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Abstract
Human microglia are critically involved in Alzheimer’s disease (AD) progression, as shown by genetic and molecular stud-
ies. However, their role in tau pathology progression in human brain has not been well described. Here, we characterized 
32 human donors along progression of AD pathology, both in time—from early to late pathology—and in space—from 
entorhinal cortex (EC), inferior temporal gyrus (ITG), prefrontal cortex (PFC) to visual cortex (V2 and V1)—with bio-
chemistry, immunohistochemistry, and single nuclei-RNA-sequencing, profiling a total of 337,512 brain myeloid cells, 
including microglia. While the majority of microglia are similar across brain regions, we identified a specific subset unique 
to EC which may contribute to the early tau pathology present in this region. We calculated conversion of microglia sub-
types to diseased states and compared conversion patterns to those from AD animal models. Targeting genes implicated in 
this conversion, or their upstream/downstream pathways, could halt gene programs initiated by early tau progression. We 
used expression patterns of early tau progression to identify genes whose expression is reversed along spreading of spatial 
tau pathology (EC > ITG > PFC > V2 > V1) and identified their potential involvement in microglia subtype conversion to 
a diseased state. This study provides a data resource that builds on our knowledge of myeloid cell contribution to AD by 
defining the heterogeneity of microglia and brain macrophages during both temporal and regional pathology aspects of AD 
progression at an unprecedented resolution.
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Introduction

Alzheimer’s disease is a progressive neurodegenerative 
disorder pathophysiologically characterized by depositions 
of amyloid-beta (Aβ) and abnormally phosphorylated tau 
(pTau) [23]. While Aβ deposits accrue relatively evenly 
throughout the neocortex, intraneuronal neurofibrillary 
tau pathology spreads in a stereotypical fashion from the 
entorhinal cortex (EC) to the hippocampus and the rest of 
the cortex, in stages defined as I–VI [4]. The rate of pTau 
accumulation correlates with the rate of cognitive decline 
[19]. Brain imaging technologies are quickly improving the 
ability to track pTau spreading in patients, and thus, pTau 
pathology is increasingly practical as a biomarker to identify 
intervention points for slowing cognitive decline.
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Microglia, the myeloid cells of the brain, along with brain 
macrophages (perivascular, meningeal, and choroid plexus 
macrophages), have long been known to be involved in AD 
pathophysiology. Recent genetic evidence points toward a 
crucial contribution of these cells in disease susceptibility 
[25, 53]. As the primary phagocytes of the brain paren-
chyma, microglia may play a role in both clearance [31] 
and spreading of pTau aggregates [3, 22]. Indeed, targeting 
microglia reduces or prevents pathology in animal models 
[33, 47]. However, the precise biological role of microglia 
in human AD tau spreading remains unknown.

Single cell- and nuclei-RNA-sequencing (scRNA-seq/
snRNA-seq) are powerful methods that have aided identifica-
tion of various disease-associated microglia subpopulations in 
AD animal models [15, 27]. Recently, these approaches have 
been improved for the study of microglia in banked frozen 
human brains, by developing an enrichment protocol to cap-
ture much higher numbers of microglia, enabling the identi-
fication of numerically minor but disease relevant subpopula-
tions [16]. However, many snRNA-seq AD studies have only 
included one or two brain regions (e.g., [34]) and/or only 
control and high pathology, but no intermediate pathology 
donors, thus sharply limiting characterization of microglial 
transcriptomic changes along AD-vulnerable neural networks 
and from early to late stages through intermediate stages.

We hypothesized that microglia transcriptomic changes 
parallel stereotypical spreading of pathological tau in the 
AD continuum, and that there is a distinct subpopulation of 
tau-responsive microglia with specific gene regulators that 
drive conversion from homeostatic microglia. To test this 
hypothesis, we isolated and analyzed single nuclei from 32 
donors and 5 regions per donor across the Braak stages of 
tau pathology, from EC to primary visual cortex (V1). We 
confirmed canonical microglial marker expression across 
regions and pathology groups. Using multiple biochemi-
cal and histological readouts from the same tissue pieces 
used for snRNA-seq, we identified tau- and Aβ-pathology-
associated microglia populations, including those involved 
in early and late pathology. Leveraging their spatial and 
temporal variability with respect to pathology, we further 
refined microglial signatures associated with tau and Aβ 
pathology, and investigated microglial subtype conversion 
to identify transitionally regulated genes, which are potential 
drivers of detrimental microglia states.

Materials and methods

Materials

Human tissue and donor selection

Thirty-two human donors were selected from the Massa-
chusetts Alzheimer’s Disease Research Center (MADRC). 

Brain tissue was characterized according to established 
methods [39, 42]. Eight “Pathology Group 1” donors 
were selected based on the following criteria: (1) Primary 
neuropathological diagnosis of control (Not AD/low AD 
neuropathological changes burden) at postmortem exami-
nation by an MGH neuropathologist; (2) Braak neurofi-
brillary tangles (NFTs) stage 0-II as determined by the 
distribution of NFTs with a total tau immunostain and 
Bielchowsky’s silver stain [5]; (3) CERAD “C” plaque 
score of 0 [23]; and (4) the least possible concurrent 
pathologies (including α-synuclein and TDP-43). Eight 
“Pathology Group 2” donors were selected based on: (1) 
Primary, secondary, or tertiary neuropathological diag-
nosis of AD, (2) Braak neurofibrillary tangles (NFTs) 
stage II–III, (3) CERAD neuritic plaque score of 1–2 
[23], and (4) the least possible concurrent pathologies. 
Eight “Pathology Group 3” donors were selected based 
on: (1) Primary neuropathological diagnosis of AD, (2) 
Braak NFT stage V; (3) CERAD neuritic plaque score of 
2–3, and (4) the least possible concurrent pathologies. 
Eight “Pathology Group 4” donors were selected based 
on: (1) Primary neuropathological diagnosis of AD; (2) 
Braak NFT stage VI; (3) CERAD neuritic plaque score of 
3, and (4) the least possible concurrent pathologies. Age 
of onset, age at death, postmortem interval, sex, TREM2 
R47H, and R62H mutations and APOE genotype were also 
collected (see below for detailed methods). All subjects or 
their next-of-kin provided written informed consent for the 
brain donation and the present study was approved under 
the MADRC Neuropathology Core Brain Bank Institu-
tional Review Board.

