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Abstract
Atherosclerosis (AS), the main contributor to acute cardiovascular events, such as myocardial infarction and
ischemic stroke, is characterized by necrotic core formation and plaque instability induced by cell death. The
mechanisms of cell death in AS have recently been identified and elucidated. Ferroptosis, a novel iron-dependent
form of cell death, has been proven to participate in atherosclerotic progression by increasing endothelial reactive
oxygen species (ROS) levels and lipid peroxidation. Furthermore, accumulated intracellular iron activates various
signaling pathways or risk factors for AS, such as abnormal lipid metabolism, oxidative stress, and inflammation,
which can eventually lead to the disordered function of macrophages, vascular smooth muscle cells, and vascular
endothelial cells. However, the molecular pathways through which ferroptosis affects AS development and pro-
gression are not entirely understood. This review systematically summarizes the interactions between AS and
ferroptosis and provides a feasible approach for inhibiting AS progression from the perspective of ferroptosis.
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Introduction
Atherosclerosis (AS) is a chronic and progressive arterial disease
primarily caused by interactions among vascular endothelial cell
(EC) injury, lipid deposition, and the inflammatory response [1].
This disease is mainly associated with large- and medium-sized
arteries, such as the coronary, carotid, and lower-extremity arteries
[2]. AS is a prevalent cardiovascular disorder worldwide and is the
primary contributor to adverse outcomes in individuals with
cardiovascular and cerebrovascular conditions. AS is a chronic
progressive disease that most frequently occurs in the elderly
population. Although the incidence of AS has declined in some
countries in recent decades, it remains the leading cause of death
globally [3].
Lifestyle changes such as reducing carbohydrate and fat intake,

engaging in regular physical activity, and avoiding smoking are
essential components of a multifaceted approach to prevent AS

progression [4]. However, lifestyle modifications are difficult to
accomplish. Therefore, effective targets and safe therapeutic
strategies are needed to reduce the incidence of AS [5].
Oxidative stress, characterized by an imbalance between the

generation of reactive oxygen species (ROS) and the presence of
antioxidants or free radical scavengers, plays a crucial role in AS [6].
A growing body of evidence suggests that ferroptosis is strongly
associated with ROS generation, iron homeostasis, and lipid
peroxidation induced by diverse physiological and pathological
stressors in both humans and animal models [7–9]. Ferroptosis,
which is associated with iron and lipid metabolism, plays a
pathological role in AS by linking it to oxidative stress.
Iron in blood was first identified in the 18th century; however,

iron metabolism was not described until the late 1930s [9,10].
Ferroptosis makes cells vulnerable to lipid peroxidation and iron,
and through glutathione (GSH) synthesis, the cystine/glutamate
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antiporter, system Xc‒, and glutathione peroxidase 4 (GPX4) protect
metabolic pathways, including mitochondrial respiration, fatty acid
metabolism, the mevalonate pathway, and (selenium) mercaptan
metabolism [11,12]. Ferroptosis is the most recently identified iron-
dependent form of cell death and is driven by the inactivation of
GPX4 and subsequent accumulation of lipid peroxides [13]. In
addition, it is triggered by dysfunction of system Xc‒ [14]. Genetic
studies have provided compelling evidence that the synthesis of
GSH, the activity of system Xc‒, and the function of GPX4
collectively confer protection against cell death induced by various
oxidative stress stimuli, particularly those that lead to thiol
depletion [15–17].
This review focuses on key advances in understanding the

molecular mechanisms of ferroptosis, the link between ferroptosis
and AS, and the application of ferroptosis-relevant therapeutic
targets in AS.

Key Molecular Mechanism of Ferroptosis
Cell death can be induced by various processes. Since ferroptosis
was first described as a form of iron-dependent nonapoptotic cell
death in 2012 [9], research on ferroptosis has grown exponentially,
and research on its underlying mechanisms has made rapid
progress. Most of these investigations have focused primarily on
cellular metabolism and have revealed the close interplay between
ferroptosis and metabolic cascades. Ferroptosis can be triggered via
two distinct routes: an exogenous or transporter-dependent path-
way and an endogenous or enzyme-regulated pathway [18].
Ferroptosis is primarily attributed to an imbalance in the redox
status of pro- and antioxidant factors and is driven by the aberrant
expression and activity of diverse redox-active enzymes involved in
the generation or elimination of free radicals and lipid oxidation
products [19]. Ferroptosis is a form of cell death orchestrated by
iron-dependent phospholipid peroxidation [20]. Its regulation
involves a myriad of cellular metabolic pathways, including redox
homeostasis, iron metabolism, mitochondrial function, and the
metabolism of amino acids, lipids, and carbohydrates, as well as
various disease-associated signaling pathways [19]. The initiation
and development of ferroptosis are linked to iron, acid, and lipid
metabolism, particularly in cardiomyocytes [21]. The metabolic
pathways potentially involved in ferroptosis and CVD are discussed
below.

