance 

among Black women in comparison to women of other racial groups aged 0 – 40; significant 

differences do not exist between races among male patients or between Black men and 
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Black women aged 0 – 40. There have been several cases of ECG patterns observed 

among healthy Black women that would typically be considered malignant in the White 

population25. This may be a contributing factor given the training data was predominantly 

comprised of White patients. Selected ECG examples in Figure S12 illustrate a few cases 

that may provide insight into the trends observed in poor model performance, including 

inaccurate model predictions for young Black women with T-wave inversion and for patients 

over 80 years old with typically low voltages and flat T-waves.

We found that model performance was worse in older patients compared to younger patients. 

Given that the composition of the training data was biased toward older patients and that 

older patients had a larger fraction developing heart failure, the most likely explanation for 

this trend is that there were more obvious ECG differences between healthy and diseased 

patients in the younger age groups. The age distribution varied across racial groups; Black 

patients had a lower average age than Asian patients or White patients (Table S3). Given that 

the model performed better for younger patients, this may be a confounding factor in the 

insignificant AUC difference observed between racial groups overall.

Given the notable reduction in model performance pertaining to race and gender, we 

investigated multiple avenues of modifying the training and application of the model to 

improve the existing disparities. First and foremost, we acknowledge the widespread debate 

surrounding the use of race as a variable in algorithms for medical decision making.35–37 

One study noted that race-specific models in the prediction of heart failure risk demonstrated 

superior performance to non-race-specific and traditional risk models.38 In this study, we 

do not seek to draw conclusions on whether race should be an input into prognosis of 

cardiovascular disease, but rather to investigate this as a method of improving predictions for 

minority groups. We did not find that the inclusion of race, gender, or age as variables in 

model training improved overall performance of the model. We did observe some reduction 

in racial disparities among the 0–40 age group, but this was due to the combined effects 

of improved performance in Black patients and diminished performance in the other racial 

groups. Models trained and tested on a dataset with equal racial representation or on datasets 

with individual race and age groups did not eliminate disparities in performance. However, it 

is difficult to discern the effects of the separation by race or age and stratified sampling from 

the decreased quantity of training data. Nevertheless, we believe that these findings warrant 

caution in using machine learning models as a tool for ECG interpretation and heart failure 

prognosis in older patients or in young, Black patients.

Although modifications to model training did not produce the desired reductions in 

disparities, we sought insight into tailoring the downstream application of the model to 

ameliorate the inherent biases. In doing so, we considered F1-score to evaluate the utility 

of the model where a single binary cutoff is chosen for classification. The variance in 

thresholds at which F1-score peaks for different demographic subgroups suggests that 

individualized applications of the model may be optimal. The range in optimal threshold 

cutoffs varied from 0.10 in Black and Hispanic men aged >80 to 0.30 in Asian men aged 

0–40. These threshold choices are supported by the distributions of positive case labels: 

in Black and Hispanic patients aged >80, positive cases follow a similar distribution to 

negative cases, so a lower threshold is necessary to capture more of those developing heart 
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failure, whereas in young Asian men, the distribution of positive case labels is skewed more 

strongly toward higher probabilities. Moreover, the calibration curves showed overdiagnosis 

being most prominent among Black and Hispanic men, further concurring with a higher 

optimal threshold for these subgroups. In this study, we used F1-Score as the criteria for 

optimization, which gives equal weight to precision and recall. In doing so, we found a 

21.0% increase in recall for Black women. When applying such a model to the healthcare 

setting, we recognize that there may be greater value in recall than precision and recommend 

that the user assign an appropriate utility function for optimization. Thus, calibrating the 

algorithm for race, age, and gender after training may offer a promising avenue to reduce the 

disparities otherwise present in model performance.

Limitations

The primary limitations of the study lie around the parameters of the outcome and 

cohort used to develop the model. We only considered patients with at least five years 

of follow-up data within the Stanford health system from the time of ECG collection. 

The exclusion of cases due to lack of follow-up or prior heart failure may be biased by 

demographic group; however, adjustment for these variables did not preclude demographics 

as a significant predictor of model performance (Table S4). However, one might expect 

that limiting the cohort to patients who sought longitudinal care within the Stanford system 

would create greater homogeneity in the data, thus rendering the findings of disparity in 

model performance even more striking. Furthermore, we assumed that any misclassification 

of cases would be non-differential based on demographic status. In the case that the 

misclassification is biased, we would expect higher rates of underdiagnosis for Black 

patients and women5, which only amplifies the finding of model underdiagnosis observed 

particularly for that group. To support the codes used for heart failure diagnosis, we analyze 

the fraction of diagnosed patients with high BNP (B-type natriuretic peptide) (Table S5) 

and perform a sensitivity analysis using BNP as part of the diagnostic criteria (Figure S13). 