Human brains were processed as described [12]. Briefly, 
all brains were separated into 2 hemispheres, one of which 
was postfixed in 10% formalin for 3 weeks. Regions of 
interest were embedded in paraffin following standard pro-
tocols [23, 39]. Four-micrometer-thick paraffin-embedded 
tissue sections were cut and placed on slides (Fisherbrand 
Superfrost Plus slides; Thermo Fisher Scientific) for his-
tological analysis. The contralateral hemisphere was sliced 
coronally at the time of autopsy and 1 cm-thick slabs were 
flash frozen and stored at − 80 °C. Approximately 250 mg 
of tissue was dissected out of the frozen brain slab cor-
responding to Entorhinal cortex (EC), Posterior Parahip-
pocampal Gyrus/Inferior Temporal Cortex (Brodmann 
Area 20; ITG), Dorsolateral Prefrontal Cortex (Brodmann 
Area 46; PFC), Visual Association Area (Brodmann Area 
18/19; V2), and Primary Visual Cortex (Brodmann Area 
17; V1), and kept at − 80 °C until processing for nuclei 
isolation and HT7/HT7 Tau aggregation assay. Approxi-
mately 10–25 mg of each brain region was dissected out 
of the frozen brain sections adjacent to the pieces taken for 
nuclei and kept at − 80 °C until homogenization for pTau/
total Tau ELISA and HEK cell-based tau seeding assays.
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Methods

RIN screening for tissue selection

Approximately 10–20 mg of tissue from visual cortex was 
homogenized (Precellys CK14 beads), RNA was extracted 
(MagMAX mirVana Total RNA), and RNA Integrity Num-
ber (RIN) was measured on an Agilent 4200 Tapestation to 
select high-quality tissue for single nuclei-RNA-seq. RIN 
value was measured from 130 donors, for which 83 met 
the selected cutoff of RIN ≥ 5. Of these 83 donors, 32 were 
selected based on the criteria listed above. RIN values were 
additionally measured from the EC, BA20, BA46, V2, and 
V1 pieces used for snRNA-seq (mean ± SD: 5.3 ± 1.5).

TREM2 R47H and R62H SNP genotyping

TREM2 R47H (rs75932628) and R62H (rs143332484) 
single-nucleotide polymorphisms (SNPs) were genotyped 
using commercially available Taqman PCR assays on 
genomic DNA. Briefly, genomic DNA was purified from 
approximately 25 mg of frozen cerebellar cortex samples 
using the PureLink Genomic DNA Extraction Mini Kit 
(ThermoFisher Scientific, K182002), following the manu-
facturer's instructions. Next, DNA concentration was meas-
ured in a DS-11 spectrophotometer (DeNovix Inc) and 1.8 
ng/μL working dilutions were prepared for the Taqman 
PCR assay. The reaction volume for the assay was 25 μL, 
comprising 1.25 μL of 20 × TaqMan TREM2 R47H or 
R62H genotyping assay (ThermoFisher Scientific, Assay 
ID C_100657057_10 or C_172216876_10, respectively), 
12.50 μL of 2 × TaqMan Fast Universal PCR Master Mix, 
no AmpErase UNG (Thermo Scientific, 4324018), and 
11.25 μL of the DNA sample (20 ng). DNA samples were 
run in duplicates in 96-well plates (Bio-Rad) using a Bio-
Rad CFX96 Touch Real-Time PCR Detection System. The 
amplification protocol involved an initial step at 95ºC for 
10 min (ramp 1ºC/s), followed by 45 cycles of denaturation 
at 95ºC for 15 s and annealing/extension at 60ºC for 1 min. 
Allele discrimination and genotype assignment (CC, CT, 
or TT) were achieved through principal component analy-
sis of VIC vs. FAM fluorescence, corresponding to base C 
(major allele) vs. T (minor allele), respectively. Minor alleles 
found in Taqman PCR assay indicating TREM2 mutation 
were confirmed via PCR followed by amplicon sequenc-
ing. APOE genotype was identified by standard PCR-based 
restriction digestion or commercially available Taqman 
assays (ThermoFisher Scientific, cat#4351379, assays IDs: 
C___3084793_20 for rs429358 and C____904973_10 for 
rs7412) at MGH, or received from the National Centralized 
Repository for Alzheimer's Disease and Related Dementias 
(NCRAD).

Nuclei isolation

Nuclei isolation was performed as described [16] with 
minor modifications. Briefly, fresh frozen tissue was cryo-
sectioned (approximately 40 sections of 40 µm thickness) 
and lysed in sucrose lysis buffer [10 mM Tris HCl (pH 8.0); 
320 mM sucrose; 5 mM CaCl2; 3 μM Mg(Ac)2; 0.1 mM 
EDTA; 1 mM dithiothreitol (DTT) and 0.1% Triton X-100]. 
Lysates were filtered through a 70 µm cell strainer. Nuclei 
were purified by ultracentrifugation (107,000 × g for 1.5 h 
at 4 °C) through a sucrose cushion (10 mM Tris HCl (pH 
8.0); 1.8 M sucrose; 3 μM Mg(Ac)2; 0.1 mM EDTA and 
1 mM DTT). Supernatants were removed and pellets were 
re-suspended in 2% BSA/PBS containing RNase inhibitor 
(0.2 U/μL) (Roche). Nuclei were incubated with fluores-
cently conjugated antibodies against the neuronal marker 
NEUN (RBFOX3/NEUN (1B7) AF647 mouse mAB, Novus 
Biologicals, NBP1-92693AF647) and the pan-oligodendro-
cyte/OPC transcription factor OLIG2 (Anti-OLIG2 clone 
211F1.1 mouse mAb, Merck Millipore, MABN50A4). 
Samples were kept on ice throughout the isolation and 
staining procedure. Nuclei were stained with Sytox blue 
(Thermo Fisher) and sorted on a BD FACSAria Fusion. For 
each sample, we collected SytoxposNeuNposOlig2neg and 
SytoxposNeuNnegOlig2neg (Fig. S1b).