Iron metabolism
Systemic iron homeostasis is tightly regulated through iron uptake,
recycling, and loss. Excess Fe directly induces ferroptosis. The body
absorbs iron in the duodenum [22,23]. Cytosolic iron in intestinal
cells can be stored as ferritin or exclusively exported into the plasma
by the basolateral iron exporter, the iron transporter ferroportin
(FPN) [24]. The absence or downregulation of FPN level is an
important factor contributing to iron overload and ferroptosis [25].
Iron binds directly to transferrin (TF) and is subsequently
transported to cells [26]. Before passing through the cell membrane,
the iron reductase Cybrd1 (DcytB) is required to reduce nonheme
ferric iron (Fe3+) to ferrous iron (Fe2+), which is absorbed by
divalent metal transporter 1 (DMT1) [27]. Once divalent iron is
absorbed by DMT1, it passes into intestinal cells and is transferred
to different locations in the cell to meet the iron requirements of the
cells and organelles [28]. Dietary iron exists mainly as Fe3+, which
can be reduced by iron reductases [29]. Iron toxicity originates from

the Fenton reaction between Fe2+ and Fe3+ (Figure 1), which
results in the production of ROS that can damage lipids, proteins,
and DNA, thereby causing ferroptosis. Some chemicals, such as
malachite green, can bind to apotransferrin and alter iron transfer
[30]. FPN is internalized by the hormonal peptide hepcidin and is
subsequently degraded by lysosomes in iron-deficient cells, thereby
preventing iron outflow into the extracellular matrix [31].
Ferritin can store up to 24 Fe atoms in a 4500-subunit

macromolecular complex composed of light and heavy chains.
Specific lysosomal degradation of ferritin releases iron and supplies
the iron required by cells [32]. Since excess free iron can be toxic to
cells, it is released from endosomes into unstable iron pools via
DMT1 to avoid cytotoxicity [33]. This is an important physiological
process of iron metabolism [34]. The absorption of iron within the
intestinal tract is meticulously regulated and depends on the iron
demands of the organism [34,35]. Iron metabolism disorders can
directly or indirectly impair macromolecules, including proteins,
nucleic acids, and lipids, leading to cell damage or death [36].

Lipid peroxidation
Lipid metabolism is also closely associated with ferroptosis [37].
Among the siderophores, all the pathways involve iron-dependent
lipid ROS accumulation [38]. Ferritin phagocytosis occurs when
ferritin interacts with other cells or molecules. Ferritin binds to a
receptor on the cell surface and enters cells via phagocytosis [39].
Once inside the cell, ferritin is degraded by acidic lysosomes. The
stored iron ions are then released, increasing cellular iron levels,
leading to the accumulation of ROS and eventually cell death [40].
Although iron is an inorganic nutrient that is essential for cell
proliferation, excess iron in the body produces Fe2+ (Figure 1),
which participates in the Fenton reaction (Fe2++H2O2→Fe3++
·OH+OH‒) [41,42]. This process generates hydroxyl radicals (·OH)
that directly attack lipids, leading to peroxidation of polyunsatu-
rated fatty acids (PUFAs), which further leads to ferroptosis [42].
Free iron levels in cells must be tightly regulated to prevent ROS
production via the Fenton reaction [7]. The redox capacity of GSH is
considered the main mechanism through which it reduces ROS
levels [43]. GSH is a tripeptide composed of glutamic acid, cysteine,
and glycine. GSH acts as an antioxidant and a substrate for GPX4
and is converted to oxidized GSH (GSSG) [38]. The loss of activity of
the lipid-repairing enzyme GPX4 and the subsequent accumulation
of lipid ROS, particularly lipid hydroperoxides, drive ferroptosis
[44]. Most cellular cysteine residues are involved in biosynthetic
processes that inhibit protein translation. Cellular cysteine and GSH
exhibit concomitant protective effects against ferroptosis, thereby
reinforcing their collaborative involvement in the modulation of
cellular signaling pathways [45].
System Xc‒ facilitates the absorption of cystine and is crucial for

the production of GSH, activation of GPX4, and protection of cells
from ferroptosis [9]. System Xc‒ also plays a pivotal role in
facilitating the uptake of cystine and is instrumental in the synthesis
of GSH and activation of GPX4, thereby exerting a critical protective
effect against ferroptosis [9]. This amino acid transporter is widely
distributed in phospholipid bilayers and consists of a heterodimer
composed of two subunits: solute carrier family member 7 member
11 (SLC7A11) and SLC3A2. Heterodimers are key components of
the cellular antioxidant system [46]. Importantly, system Xc‒

enables the bidirectional transport of cystine and glutamate across
the cell membrane at a 1:1 ratio (Figure 1). Notably, the metabolite
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Neu5Ac was recently found to promote ferroptosis in the vascular
endothelium and aggravate atherosclerotic pathology by degrading
SLC3A2 [47]. The absorbed cystine is enzymatically reduced in the
cell to form cysteine, which plays a crucial role in GSH synthesis [9].
Additionally, P53 inhibits cystine uptake by downregulating
SLC7A11 expression, which affects GPX4 activity. This inhibition
results in reduced cellular antioxidant capacity and the accumula-
tion of lipid ROS, ultimately leading to ferroptosis [48–50]. RSL3
functions as a potent ferroptosis inducer by directly targeting and
inhibiting GPX4. This inhibition diminishes cellular antioxidant
capacity, resulting in the accumulation of ROS and ultimately
culminating in ferroptosis [51].
During ferroptosis (Figure 1), reduced GPX4 activity leads to

catastrophic membrane rupture caused by iron-induced lipid
peroxidation [52]. GPX4 uses GSH as a cofactor, with cysteine

being the rate-limiting factor for GSH synthesis [53]. Systemic Xc‒

inhibition leads to the depletion of GSH and impairs GPX4 activity,
resulting in increased lipid peroxidation.