The etiology of heart failure was not available for analysis, and we cannot rule out that 

disparities in model performance are not due to differences in heart failure etiology among 

patients of different demographic groups; nonetheless, the differences in performance of 

the model remain clinically valid. We considered the number of days a patient interacted 

with the medical system to account for likelihood of diagnosis following ECG; significant 

differences were not observed across race and age (Table S6). Some patients may have had 

undiagnosed heart failure at the time of ECG; analyses of AUC differences using a blanking 

period of three days shows consistent results (Figure S14). Lastly, it is important to note that 

although differential performance was observed among various demographic subgroups, the 

black box nature of such models renders it difficult to infer underlying biological variability 

as the root cause of these disparities. We did find that the primary model showed differential 

changes in risk scores by race, age, and gender compared to a linear regression model 

trained on clinical factors and demographic variables (Table S7). The scope of this work 

lies in highlighting disparities that may arise in the development of models on ECG data, 

alongside a series of approaches to mitigate the biases.
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Conclusion

We analyzed demographic disparities on the basis of race, ethnicity, age, and gender present 

in a machine learning model trained to predict occurrence of 5-year heart failure from ECG 

data and found that performance suffered significantly for young Black women. We explored 

the mechanisms underlying these disparities through statistical covariates, calibration curves, 

and distributions of predicted probabilities. We investigated methods of improving these 

disparities – manipulation of the training data, modifications to model architecture, and 

optimization of threshold choice. This study serves to highlight the need to consider 

differential performance of machine learning models among demographic subgroups, and 

offers a framework for understanding, investigating, and improving the disparities that may 

otherwise be perpetuated by algorithms used for medical decision making.
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COMMENTARY

What is new?

• This study is among the first to conduct an analysis of intersectional biases in 

deep learning models for ECG data with respect to race, ethnicity, gender, and 

age.

• The primary model was trained to predict the incidence of heart failure 

within 5 years solely from 12-lead ECG data. The results indicate that model 

performance suffers for older patients, as well as for young Black patients, 

particularly women.

• We explore several avenues of approaches to ameliorating algorithmic biases 

that may serve as a generalized framework for improving model disparities.

What are the clinical implications?

• Our findings warrant caution in using this ECG deep learning model for heart 

failure prognosis among certain demographic subgroups.

• Analyses of intersectional biases are key to ensuring deep learning models do 

not perpetuate existing disparities in health outcomes.

• Finetuning a model’s application in the clinical setting by calibrating model 

outputs to assigned risk scores may ameliorate existing model biases.
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Figure 1. 
Receiver operator characteristic (ROC) curves and area under the curve (AUC) with 95% 

confidence intervals stratified by (a) age, (b) gender, (c) race
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Figure 2. 
Receiver operator characteristic (ROC) curves and area under the curve (AUC) stratified by 

race across age groups
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Figure 3. 
Calibration curves by race and gender
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Figure 4. 
AUC (area under the curve) values with error bars representing 95% confidence intervals by 

race and age groups with integration of age, race, and gender variables at earlier and later 

points in model architecture
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Figure 5. 
Changes in F1-Score when using probability thresholds individualized for race, age, and 

gender subgroups
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Table 1.

Baseline characteristics (Hypertension defined as diastolic >80 or systolic >130; hyperlipidemia defined as 

low-density lipoprotein > 160; abbreviated CAD - coronary artery disease, MI – myocardial infarction, BMI – 

body mass index)

Demographic Subgroup All (% of Total) No Heart Failure (% of 
Subgroup)

Heart Failure (% of 
Subgroup)

Age 0 – 40 47657 (14.6%) 43389 (91.0%) 4268 (9.0%)

40 – 60 106811 (32.7%) 93434 (87.5%) 13377 (12.5%)

60 – 80 134669 (41.2%) 106235 (78.9%) 28434 (21.1%)

≥ 80 37526 (11.5%) 23789 (63.4%) 13737 (36.6%)

Race Asian 46393 (14.2%) 37771 (81.4%) 8622 (18.6%)

Hispanic 40301 (12.3%) 33259 (82.5%) 7042 (17.5%)

Non-Hispanic White 184410 (56.4%) 149234 (81.0%) 35086 (19.0%)

Black or African American 13063 (4.0%) 9997 (76.5%) 3066 (23.5%)

Native Hawaiian/ Pacific 
Islander

4080 (1.3%) 2987 (73.2%) 1093 (26.8%)

American Indian/ Alaskan 
Native

700 (0.2%) 576 (82.3%) 124 (17.7%)

Gender Male 164483 (50.3%) 131331 (79.8%) 33152 (20.2%)

Female 162190 (49.6%) 135526 (83.6%) 26664 (16.4%)

BMI < 18.5 5539 (1.7%) 4431 (80.0%) 1108 (20.0%)

18.5 – 24.9 66660 (20.4%) 53418 (80.1%) 13242 (19.9%)

25.0 – 29.9 68788 (21.1%) 54095 (78.6%) 14693 (21.4%)

≥ 30.0 57996 (17.8%) 43889 (75.7%) 14107 (24.3%)

Hypertension Positive History 109941 (33.7%) 86713 (78.9%) 23228 (21.1%)

Diabetes Positive History 44453 (13.6%) 30198 (67.9%) 14255 (32.1%)

CAD or MI Positive History 43845 (13.4%) 27730 (63.2%) 16115 (36.8%)

Stroke Positive History 14577 (4.5%) 10928 (75.0%) 3649 (25.0%)

Hyperlipidemia Positive History 1891 (0.6%) 1618 (85.6%) 273 (14.4%)

Smoking Positive History 2267 (0.7%) 1753 (77.3%) 514 (22.7%)
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