Pathological tau quantification

pTau231/Total tau

Tissue was homogenized (10–25 mg) in PBS containing 
protease (complete Mini #11836153001, Roche) and phos-
phatase inhibitors (phosSTOP #4906845001, Roche). Lysate 
was centrifuged for 10 min at 3000 × g, and supernatant was 
collected and used for ELISA and HEK cell tau seeding bio-
sensor assay. Tau and phospho-Tau (Thr231) were measured 
from total brain lysate by MSD ELISA (MesoScaleDiscov-
ery cat no. K15121) following the manufacturer’s protocol. 
Plates were developed using the MESO QuickPlex SQ 120 
Plate Reader (MSD). Samples were run in triplicate and fit 
to an eight-point standard curve for total tau concentration 
determination.

HEK cell‑based tau seeding assay

Tau bioactivity was measured as described [21], using 
human embryonic kidney (HEK) cells expressing a CFP/
YFP FRET biosensor containing the tau repeat domain 
(ATCC, cat no. CRL-3275). Briefly, cells were cultured in 
96-well plates to 60% confluency. Lysates were mixed with 
1% lipofectamine 2000 in OPTI-MEM and 1 ug of total 
protein was added per well. After incubation for 14–18 h, 
cells were rinsed in PBS, trypsinized, and fixed with 4% 
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paraformaldehyde. A Miltenyi VYB flow cytometer was 
used to measure mean FRET intensity and the percentage 
of FRET-positive cells per well. Multiplication of these val-
ues yielded the integrated FRET density (IFD). In addition, 
an AD positive control sample and a no pathology negative 
control sample were run on each plate and used to normalize 
values for comparisons across all samples. All samples were 
prepared in triplicate.

HT7–HT7 SIMOA

Single Molecule Array (SIMOA; Quanterix) bead-based tau 
aggregates assay was developed using a mouse anti-HT7 
antibody (Thermo Fisher Scientific, RRID: AB_2314654) as 
both capture and detection. The assay was prepared accord-
ing to the manufacturer’s protocol. Recombinant full length 
P301L tau aggregates were made as described [56] and were 
used as a calibrator and included in each run to generate 
standard curve. HD-X instrument, buffers, helper beads and 
streptavidin B-galactosidase, and enzyme substrate resoru-
fin β-D-galactopyranoside were obtained from Quanterix. 
Assays were performed according to the manufacturer’s 
instructions. All samples were diluted in the Tau Calibrator 
Diluent (Quanterix).

Immunohistochemistry

3D6 Immunohistochemistry

Cryosections (10 µm thickness) were taken from the same 
pieces used for snRNA-seq. For Aβ immunohistochemistry, 
frozen cryostat sections adjacent to those used for snRNA-
seq were subjected to immunohistochemistry with mouse 
monoclonal anti N-terminal Aβ antibody clone 3D6 (2 µg/
mL).

Histological characterization of pathology and microglia

Paraffin-embedded tissue Sects. (4 µm thickness) were used 
for histological characterization of pathology and microglia 
markers. The tissue was stained with the following antibod-
ies: mouse monoclonal anti N-terminal Aβ antibody clone 
3D6 (1.2 µg/mL), rabbit monoclonal anti N-terminal Aβ 
antibody clone D54D2 (Cell Signaling 8243, 0.25 µg/mL), 
mouse monoclonal anti pTau antibody AT100 (Thermo 
Fisher MN1060, 0.006 µg/ml), mouse monoclonal anti 
CD68 antibody clone KP1 (Abcam ab955, 4 µg/mL), rab-
bit monoclonal anti C-terminal CD11c antibody clone 
EP1347Y (Abcam ab52632, 0.4 µg/mL), rabbit polyclonal 
anti TMEM119 antibody (Sigma-Aldrich HPA051870, 1 µg/
mL), rabbit monoclonal anti CPM antibody clone EPR8052 
(Abcam ab150405, 2 µg/mL), and rabbit monoclonal anti 

CD163 antibody clone EPR19518 (Abcam ab182422, 3 µg/
mL).

Staining was performed on a Leica BOND Rx auto-
mated stainer using DAB or alkaline phosphatase-based 
detection (Leica). Sections were scanned in a slide scan-
ner (3DHistech, Pannoramic 250 or Pannoramic 1000) 
and area fraction (i.e., % area of tissue section occupied 
by 3D6-immunoreactive plaques) was measured using the 
HALO software (Indica Labs, Albuquerque, NM, USA).

Library preparation and sequencing

Single-nucleus cDNA libraries were constructed using the 
10 × Genomics Chromium Single Cell 3‘Reagents Kit V3. 
Samples were pooled and sequenced targeting at least 30k 
reads per cell on a NovaSeq2000 at Discovery Life Sciences. 
Twelve libraries were selected based on low read numbers 
and low fractions of reads in cells and re-sequenced.

Data preprocessing

Raw data were preprocessed with 10X Genomics Cell-
Ranger v4 (https://​suppo​rt.​10xge​nomics.​com/​single-​cell-​
gene-​expre​ssion/​softw​are/​pipel​ines/4.​0/​relea​se-​notes) with 
10X Genomics ‘GRCh38-2020-A’ pre-mRNA reference. 
Resequenced samples were merged at fastq level. Nuclei 
were quality checked and filtered to have exonic read 
counts > 100, mitochondrial gene percentages < 15% and 
at least 800 genes and UMIs per cell. Additional sample 
specific filtering was applied to remove potential outliers 
or low-quality cells by including only nuclei within range 
of log (median ± 3*MAD of number of genes/UMIs per 
cell) per sample. Samples were integrated across donors 
with Seurat rPCA integration [48] based on top 30 princi-
pal components, and brain myeloid cells were subsetted per 
brain region based on the following marker genes: P2RY12, 
P2RY13, ITGAM, PTPRC, CX3CR1, SPI1, C1QA, C1QB, 
and TMEM119. This resulted in 34, 28, 27, 28, and 24% of 
all nuclei per brain region, for EC, ITG, PFC, V2, and V1, 
respectively. Raw data corresponding to brain myeloid cell 
barcodes were then subsetted and Seurat CCA integrated 
[48] (v3.2.2) across donors for downstream analyses, based 
on top 30 principal components. Default Seurat parameters 
were used for shared nearest neighbor graph construction 
and Louvain clustering, with downstream analyses per-
formed at clustering resolution 0.2, resulting in 14, 10, 11, 
11, and 12 clusters per region, respectively.