Amino acid metabolism
Iron is involved in the synthesis of several important proteases and
is an important component of human life [54–56]. However, the
mechanism underlying ferroptosis remains unclear. The failure of
the GSH-dependent antioxidant defense system has been proposed
to cause ferroptosis [57,58]. Several investigations have identified
various molecular constituents implicated in ferroptosis and
revealed their intimate associations with cellular metabolism and
redox pathways [20]. Ferroptosis is induced by two serum factors:
the amino acid glutamine and the iron carrier protein transferrin
[59]. A crucial aspect of ferroptosis is the suppression of glutamine

Figure 1. Basic mechanisms and regulatory pathways of ferroptosis Ferroptosis is related to intracellular free Fe2+ metabolism disorders or
dysfunction of glutathione peroxidation and polyunsaturated fatty acid lipid peroxidation. This figure illustrates the basic process of ferroptosis
and shows the inducers and inhibitors of related processes. The black arrows and red blunt lines represent the promotion and inhibition of
ferroptosis, respectively. TF, transferrin; TFR1, transferrin receptor 1; STEAP3, six-transmembrane epithelial antigen of prostate 3; DMT1, divalent
metal ion transporter 1; TRPML1/2, mucolipin TRP channel 1/2; FPN, ferroportin; SLC39A14, metal transporter protein; NCOA4, nuclear receptor
coactivator 4; LIP, labile iron pool; PUFA, polyunsaturated fatty acid; ACSL4, acyl-CoA synthetase 4; LPCAT3, lysophosphatidylcholine
acyltransferase 3; LOX, lysyl oxidase; IFSP, inhibitor ferroptosis suppressor protein; FSP1, ferroptosis suppressor protein 1; NADPH, nicotinamide
adenine dinucleotide phosphate; CoQ10H2, ubiquinol; GSH, glutathione; GSSG, glutathione disulfide; GPX4, glutathione peroxidase 4; mTORC1,
mechanistic target of rapamycin complex 1.
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catabolism [9]. System Xc‒ is a disulfide-linked heterodimer and
sodium-dependent cystine/glutamate exchange transporter protein
composed of two subunits: a heavy chain (CD98hc, SLC3A2) and a
light chain (XcT, SLC7A11) [60]. Extracellular cysteine is exchanged
for intracellular glutamate at a 1:1 ratio via this transporter. System
Xc‒ imports cystine into cells and converts it into cysteine to
synthesize GSH [61]. GSH deoxygenates PL-PUFA(PE)-OOH to PL-
PUFA(PE)-OH with the help of GPX4 (Figure 1), thereby protecting
cells from ferroptosis. GSH is an important antioxidant and free
radical scavenger. It is converted to GSSG in the presence of GPX4,
resulting in the production of nontoxic compounds from toxic
peroxides [62]. Hemin, an inducer of heme oxygenase-1 (HO-1),
accelerates erastin-induced iron-dependent cell death [63]. The
inhibition of system Xc- expression can render cells susceptible to
ferroptosis [64,65]. Iron can influence the metabolism of amino
acids, particularly through metabolic pathways, including glu-
tathione (GSH), which affects lipid metabolism. This disruption in
the regulation of iron concentration can lead to excess iron levels,
resulting in ferroptosis.

Ferroptosis in the Pathogenesis of AS
AS is typically caused by endothelial dysfunction. Oxidized forms of
low-density lipoprotein (LDL), which transport cholesterol in the
blood, accumulate and lead to local inflammation and excess ROS
production [66–68]. ROS-induced inflammasome activation and
lipid peroxidation are crucial features of AS [69]. Ferroptosis plays
an important role in the pathogenesis of AS by linking oxidative
stress, inflammation, and lipid metabolism [69]. Inflammation sites
recruit monocytes that differentiate into macrophages [70]. Macro-
phages die after ingesting ox-LDL and provide positive feedback by

recruiting more immune cells to areas of inflammation [71,72]. This
is also associated with the transdifferentiation of smooth muscle
cells and fibrostromal hyperplasia [73]. Subsequently, atherosclero-
tic plaques form in the lining of the arteries, mainly due to
inflammation [74]. The narrowing or blockage of blood vessels that
results in CVD is caused by platelet aggregation, thrombosis, and
rupture of unstable atherosclerotic plaques, all of which can lead to
CVD. Ferroptosis is important in the pathophysiology of AS, as
demonstrated in epidemiological studies and animal experiments
[75]. Ferroptosis may also regulate the development of AS (Figure 2)
[75]. Thus, the suppression of ferroptosis may reduce AS by
reducing lipid peroxidation and lipid dysfunction in aortic ECs [76].
Furthermore, the inhibition of ferroptosis may reduce AS. The genes
and mechanisms linked to AS-associated ferroptosis are described
in this section.

Endothelial dysfunction associated with ferroptosis
Recent findings [77] have shown that ferroptosis is associated with
EC death. For example, Qin et al. [78] reported that zinc oxide
nanoparticles (ZnONPs) induce iron and lipid peroxidation in ECs in
a dose- and time-dependent manner. The authors used the lipid and
ROS scavenger ferrostatin-1 and the iron chelator deferoxamine to
attenuate ZnONP-induced ferroptosis in ECs [79]. Ferroptosis is
associated with endothelial dysfunction and is regulated by the p53-
xCT-GSH axis in ECs [79]. Lysophosphatidylcholine (LPC) increases
intracellular iron and lipid peroxide levels and causes mitochondrial
atrophy in ECs, which can be reversed by astragaloside IV [80].
Thus, ferroptosis is an important mechanism by which ROS induce
programmed cell death in ECs. Dysfunction of vascular ECs
contributes to the development of AS [81,82]. EC dysfunction and