Public data QC comparison

For comparison of data quality against public studies, a 
number of donors and cells were extracted from respec-
tive publications [16]. Median UMIs [34] were extracted 

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/4.0/release-notes
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/4.0/release-notes
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by downloading filtered read counts from synapse (https://​
www.​synap​se.​org/#​!Synap​se:​syn18​485175) and subsetting 
to microglia based on ‘broad cell type’ annotation. Median 
UMI counts from [17] were taken from supplementary 
information, and median UMI counts were provided by the 
authors [16].

Cross‑region analysis

For cross-region analysis, region-specific data objects were 
randomly subsampled to 1000 cells per cluster to retain 
microglia heterogeneity. Subsamplings were further inte-
grated across brain regions with Seurat CCA integration 
based on top 30 principal components and processed with 
default Seurat parameters. To confirm no sampling effect on 
downstream results, 10 different seeds were used, and down-
stream data objects compared. As results were highly simi-
lar, only results from a randomly selected subsampling are 
shown here. For comparison of EC-enriched microglia, the 
cross-region data object was clustered at resolution 3.1, and 
differential gene expression of cluster 4 vs. either all micro-
glia across regions (Fig. 2c) or all other EC-region micro-
glia (Fig. S2d) was assessed using the FindMarkers function 
of Seurat (v4.0.5, [20]), followed by a Reactome pathway 
enrichment analysis with ClusterProfiler (v4.2.2, [55]). Dif-
ferentially expressed genes per region were then calculated 
using MAST [14], adjusting for donor ID as latent variable. 
These were further filtered for microglial markers deter-
mined from differential gene expression in a reference data 
set [16] comparing microglia to other cell types, with results 
filtered for adjusted p value < 0.05 and avg2logFC > 0.5. The 
top 5 microglial markers per region were visualized per dot 
plot. Cluster annotations used in region-specific brain mye-
loid data sets were in addition mapped to the cross-region 
data object to prove cross-region similarity of region-spe-
cific clusters (Fig. S3b). Clustering of the cross-region inte-
grated data at resolution 0.4 resulted in 15 clusters (Fig. 3b). 
Differential gene expression per cluster was calculated using 
MAST [14], adjusting for donor ID and brain region as latent 
variables. Reactome pathway enrichment per cluster was cal-
culated based on genes differentially expressed in compari-
son to homeostatic microglia (cluster 0) with logFC > 0.25, 
using all genes of the data object as background (Fig. S3c, 
Fig. S3d). Cross-region integrated brain myeloid cells were 
then binned into five equally sized classes of pTau/Total tau, 
HT7 aggregated tau, 3D6 IHC and HEK seeding readouts 
(low, low–medium, medium, medium–high, high) and their 
density was compared in a bin-to-bin pairwise fashion (e.g., 
low vs. low–medium, low–medium vs. medium, etc.). Bins 
with contributions of < 3 donors are not shown. Differential 
gene expression between bins was calculated using MAST, 
with donor ID and brain region as latent variables.

Cross‑region comparisons

The number of up- and downregulated genes differentially 
detected per region vs. all detected genes (across regions) 
was assessed (Fig. S2b. Spearman correlation analysis of 
aggregated expression across individual clusters and regions 
was performed, excluding donor-specific clusters, defined 
as those showing > 75% of individual donor contribution 
per cluster (Fig S2c). In addition, the overlap of detected 
genes (> 0 UMI counts in > 0.1% of brain myeloid nuclei per 
region) across regions was assessed (Fig. S2c).

Region‑specific analysis

Per region, clusters were tested against expected proportions 
of pathology groups using binomial tests, and significant 
enrichment of pathology groups over expected proportions 
is indicated (*) at adjusted p value < 0.001 and enrichment 
of >  = 10%. Spearman correlation of normalized micro-
glia proportion per cluster with tau and Aβ readouts was 
assessed and considered significant at nominal p value < 0.05 
(Fig. 3a). Differential gene expression was calculated per 
cluster vs. each other cluster per region (Table S4), if at 
least 100 nuclei were present, and considered significant at 
adjusted p value < 0.01, average logFC > 0.2 and at least 10% 
of cells expressed per subcluster. Reactome pathway enrich-
ment analysis was calculated per cluster and region for the 
comparisons against HOM microglia (Table S5).

Effect of concurrent pathologies and genotypes 
on microglial clustering

To assess the brain myeloid cell transcriptome changes as a 
function of co-existence of α-synuclein and TDP-43 pathol-
ogy as measured in [39], the distribution of nuclei com-
ing from samples with positive staining (n = 2 donors with 
α-synuclein pathology, n = 7 donors with TDP-43 pathol-
ogy) was visualized in the cross-region and region-specific 
datasets. Both TDP-43 and α-synuclein pathology-specific 
nuclei were well distributed across clusters that were not 
either donor-specific or -enriched. To test this further, pro-
portional analysis was performed, statistically assessing the 
change of proportion of TDP-43 positive versus TDP-43 
negative nuclei per cluster and of α-synuclein positive versus 
α-synuclein negative nuclei per cluster. No significant differ-
ences between groups in any cluster for both of these analy-
ses were found after multiple testing adjustment, indicating 
that the pathology co-existence did not affect individuals’ 
myeloid phenotypes or populations. An identical approach 
was taken for APOE genotypes and TREM2 variant carri-
ers (one donor was found to carry the R62H variant and two 
donors the R47H variant). APOE genotypes and TREM2 
variant carrier nuclei were well distributed across clusters 

https://www.synapse.org/#!Synapse:syn18485175
https://www.synapse.org/#!Synapse:syn18485175
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that were not donor-specific or-enriched, and proportional 
analysis statistically assessing (i) the change of proportion 
between APOEƐ3/Ɛ3 and APOEƐ3/Ɛ4 (genotypes with larg-
est sample sizes), (ii) the change of proportion of TREM2 
variant carriers versus non-carriers per cluster, and (iii) the 
change of proportion of R47H carriers versus non R47H 
carriers per cluster resulted in no significant differences 
between groups in any cluster for all three of these analyses 
after multiple testing adjustment, indicating that in our data, 
APOE genotypes and TREM2 variant carriers are not outliers 
and do not cause development of myeloid cells of individual 
phenotypes or populations. While the integration applied 
across donors might contribute to masking genotype-specific 
myeloid phenotypes, sample sizes of individual concur-
rent pathologies and genotypes of interest (i.e., APOEƐ4 
homozygotes and TREM2 variants) were too small for an 
alternative genotype/pathology-specific analysis strategy.