Figure 2. Schematic diagram of the progression of atherosclerosis caused by ferroptosis The occurrence of ferroptosis from most causes
increases the risk of atherosclerosis. Ferroptosis leads to endothelial dysfunction, activation of inflammatory processes and activation of
macrophages, which causes atherosclerosis. PUFA, polyunsaturated fatty acid; ACSL4, acyl-CoA synthetase 4; LPCAT3, lysophosphatidylcholine
acyltransferase 3; LOX, lysyl oxidase; NADPH, nicotinamide adenine dinucleotide phosphate; GSH, glutathione; GSSG, glutathione disulfide.
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death lead to the release of inflammatory cytokines and the
recruitment of monocytes, which initiate AS [83]. Modulation of
ferroptosis in ECs accelerates the progression of atherosclerotic
plaques.
Ferroptosis is associated with ox-LDL-induced lipid accumulation

in endosomes. Lipid peroxidation in the inner leaflet of the plasma
membrane may be important in ferroptosis [51,84]. GPX4, which
reduces lipid peroxides to lipid alcohols (L-OH), is a key regulatory
factor of lipid peroxidation. GSH is a substrate of GPX4 [85]. The
reduced availability and activity of GPX4 leads to the accumulation
of membrane lipid peroxides, oxidative lipid damage, and subse-
quent ferroptosis [9,51,85]. Lipid peroxide concentrations are
significantly greater in patients with AS (in both coronary and
peripheral arteries) than in controls [86]. A reduction in the levels of
lipoprotein (a) and its associated oxidized lipids is being investi-
gated as an alternative treatment strategy for AS [46]. The inhibition
of ferroptosis may alleviate AS by attenuating lipid peroxidation and
endothelial dysfunction in aortic ECs. ACSL4 determines the
vulnerability of a cell to ferroptosis by influencing lipid composition
[87]. Protein kinase C βII (PKCβII) is a sensor of lipid peroxidation.
The lipid peroxidation-PKCβII-ACSL4 positive feedback axis may
provide potential targets for the treatment of ferroptosis-associated
diseases [75]. RSL3 also induces ferroptosis, and the antioxidant
defense enzyme RSL3 has been identified as a direct drug target of
RSL3 using a chemoproteomic approach [51]. Reduced cellular iron
intake or chelation prevents the generation of ROS, which is
associated with RSL-induced cell death. Thus, ferroptosis is the
term for cell death caused by the buildup of iron-dependent cellular
ROS, which ultimately results in the disruption of the cellular redox
equilibrium [88]. Moreover, ferroptosis inducers and inactivation of
dihydroorotate dehydrogenase work together to induce mitochon-
drial lipid peroxidation [89]. A recent study reported that vitamin D
receptors inhibit ferroptosis by regulating the AMP-activated
protein kinase signaling pathway and adrenomedullin transcrip-
tion, thereby alleviating lipid deposition in vivo and in vitro [90].
The development of AS is often attributed to the multilayered

intima. However, atherosclerotic plaques are the result of many
mechanisms involving both resident and invasive inflammatory cells
[91,92]. Ferroptosis suppression attenuates AS by decreasing lipid
peroxidation and endothelial dysfunction in aortic ECs of mice [76].
Recently, it has been reported that aluminium exposure promotes
atherosclerosis by inhibiting paraoxonase-1 activity and inducing
endothelial dysfunction and adhesion molecule expression [93].

Activation of inflammatory processes associated with
ferroptosis
The main mechanism by which ferroptosis exerts immunological
effects is the death of leukocyte subsets and the corresponding loss
of immune function. For example, ferroptosis induces lipid
peroxidation in T cells and promotes viral and parasitic infections
[94]. In contrast to the widely held assumption that polymorpho-
nuclear neutrophils have minimal consequences in AS, and
evidence indicates that these cells play an important but unrecog-
nized role in AS development [95]. The leukocyte count is also
positively correlated with coronary artery disease severity [96].
DAMP signals are released and activated in response to different

forms of cell death, triggering distinct immunological and inflam-
matory responses. Ferroptosis is a type of inflammatory cell death
associated with the production of lipid oxidation products or

DAMPs [e.g., high-mobility group box 1 (HMGB1)] following tissue
damage or cancer treatment. For example, in aging and chronic
diseases, the lipid peroxidation product 4-hydroxynonenal is a
proinflammatory mediator that triggers the nuclear factor-kappa B
(NF-κB) signaling pathway [97]. Released by ferroptotic cells,
HMGB1 is an archetypal DAMP implicated in multiple forms of cell
death [98]. HMGB1 subsequently initiates an inflammatory
response in peripheral macrophages through the activation of the
NF-κB-activating advanced glycosylation end-product-specific pat-
tern recognition receptor in innate immunity [99].
Through the RAS-c Jun N-terminal kinase (JNK)/p38 pathway,

HMGB1 also regulates ferroptosis. HMGB1 has also been identified
as a potential target for therapeutic intervention in leukemia [100].
However, there are few reports on whether HMGB1 regulates AS
through the RAS-JNK/p38 pathway, which may constitute a
direction for further research [100]. Targeting lipid metabolism-
related DAMP signaling may be a promising strategy for treating
inflammatory diseases related to the damage caused by ferroptosis.
Although some observations are suggestive, the causal role of

erythrocytes in the development and progression of AS has not been
determined, partly because of the simultaneous infiltration and
activation of inflammatory cells that promote AS [101–103].
Furthermore, the early transcriptional response caused by ox-LDL-
containing immune complexes (ox-LDL-ICs) may be the basis for
cytoprotection and promotion of inflammation [104]. The cross-
linking of FcγRs appears to be the cause of most transcriptional
responses to ox-LDL-ICs. These findings further reinforce the
hypothesis that ox-LDL and ox-LDL-ICs induce different inflamma-
tory responses and play different roles in AS [104].

Activation of macrophages associated with ferroptosis
In the pathological model of AS, plaques contain several phenotypic
subgroups of macrophages, which behave differently [105,106]. AS-
related ferroptosis may be associated with certain macrophage
subtypes [107]. Macrophages affect the development of atherosclero-
tic plaques, and the M1 (inflammatory)/M2 (anti-inflammatory)
macrophage balance is thought to affect disease progression [108].
The migration of macrophages from sites of inflammation can

slow or stop plaque growth, allowing the material to leave the
plaque. However, this depends on the presence of living foam cells
deep within the plaque [109]. The phagocytosis of red blood cells by
plaque macrophages promotes ferroptosis [110]. Olfactory receptor
2, located in vascular macrophages, drives AS development through
the production of NOD-like receptor family pyrin domain-contain-
ing 3 (NLRP3)-dependent interleukin-1 [111]. M1, M2, and M4
macrophages are found in atherosclerotic plaques [112]. Within the
plaque, macrophages are exposed to cytokines, chemokines, and
bioactive lipids, such as cholesterol and oxidized phospholipids
[112]. In vivo, M1 macrophages (compared to M2 cells) exhibit
greater resistance to pharmacologically induced ferroptosis. This
resistance is reduced in cells deficient in induced NO synthase
under proinflammatory conditions caused by brain injury or in the
tumor microenvironment [113]. The use of Fe3O4-SAS@PLT platelet
membrane-camouflaged magnetic nanoparticles is a novel ap-
proach for enhancing iron toxicity and mild immunogenicity. This
approach effectively changes macrophages from an M2 immuno-
suppressive phenotype to an M1 antitumor phenotype [114]. By
increasing p300/CREB binding protein acetyltransferase activity
and promoting p53 acetylation, the high ROS levels induced by iron

Ferroptosis and atherosclerosis 335

Li et al. Acta Biochim Biophys Sin 2024



overload polarize macrophages toward the M1 subtype [115]. In
contrast, M2-polarized macrophage activation results in the
production of neurotrophic factors [116] and the release of anti-
inflammatory cytokines, such as interleukin-10, which have anti-
inflammatory effects [117,118].
Macrophages that take up cholesterol form foam cells that are

deposited under the inner layer of the artery, eventually leading to
AS [119]. By expressing cytokines and other factors, such as
transforming growth factor-β1 (TGF-β1), macrophages can acquire
different functional phenotypes and promote the osteogenic
differentiation, chondrogenic differentiation, and angiogenesis of
mesenchymal stem cells. HLF is regulated by TGF-β1 [120]. HLF
transactivates gamma-glutamyltransferase 1 (GGT1) to enhance
iron toxicity. GGT1 catalyzes the cleavage of extracellular GSH to
supply cysteine for intracellular GSH production [121]. ALOX5 and
neutrophil cytosolic factor 2 (NCF2) may be involved in the
formation of necrotic cores in AS by regulating macrophage
ferroptosis [30]. Changing the structure of macrophages by using
certain substances can also affect the formation of foam cells and
AS. For example, chondroitin sulfate N-acetylgalactosaminyltrans-
ferase-2 affects foam cell formation and AS by modifying the
glycosaminoglycan chain [122]. In addition, iron loading exacer-
bates AS progression by enhancing glycolysis in macrophages
[123]. Hepcidin increases the intracellular iron concentration in
macrophages by inhibiting iron efflux, leading to ferroptosis and
exacerbating inflammation and plaque development [124].

Molecular Cross-talk between Ferroptosis and Other
Types of Cell Death
Ferroptosis and other types of cell death, such as apoptosis,
pyroptosis, necroptosis, autophagy, and cytoproptosis, involve
molecular interactions involved in the occurrence and development
of atherosclerosis. The molecular pathways of atherosclerosis are
linked to these types of cell death in several ways.

Apoptosis
Apoptosis, a type of programmed cell death, is usually triggered by
internal or external signals and is the main type of cell death that
occurs under homeostatic conditions, although there are many
other types of cell death [125]. Iron ions in cells can promote an
increase in oxidative stress-generated oxygen free radicals, thereby
triggering the apoptotic signaling pathway [126]. Iron overload may
lead to impaired mitochondrial function, which plays an important
role in apoptosis [127].
Apoptosis is a key factor in atherosclerosis that influences plaque

stability and accelerates disease progression. An increasing number
of studies have suggested that the proinflammatory microenviron-
ment of plaques, which is characterized by impaired apoptotic cell
clearance, plays an important role in persistent inflammation [128].
Apoptosis affects VSMCs, macrophages, and endothelial cells and
promotes plaque growth, inflammation, and thrombogenicity [129].
Atherosclerosis advances owing to an imbalance in the clearance of
apoptotic cells as well as the effects of oxidative stress, inflamma-
tion, and ox-LDL [130]. In atherosclerosis, apoptosis may play a role
in arterial endothelial and smooth muscle cells, leading to plaque
formation and arterial stenosis [131]. It is crucial to comprehend
these mechanisms to prevent and treat atherosclerosis, as they
could lead to possible targets for management and therapeutic
interventions.