Public genelist comparison

Comparison of cluster markers in comparison to HOM clus-
ter 0 from cross-region integrated brain myeloid cells, and 
per region brain myeloid data, respectively (Fig. 3d, Fig. 
S3a), with genelists from public data included i) AD1 and 
AD2 signatures from [16], ii) laser capture microdissected 
samples from [9], with the following signatures:”Das_LCM_
Plaque” (ThioflavinS + plaques), “Das_LCM_Peri_Plaque” 
(50µm area around plaques), “Das_LCM_NFT” (neurofibril-
lary tangles with the 50 µm area around them), “Das_LCM_
Distant” (area > 50 µm away from plaques), “Das_LCM_
Plaque_vs._NFT” (ThioflavinS + plaques vs. neurofibrillary 
tangles), iii) CRM2 (cytokine response 2), CYT/CRM1 
(cytokine response 1), DAM (disease-associated), HLA 
(antigen-presenting response), HM (homeostatic), IRM 
(Interferon response), RM (ribosomal response), TRANS 
(transitioning CRM) signatures from [32], and iv) tau fibril 
response genes from [51]. For comparison with mouse 
genelists, mouse gene symbols were converted to human 
gene symbols with biomaRt (v2.50.3, [13]). Differentially 
expressed genes from sc/snRNA-seq studies were filtered to 
include those detected in at least 5% of cells/nuclei per com-
parison group, with adjusted p value < 0.05. Differentially 
expressed genes from bulk RNA-seq studies were filtered for 
genes with adjusted p value < 0.05. Differentially expressed 
genes from the laser capture bulk study were filtered for 
genes with nominal p value < 0.05, as done in the study. 
Significant Spearman correlation of genes is indicated by 
nominal p value, at a minimum number of 10 overlapping 
genes between studies.

Trajectory analysis

Pseudotime was calculated for microglial trajectories to dis-
ease-associated clusters (HOM cluster to clusters 3 (DAM1), 
4 and 5 of cross-region integrated data) with monocle3 [7]. 
After conversion to a CellDataSet, data were re-normalized 
based on top 30 PCs and aligned based on donor IDs using 
Batchelor [18]. The number of counts and mitochondrial 
gene percentage were regressed out using a linear model 
based on cells’ PCA coordinates. Leiden clustering was 
applied (at k = 20, resolution = 6e−5) and compared to Seurat 
clustering, resulting in similar patterns. The largest partition 
covering all brain myeloid cell phenotypes was subset and 
trajectories defined from homeostatic microglia individual 
disease-associated clusters. For each trajectory expression 
along pseudotime was aggregated into 100 bins and filtered 
to keep only genes detected in > 50 bins. Further, genes dif-
ferentially expressed along pseudotime were determined 
using Moran’s I test, based on the principal graph, and 
filtered for (i) adjusted p value < 0.001, (ii) > 100 cells in 
which the gene was expressed, and (iii) Moran’s test statis-
tic > 10. Among them, transitionally expressed genes along 
pseudotime were further identified by splitting the pseudo-
time into four quartiles and keeping genes showing a higher 
expression in middle quartiles compared to the first and last 
one. Expression was scaled per gene and visualized for each 
trajectory.

Microglia subtype mapping

Comparison with previous mouse microglial signatures [27, 
28] was performed based on averaged geneset expression 
per cluster (Fig. 4c, Fig. S4b). From Kim et al., the top 30 
genes per microglial phenotype were used as signature; from 
Keren-Shaul et al., genes depicted in Fig. 6 were used.

Pseudobulk analysis

Pseudobulk analysis was applied on sum aggregated expres-
sion levels across cells per sample (v1.4.0, [35]). edgeR 
(v3.36.0, [8]) differential gene expression (glmQLFit) was 
calculated to identify genes differentially expressed between 
regions (Fig. 5a). Results were adjusted for gender; RIN 
values were not significantly different between compared 
groups. Reported genes were filtered for genes not show-
ing significant region differences in pathology group 1. For 
visualization, pseudogenes and non-coding protein genes 
were filtered out.

Gene clustering

To identify gene expression patterns along brain 
regions decreasingly affected by tau pathology 
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(EC > ITG > PFC > V2 > V1), genes from cross-region 
integrated microglia were subset per pathology group, sum 
aggregated per region, z-score-normalized, and k-means 
clustered (Fig. 5b). The cluster number was determined by 
Elbow plot across a range of k of 1 to 10, with 15 maximum 
iterations, and 50 random sets. Sankey diagrams were added 
using networkD3 (v0.4, https://​cran.r-​proje​ct.​org/​web/​packa​
ges/​netwo​rkD3/​index.​html). Reactome pathway enrichment 
was calculated with clusterProfiler (v4.2.2, [55]) using all 
detected genes in the cross-region integrated data as back-
ground (Fig. S3f). To determine genes strongly correlated 
with a given pathology, Spearman correlation per gene clus-
ter and pathology group was performed against the different 
biochemical readouts.

Results

A large single‑nucleus RNA‑seq atlas to study 
transcriptomic changes of brain myeloid cells 
along the spatiotemporal progression of AD

Brain tissue samples from 32 donors at varying stages of 
tau pathology were split into 4 groups based on prior neu-
ropathological characterization (Fig. S1a, Table S1). To 
capture myeloid cells along the stereotypical progression 
of tau pathology, we selected 5 brain regions that included 
allocortex and neocortex, from expected high to low pathol-
ogy: entorhinal cortex (EC), inferior temporal gyrus (ITG), 
prefrontal cortex (PFC), visual association cortex (V2), and 
primary visual cortex (V1) (Fig. 1a). Compared to pioneer-
ing snRNA-seq studies [17, 34], we captured more than 150 
times the number of brain myeloid cell nuclei per tissue sam-
ple with our enrichment protocol (337,475 total). Further, 
separation of nuclei by their corresponding cell types com-
bined with deeper sequencing led to increased numbers of 
genes (more than three times the number of median UMIs) 
detected per myeloid cell nucleus compared to any published 
study (Fig. 1b). With our enrichment protocol (Fig. S1b), 
brain myeloid cells amounted to 24–34% of total nuclei per 
region (Fig. 1c, d).