Pyroptosis
Pyroptosis is a form of cell death triggered by excessive heat inside
cells. Iron has been shown to activate ROS signaling through the
new Tom20-Bax-caspase-3-gasdermin D (GSDMD) pathway, there-
by increasing cell death in melanoma [132]. There is a close
relationship between the onset of focal cell death and AS. The
integrity of the vascular endothelium is compromised during the
initial phases of AS development due to risk factors such as
hyperlipidaemia and oxidative stress that induce EC damage, which
in turn causes the secretion of cellular inflammatory factors, leading
to EC pyroptosis [133,134]. Pyroptosis of VSMCs leads to further
inflammation of blood vessels, exacerbates plaque instability, and
promotes atherosclerosis progression [135]. The later stage of AS,
known as AS plaque rupture, can occur when macrophage
pyroptosis is sustained, during which copious amounts of inflam-
matory mediators are released and the inflammatory response is
exacerbated in vivo [136,137].

Necroptosis
Necroptosis is a caspase-independent programmed cell death
process [138]. Numerous signals typically initiate the necroptotic
apoptotic pathway, which frequently results in the extravasation of
cellular contents and additional activation of specific signaling
pathways, leading to mixed lineage kinase domain-like pseudoki-
nase (MLKL) phosphorylation, which converts the plasma mem-
brane into oligomers and translocates them to the cell membrane.
This positive feedback encourages cell rupture and the release of
cell contents, initiating a chain of inflammatory reactions [139]. In
addition, the presence of MLKL and activated major pro-necrosis
factor 3 (RIP3) in atherosclerotic plaques indicate that necrosis is
involved in the pathological progression of atherosclerosis [140].
Although necroptosis is a different type of cell death from

ferroptosis, there is evidence from several structural, functional,
and mechanistic perspectives suggesting that these processes
interact. The three positive factors of necroptosis are cysteine,
HSP90, and the mitochondrial permeability transition pore
(MPTP), whereas cysteine decreases ferroptosis by encouraging
GSH synthesis and opening of HSP90 and MPTP to accelerate
ferroptosis [141].

Autophagy
Autophagy involves the degradation of proteins and organelles
[142]. There is an interconnection between autophagy and
ferroptosis, and autophagy can activate ferroptosis [143,144]. The
degradation of ferritin by autophagy increases the concentration of
free iron in cells, resulting in ferroptosis [145]. Lipid autophagy
promotes RSL3-induced lipid peroxidation and ferroptosis [146].
Autophagy slows the development of atherosclerosis by remov-

ing harmful substances from cells and protecting them from damage
caused by oxidative stress and inflammation. Autophagy may also
be involved in the pathogenesis of atherosclerosis. For example,
aberrant activation of autophagy may lead to disturbances in
intracellular lipid metabolism and increased inflammatory re-
sponses, thereby promoting atherosclerosis [130,147]. The stress
response and phenotypic transformation of VSMCs involve autop-
hagy, which is generally a protective factor against atherosclerosis.
Autophagy in problematic VSMCs further accelerates stress-
induced premature aging and exacerbates the pathology of
atherosclerosis [130].
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Cuproptosis
Cuproptosis, a new type of cell death, is caused by copper ions that
selectively bind to lipoylated tricarboxylic acid cycle proteins. This
leads to proteotoxic stress, which oligomerizes lipoylated proteins in
a Cu-dependent manner, eventually causing cell death [148]. Cu
plays an unanticipated role in enhancing iron-dependent cell death by
activating macroautophagy/autophagic degradation of GPX4 [149].
According to recent studies, Cu ions may slow the initiation and

progression of atherosclerosis by encouraging the formation of
vascular smooth muscle cells and blocking pathways associated
with inflammation [150,151]. The serum Cu concentration is closely
associated with atherosclerotic mortality [152]. However, the
elemental copper content may vary with the severity of athero-
sclerotic lesions [153]. Furthermore, the role of copper differed
between the groups, and these variations should be considered
when administering copper for therapeutic treatment.
There are strong correlations between ferroptosis and the

molecular mechanisms underlying apoptosis, pyroptosis, necrop-
tosis, autophagy, and apoptosis. Focusing on common processes
that occur during atherosclerosis, including ferroptosis and other
modes of death, may provide new perspectives for disease
prevention and treatment. Therefore, studying ferroptosis is highly
important for further understanding the intermolecular mechan-
isms involved in cell death.

Ferroptosis Is an Important Potential Treatment Target
in AS
Ferroptosis is an important potential therapeutic target for the
treatment and prevention of atherosclerosis. This section discusses
the targets and summarizes some ongoing drugs (Table 1) that
regulate ferroptosis in AS.

Iron as a target and related drug
In 1981, the “iron hypothesis” was suggested. According to this
hypothesis, increased iron stores can trigger cardiovascular
diseases, whereas iron deficiency can prevent AS [161,162]. Large
deposits of iron in the middle layer of arteries are associated with
plaque formation, oxidative stress, and vascular dysfunction [124].
Nontransferrin-bound iron (NTBI) acts at different levels in AS,
modifying the serum and vascular microenvironment in a
proatherogenic and proinflammatory manner; affecting vascular
cell function and survival; promoting foam cell formation; and
inducing angiogenesis, calcification, and plaque destabilization
[163]. Iron overload or increased NTBI exacerbates AS in mice by
promoting vascular dysfunction. The NTLI has been identified as a
risk factor and therapeutic target for AS [164]. Gal-3 and vascular
cell adhesion molecule 1, the two main factors involved in AS

development, exhibit decreased expression levels after consump-
tion of an iron-deficient diet [165]. In contrast, iron chelators or iron
intake restriction may delay the development of atherosclerosis in
ApoE−/− mice [124].