Biochemical and neuropathological characterization 
reveals brain myeloid cell responses associated 
with spatiotemporal aspects of AD pathology

To correlate transcriptomic changes in myeloid cells with 
local levels of pTau and Aβ pathology, we conducted an 
extensive biochemical and immunohistochemical quan-
titative analysis in samples adjacent to those used for 
snRNA-seq. Tau protein becomes hyperphosphorylated 
early in disease, which contributes to its aggregation [2]. 
In line with prior histological and biochemical studies 
(e.g., [11]), we observed a pattern of pTau/Tau levels of 

EC > ITG > PFC > V2 > V1 (Fig. 1e, Fig. S1c). In a given 
brain region pTau/Tau levels reflected the pathology groups, 
with donors of pathology group 4 (dark blue, Braak VI) 
and 1 (yellow, Braak 0/I/II) showing highest and lowest 
levels of pTau, respectively. A similar pattern was seen for 
HT7 aggregated tau and the propensity of lysate material 
for tau seeding by HEK biosensor cells (HEK seeding). As 
expected, Aβ pathology, as measured by 3D6 immunoreac-
tivity, was highest in neocortex (PFC and ITG) (Fig. 1e). 
These pathology readouts confirmed earlier studies and 
revealed the expected pathology levels in the brain samples 
selected for this study.

To determine the dynamics of reactive microglia with 
respect to disease progression, we stained FFPE tissue sec-
tions from the contralateral hemisphere to that used for 
snRNA-seq with antibodies for reactive microglia (CD11c 
and CD68) and plaques (3D6), and quantified the area cov-
ered by microglia markers, plaques, and co-localized area. 
CD11c (encoded by ITGAX) increased from pathology group 
1 to pathology group 4, and showed highest expression in 
EC (high-tau) and PFC (high-tau & Aβ), suggesting first a 
tau-associated (path. group 3) and later tau & Aβ associated 
(path. group 4) changes (Fig. 1f, g, Fig. S1d). On the other 
hand, CD68 protein expression increased from pathology 
group 1 to group 4 in EC, ITG, and V1, and had highest 
immunoreactivity in EC followed by PFC within all pathol-
ogy groups, suggesting an association with early tau and 
early Aβ pathology (Fig. 1f, g, Fig. S1e). Thus, these typical 
reactive microglia markers are both associated with tau and 
Aβ pathology progression, but demonstrate unique spatial 
and temporal patterns.

Comparison of myeloid cells across brain regions 
reveals an EC‑specific signature

Clustering of brain myeloid cell nuclei based on their tran-
scriptomes showed few donor-specific clusters after mapping 
across all donors (Fig. 2a, Fig. S2a). When integrating brain 
myeloid cells across different brain regions, these appeared 
to be very similar (Fig. 2b), with < 1% of detected genes 
being differentially regulated in any given region (Fig. S2b, 
Table S2) and with high correlation of clusters between 
regions (Fig. S2c, Table S3). Although most brain myeloid 
cells were highly similar across brain regions, one group of 
brain myeloid cells from EC clustered separately from those 
in other regions and showed differentially expressed genes 
(DEGs) associated with vesicles and potassium transport 
(Fig. 2c, Fig. S2d). Notably, this cluster was observed across 
all donors, and was neither specific to donors with high or 
low pathology, nor enriched for Aβ or tau pathology read-
outs (Fig. S2e, f). Although the relative proportion of DEGs 
in any given region was small, EC also showed the most 
DEGs of any of the 5 regions [75 genes, 62 up—including 

https://cran.r-project.org/web/packages/networkD3/index.html
https://cran.r-project.org/web/packages/networkD3/index.html
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Fig. 1   Study design and identification of brain myeloid cells across 
brain regions. a Study design. Samples from 5 brain regions of in 
total 32 donors along four stages of AD pathology progression were 
snRNA-seq profiled and characterized by quantitative readouts of 
tau as well as Aβ 3D6 IHC. Samples were divided into 4 pathology 
groups, according to their Braak and Thal stage. b Comparison of 
dataset size and median UMIs per microglia/brain myeloid nucleus 
vs. public microglial studies. c Per region microglia/brain myeloid 
cell numbers as proportion of all NeuN-/Olig2- cells per region. d 
UMAP representation of NeuN-/Olig2- cells, brain myeloid cells are 
colored in blue. Grey and blue numbers correspond to the absolute 

NeuN-/Olig2- sorted non-myeloid cells (e.g., astrocytes, endothe-
lial cells, and pericytes) and myeloid cells, respectively. e pTau/
Total Tau, HT7 Aggregated Tau, HEK seeding, and 3D6 Amyloid-β 
measurements for each pathology group (CTRL → AD), across brain 
regions. f Quantification of CD11c and CD68 immunohistochemistry 
across brain regions and pathology groups. g Representative CD11c 
and CD68 IHC (EC, grey matter) of pathology group 4 samples, with 
CD11c in brown and plaques (3D6) in red, and CD68 in brown and 
plaques (D54D2) in red, respectively (scale bar 100 µm). IHC across 
pathology groups in Fig S1d/e
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IFNGR1 (encoding the interferon gamma receptor 1)—and 
13 down], followed by V1 (67 DEGs, 26 up and 37 down), 
while V2 showed the least DEGs (zero genes) (Fig. 2d, e). 
In summary, this analysis revealed a unique transcriptomic 

signature of myeloid cells in EC, highlighting allocortical vs. 
neocortical differences that might contribute to differences 
in vulnerability to tau.

Fig. 2   Brain myeloid cell similarity across brain regions. a Brain 
myeloid cell subclustering per brain region. Macrophage cluster 
numbers are indicated in bold (based on LYVE1, MRC1, CD163, 
and F13A1 marker genes). b Cross-region integration of subsampled 
brain myeloid cells across brain regions shows alignment between 
regions for most cells, except for one EC-enriched population of cells 
(highlighted in black circles). Shown are combined and per region 
UMAP plots. c EC enriched population (indicated as green cells in 

UMAP plot) was compared to all other brain myeloid cells across 
regions. Biological process GO term enrichment indicates upregu-
lated synapse vesicle cycle changes and ion transport differences. d 
Up- and downregulated differentially expressed gene (DEG) numbers 
per region, filtered for microglial genes (average log2FC > 0.25). e 
Top 5 upregulated microglia genes per region (no significantly upreg-
ulated V2 markers identified)
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Correlation with global and local AD 
neuropathology reveals distinct homeostatic 
and AD‑associated brain myeloid states

To identify brain myeloid cell subsets associated with AD 
pathology, we analyzed the percentage of myeloid cell nuclei 
per cluster from high and low-pathology donors, including 
microglia and perivascular macrophages (PvMs) as identi-
fied by marker genes LYVE1, MRC1, F13A1, and CD163. 
We reasoned that AD-associated brain myeloid cell clusters 
should have a significantly higher proportion of nuclei from 
high vs. low-pathology donors and/or correlate positively 
with any of the local tau and Aβ pathology readouts. By 
contrast, homeostatic microglia clusters should have a higher 
proportion of nuclei from low vs. high pathology donors 

and/or correlate negatively with the local tau and Aβ pathol-
ogy readouts.

Screening for AD-associated microglia, we detected sev-
eral clusters with a significantly higher number of high- and 
low-pathology donor myeloid cell nuclei than expected by 
chance. For example, ITG microglia clusters 3 and 4 showed 
significantly more high pathology (pathology group 3 and/or 
4) donor nuclei (Fig. 3a, ITG upper heatmap; cluster 3: adj. p 
values 5.3e-7 and 8.5e-8, respectively; cluster 4: adj. p value 
2.2e-14). Further, we identified several clusters for each 
brain region for which the percentage of nuclei per donor 
was correlated with its pathology readout. For example, the 
proportion of microglia in ITG cluster 3 showed a significant 
positive correlation with all tau and Aβ pathology readouts 
(Fig. 3a, ITG lower heatmap; 3D6 p value < 0.01, pTau231/
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Total Tau p value < 0.05, HEK seeding p value < 0.001, 
HT7 Aggregated Tau p value < 0.01). Importantly, the 
gene signature of this cluster (i.e., DEGs as compared to 
cluster 0, which was equally contributed by all four pathol-
ogy groups and did not correlate with any pathology read-
out) also positively correlated with the “AD1” human AD 
microglia described by Gerrits et al. [16] and negatively 
correlated with human homeostatic microglia reported by 
Mancuso et al. [32] (Fig. S3a, ITG heatmap, “Gerrits_AD1” 
p value < 2.22e-16, “Mancuso_HM” p value 1.67e-10), rein-
forcing the identity of this microglia cluster as the AD-asso-
ciated microglia. Overall, microglia clusters that positively 
correlated with tau or with tau & Aβ pathology were mainly 
observed in early tau regions (e.g., EC cluster 4, ITG clusters 
3, 4 and 9) (Fig. 3a, solid black boxes), and these clusters 
were characterized by genes in pathways including “Scav-
enging by Class A Receptors” (EC cluster 4, ITG clusters 3 

and 4), and “Cell recruitment (pro-inflammatory response)” 
(ITG cluster 3) (Table S4, Table S5). The proportion of PvM 
clusters did not show any significant correlations with any of 
the pathology readouts, but did show increased proportion 
of nuclei from pathology group 4 donors in EC, ITG, V2, 
and V1 (proportions EC—7.3%; ITG—3.1%; PFC—7.2%; 
V2—3.2%; V1—1.4%; adj. p values EC 4.7e-15, ITG 2.2e-
14, V2 5.4e-12, and V1 4.77e-5, respectively).

Regarding homeostatic microglia, microglia clusters 
negatively correlated with pathology were mainly observed 
in later tau regions, as expected (V2 cluster 0: 3D6 p 
value < 0.01, HEK Seeding p value < 0.05, HT7 Aggre-
gated Tau p value < 0.01; V1 cluster 0: 3D6 p value < 0.05) 
(Fig. 3a, dashed black boxes). These microglia clusters 
showed typical markers of microglia homeostasis, e.g., 
P2RY12, and newly identified homeostatic microglia 
genes, such as SYNDIG1, FOXP2, OXR1, and LINC02232 
(Table S4). Among the microglia clusters negatively cor-
related with pathology were ITG cluster 1 and PFC cluster 
2 (Fig. 3a, dashed black boxes). Both showed a significant 
negative correlation with the pTau/total Tau ratio (Fig. 3a; 
p values < 0.05 and 0.01, respectively) and were character-
ized by an increased expression of ribosomal genes associ-
ated with translation and viral transcription, as well as iron 
uptake and storage genes FTL and FTH1, encoding ferri-
tin protein light and heavy chains, respectively (Table S5). 
Thus, in this study, FTL + microglia did not increase with 
pTau or Aβ load, unlike previously reported [26], but rather 
showed significantly decreased proportions with increas-
ing tau progression. Furthermore, ferritin-positive micro-
glia have previously been described as “dystrophic” and 
“senescent” (e.g., [30]); however, we did not observe any 
enrichment of genes or pathways associated with apopto-
sis or senescence within these clusters (Table S5). These 
microglia clusters (ITG cluster 1 and PFC cluster 2) showed 
a high similarity to ribosomal response microglia recently 
described in a human microglia transplantation model [32] 
(Fig. S3a, “Mancuso_RM”).

To confirm the observed microglia and PvM phenotypes 
at the protein level and their localization with respect to 
pathology, we performed immunohistochemistry in the ITG 
region across all donors using antibodies for markers of 
pathology-associated (CPM) and homeostatic (TMEM119) 
microglia, and PvMs (CD163), with nearly adjacent sections 
(between 30 and 100 µm away) stained for amyloid plaque 
and tau pathology (Fig. S3b-e). We did not observe a dif-
ference in TMEM119 immunoreactivity between pathology 
groups, suggesting that homeostatic microglia are not cor-
related with pathology. However, we did observe an increase 
in CPM immunoreactivity with respect to pathology groups, 
and CPM positive cells were observed adjacent to plaques 
and dystrophic neurites, according to nearly adjacent sec-
tions stained with 3D6 and AT100, respectively. These 