GPX4 as a target and related drug
Accumulating evidence indicates that GPX4 is a key regulator of
ferroptosis [166,167]. GPX4 overexpression alleviates ferroptosis in
AS by reducing lipid peroxidation [167]. In contrast, GPX4 knockout
inhibits bubbling in mouse bone marrow-derived macrophages by
regulating ABCA1, ATP-binding cassette subfamily G member 1
(ABCG1), class A macrophage scavenger receptor (SR-A), and
lectin-like ox-LDL receptor-1 (LOX-1) [168]. Further studies showed
that the long noncoding RNA MRGPRF-6:1 inhibits GPX4 and
exacerbates ferroptosis in macrophages [169]. The traditional Qing-
Xin-Jie-Yu Granule prescription inhibits ferroptosis in atherosclero-
tic mice by upregulating GPX4/xCT level in aortic tissue [166]. The
DiDang Decoction medicinal formulation activates the hypoxia-
inducible factor-1 (HIF-1) signaling pathway and upregulates GPX4
level to inhibit atherosclerosis-associated ferroptosis [154]. These
findings indicate that GPX4 may be a novel target for the treatment
of atherosclerosis via the regulation of ferroptosis.

FSP1 as a target and related drug
FSP1 and GPX4 constitute two major parallel ferroptosis defense
systems. Inhibition of FSP1 results in effective ferroptosis [170].
Suppression of ferroptosis by FSP1 is mediated by ubiquinone, also
known as coenzyme Q10 (CoQ10), which traps lipid peroxyl
radicals that mediate lipid peroxidation, whereas FSP1 catalyzes the
regeneration of CoQ10 using NAD(P)H. Although further experi-
mental evidence is needed, the fact that FSP1 inhibitors promote
macrophage infiltration suggests that FSP1 is a potential candidate
for controlling AS through macrophages [171].

SLC7A11 as a target and related drug
Increasing evidence indicates that ferroptosis regulates macrophage
foaming [172,173]. P53 suppresses SLC7A11 expression, which
decreases cystine uptake and renders cells more susceptible to
ferroptosis. An essential component of the cystine/glutamate anti-
porter is SLC7A11 [48,174,175]. NF-κB inhibitors can override the
regulation of the hepcidin/FPN/SLC7A11 axis by certain injury factors,
thereby inhibiting ferritin formation in macrophages [173,176]. In the
aortic ECs of mice with type 2 diabetes mellitus and atherosclerosis,
hydroxysafflor yellow A inhibits ferroptosis and atherosclerotic plaque
formation by regulating the expression of SLC7A11 [155]. SLC7A11
has been suggested to be a potential therapeutic target for controlling
macrophage expression in atherosclerosis.

Table 1. List of drugs that can regulate ferroptosis in AS

Drug Target Mechanism Ref.

DiDang decoction Upregulate GPX4 Improve mitochondrial function [154]

Hydroxysafflor yellow A Regulate SLC7A11 expression Reduce atherosclerotic plaque formation [155]

Sulforaphane and EPI-742 Regulate NRF2 Regulate lipid peroxidation [156]

Vitamin E Regulate NRF2 Regulate iron homeostasis [157]

Micheliolide Regulate NRF2 Regulate ferroptosis in macrophages [158]

MI-2 Inhibit MALT1 Inhibit ferroptosis of vascular SMCs [159]

Icariin Promote autophagy Inhibit ferroptosis [160]
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JAK signalling pathway as a target and related drugs
Among the common genetic variants that cause clonal hematopoi-
esis, the JAK2V617F (JAK2VF) mutation increases the JAK-signal
transducer and activator of transcription signaling and occurs at a
younger age, leading to the greatest risk of premature CHD [177].
Abnormalities in red blood cell quantity and quality are caused by
the expression of Jak2VF, which exacerbates AS. The JAK signaling
pathway is a potential therapeutic target for lowering the risk of
atherosclerosis.

p38 as a target and related drugs
Ionizing radiation can cause lipid metabolism disorders, leading to
atherosclerotic disease [178], and high doses of ionizing radiation
accelerate plaque formation and aggravate atherosclerosis progres-
sion through the upregulation of p38/nuclear receptor coactivator 4-
mediated ferritinophagy [178].
JNK and p38 inhibitors are associated with apoptosis and reverse

heteronemin-induced cell death [179]. The selective inhibitor
targeting p38α effectively hinders the activation of the mitogen-
activated protein kinase (MAPK) pathway and the release of pro-
inflammatory cytokines within lamina propria mononuclear cells.
[180]. In addition, a recent study revealed that transaldolase
inhibitss p38 mitogen-activated protein kinase (MAPK) signaling
and CD36-mediated cholesterol uptake by upregulating GSH,
ultimately inhibiting macrophage foaming and atherosclerosis
[181]. Orai1-dependent entry of calcium ions (Ca2+) promotes
atherogenesis, possibly by decreasing apoptosis signal-regulating
kinase 1 or inhibiting its downstream effectors JNK and p38 MAPK,
thus reducing scavenger receptor A expression level and promoting
foam cell formation and vascular inflammation, indicating that the
Orai1 Ca2+ channel is a potential therapeutic target for AS [182].
ClC-3 inhibits the expressions of scavenger receptors and the uptake
of ox-LDL through the JNK/p38/MAPK signaling pathway, pre-
venting macrophage foaming and significantly reducing athero-
sclerotic plaque formation [183].

Nuclear factor erythroid 2-related factor 2 (NRF2) as a
target and related drug
NRF2 is a key antioxidant molecule [184]. Several studies have
indicated that NRF2 is involved in the regulation of cellular
ferroptosis [172,185,186]. A recent study revealed that estrogen
inhibits oxidation and ferroptosis through the NRF2/GPX4 path-
way, thereby alleviating the pathological process of AS [172]. In
contrast, estrogen deficiency induces ferroptosis and exacerbates
the pathological process of AS [172]. Heme oxidase 1 (HO-1) targets
NRF2 and regulates iron overload and ferroptosis [185]. The NRF2-
KEAP1 axis controls inflammation and preserves redox, metabolic,
and protein homeostasis to regulate ferroptosis [186]. NRF2 is a
major factor involved in inducing cell survival under GSH depletion,
and the role of l-butylthionine-(S,R)-sulfoxide (BSO) as a chemical
sensitizer may be enhanced by inhibiting Nrf2 [187]. BSO induces
GSH depletion; however, its role in ferroptosis and GSH activity has
not been determined [188]. The use of sulforaphane and EPI-742
clarified the processes of lipid peroxidation and iron-dependent cell
death in ferroptosis via the regulation of NRF2 [156]. This study
highlights the potential of targeting NRF2-mediated ferroptosis as a
treatment strategy for neurodegenerative illnesses, such as Frie-
dreich′s ataxia [156]. Vitamin E supplementation controls iron
homeostasis by inhibiting NRF2-mediated iron-responsive gene

expression and increasing iron efflux through FPN in the liver [157].
Micheliolide, an aesquiterpene lactone, inhibits atherosclerosis by
activating the NRF2 pathway to inhibit ferroptosis in macrophages
[158]. Recently, single-cell transcriptomics revealed that, compared
with control aortic macrophages, aortic macrophages from Nrf2-
knockout mice exhibit differential changes in subtype-specific
transcriptomes associated with inflammation, iron homeostasis,
cell damage, and ferroptosis pathways [189]. Collectively, these
findings suggest that NRF2 is a promising therapeutic target for the
treatment of AS-related diseases.

Other targets and drugs that can regulate ferroptosis
in AS
Ferritin is composed of light and heavy chain subunits [190]. The
human ferritin heavy chain can alleviate the pathological process of
AS by inhibiting ferroptosis in the aortas of ApoE-knockout mice
[191]. It is anticipated that the ferritin heavy chain is a potential
target for the prevention of ferroptosis in AS patients.
An increasing number of studies have shown that microRNAs

(miRNAs) play roles in AS development and progression [192]. A
potential therapeutic strategy for AS involves blocking exosome-
mediated transfer of miR-155 between the two cell types [193]. The
delivery of miR-126-3p to ECs reduces the proliferation of vascular
smooth muscle cells and inhibits neointima formation by inhibiting
LRP6 [194]. Nicotine-induced exosomal miR-21-3p may accelerate
AS development by enhancing vascular smooth muscle cell
migration and proliferation via its action on phosphatase and tensin
homologues [195]. In addition, MI-2, a specific chemical inhibitor,
significantly mitigates endarteriopathies and atherosclerosis in
ApoE mice by inhibiting the ferroptosis of vascular SMCs induced
by mucosa-associated lymphoid tissue lymphoma translocation
protein 1 (MALT1) [159].
Endothelial Bach1 deficiency, reduced turbulent flow, or a

Western-type diet induces atherosclerotic lesions, increases plaque
macrophage counts, increases the expressions of endothelial
adhesion molecules, including intercellular adhesion molecule 1
and vascular cell adhesion protein 1, and increases plasma tumor
necrosis factor-α and interleukin-1 beta levels in mice with AS [21].
Thus, BACH1 is a potential novel therapeutic target for AS [196].
Human and mouse plasma contain octanal, a product of lipid

peroxidation, at sufficient concentrations to activate olfactory
receptor 2 (Olfr2) and human olfactory receptor 6A2 (OR6A2).
Increased octanal level exacerbates AS, whereas targeting Olfr2 in
mice significantly reduces the formation of atherosclerotic plaques.
These findings suggest that OR6A2 inhibition is a promising strategy
for the prevention and treatment of AS [111].
Icariin is a bioactive compound with both antioxidant and anti-

inflammatory properties. Icariin inhibits ferroptosis and alleviates
atherosclerosis by promoting autophagy in ApoE mice [160].
These findings provide new insights into the treatment of AS.

These genes have been proposed to be potential therapeutic targets
for controlling atherosclerosis through ferroptosis-related mechan-
isms.

Conclusions and Prospects
The predominant features of ferroptosis are the disruption of iron
homeostasis and the accumulation of lipid peroxides in conjunction
with fatty acid synthesis, which are closely associated with AS.
Therefore, ferroptosis may be a novel therapeutic target for the

338 Ferroptosis and atherosclerosis

Li et al. Acta Biochim Biophys Sin 2024



treatment of AS. This review describes the relationship between
ferroptosis and the occurrence of AS and the molecular mechanism
by which ferroptosis promotes the development of AS. The roles of
transcription factors and signaling molecules in the development of
ferroptosis are summarized in Table 1, and potential ferroptosis-
related targets for the treatment of AS are presented. Prevention of
AS, a critical initiating factor in the development of cardiovascular
and cerebrovascular complications, including myocardial and
cerebral infarction, is one of the greatest medical challenges
worldwide. Ferroptosis plays an important role in the development
of several systemic cardiovascular diseases. Although some animal
models have provided evidence that ferroptosis may be a
therapeutic target in AS, further in vivo experiments and clinical
studies are needed. Further research on ferroptosis will deepen the
understanding of AS pathogenesis and lead to improved clinical
treatments.
However, the underlying mechanisms of AS pathogenesis have

not been fully elucidated, and further research is needed. This
review provides insights into the role of ferroptosis in AS
pathogenesis. The identification of molecular events and effective
drugs that inhibit ferroptosis is critical for treating AS.
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