Fig. 3   Identification of tau- and Aβ -associated microglia and brain 
macrophage subpopulations. a Per cluster pathology group enrich-
ment shown as observed over expected ratios (scaled to 1) (upper 
panels of heatmaps) and Spearman correlation of 3D6 and tau read-
outs with proportion of brain myeloid cells per cluster (lower pan-
els of heatmaps). ‘*’corresponds to significant enrichment >  = 10% 
(binomial test, adj. p value < 0.001), and significant Spearman cor-
relation (p value < 0.05), respectively. Solid black boxes denote clus-
ters positively correlated with pathology; dashed black boxes denote 
clusters negatively correlated with pathology. Bold cluster numbers 
indicate macrophage clusters, characterized by increased expres-
sion of LYVE1, MRC1, F13A1, and CD163. b Mapping of disease-
associated clusters per region (right) to cross-region integrated data 
(left) confirms similarity of disease-associated clusters across brain 
regions, albeit indicating expression differences between primarily 
tau- (clusters 2/4 in integrated data) and tau + Aβ -associated clus-
ters (clusters 5/8 in integrated data). c 3D6 IHC, pTau/Total tau, and 
HT7 aggregated tau readouts were binned into 5 equally spaced cat-
egories, representing no-to-late pathology. For simplicity, integrated 
microglia are shown for no, early, and late pathology only (first, 
middle, last bin), based on their cellular density in individual clus-
ters (UMAP representation). Grey plots beneath visually summarize 
shifts of brain myeloid cells into clusters stratified for early (light-
blue) and late (darkblue) pathology. For HT7 aggregated tau, bin #4 
(not #5) is shown at late stage, as last bin (#5) only contained data 
from one donor. d Spearman correlation of cross-region brain mye-
loid cell clusters (using DEGs per cluster vs. cluster 0) with public 
genelists. Significant correlation indicated by ***p value < 0.001, 
**p value < 0.01, *p value < 0.05, grey boxes indicate insufficient 
data (number of overlapping genes between data sets < 10). AD1 and 
AD2 human microglia signatures from [16]; laser capture microdis-
sected samples from [9] with signatures “Das_LCM_Plaque” (Thi-
oflavinS + plaques), “Das_LCM_Peri_Plaque” (50 µm area around 
plaques), “Das_LCM_NFT” (neurofibrillary tangles with the 50µm 
area around them), “Das_LCM_Distant” (area > 50µm away from 
plaques), “Das_LCM_Plaque_vs_NFT” (ThioflavinS + plaques vs. 
neurofibrillary tangles); human iPSC-derived microglia-like cells 
transplanted into mice, with signatures CRM2 cytokine response 2, 
CYT/CRM1 cytokine response 1, DAM (disease associated), HLA 
antigen-presenting response, HM homeostatic, IRM (Interferon 
response), RM (ribosomal response), TRANS transitioning CRM from 
[32]; and primary mouse microglia tau fibril response genes from 
[51]

◂
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results are in line with the observed transcriptional changes: 
TMEM119 is a homeostatic marker of ITG cluster 0, whose 
proportions are not significantly different with respect to 
pathology group or pathology readouts. CPM is a marker of 
ITG cluster 3, whose proportion was significantly positively 
associated with pathology group 3 and 4 donors as well as 
with all 4 pathology readouts in ITG. CD163 immunoreac-
tivity was observed in cells with a monocyte/ macrophage-
like morphology in the brain vasculature (Fig. S3d, arrow). 
Total levels of CD163 immunoreactivity did not change 
with respect to pathology, with no significant differences 
observed between pathology groups. This trend is in line 
with our observation of increased CD163 gene expression 
in cluster 6 of ITG, which matches the transcriptomic profile 

of PvMs and does not show any correlation with pathology 
groups. We also observed scattered CD163-positive cells in 
the brain parenchyma (Fig. S3d, arrowhead), and an increase 
in this parenchymal CD163 in 2 donors of pathology group 
4, a finding which would need to be confirmed in a larger 
cohort. Interestingly, ITG microglia cluster 4 showed signifi-
cantly increased CD163 as compared to all other clusters, 
and a significant correlation with higher pathology groups. 
This cluster did not have an overtly PvM-like phenotype 
based on transcriptomic profile, suggesting that it may align 
with the CD163-positive parenchymal microglia-like cells 
that we observed by IHC that increased in 2 pathology group 
4 donors. The parenchymal CD163-positive cells were not 
abundant enough to determine the exact localization with 

Fig. 4   Microglia subtype conversion in human. a Trajectories to 
disease-associated clusters were identified with monocle3 [50]. b 
For individual trajectories 0 (HOM)–3 (RR), 0–4 (EALT), and 0–5 
(LAR), transitionally upregulated genes were identified by split-
ting pseudotime into quartiles and filtering for genes expressed at a 
higher level in middle quartiles (transitionally higher expressed) 
compared to 1st and 4th one, the latter representing cluster-enriched 
expression in HOM, or disease-associated cluster, respectively. c 
Expression of top 30 genes per microglial phenotype (HOM, DAM1, 
DAM2, EADAM, LADAM) identified in [28], averaged per cluster in 

cross-region integrated brain myeloid cells. Red indicates high aver-
age expression levels; blue indicates low average expression levels. 
Clear upregulation of HOM (cluster 0) and DAM1 (cluster 3) phe-
notypes are observed, as well as enriched expression of LADAM and 
EADAM genes across clusters 4, 5, and 10, indicated by black boxes. 
Clusters 6 and 10 show strong relative downregulation of homeostatic 
microglia markers, as indicated by blue boxes. d,e Volcano plots 
showing genes differentially expressed between cluster 4 and 10 (d), 
and cluster 5 and 10 (e)
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Fig. 5   Tau- and Aβ-associated brain myeloid cell signatures. a Heat-
map of differentially expressed genes (DEGs) up- (⇧) or down- (⇩) 
regulated in EC vs. V1, PFC vs. EC and PFC vs. V1 regions, within 
pathology group 4. Tau-driven changes (EC vs. V1) include inter-
feron-related genes, while Aβ driven and tau & Aβ-driven changes 
(PFC vs. EC, PFC vs. V1) include growth factor, and cytokine signal-
ing related genes, respectively. Results were adjusted for gender and 
respective pathology group 1 DEGs were filtered out. Color-coding 
of aggregated expression per sample (column) and gene (row), anno-
tation shows pathology group, 3D6 Aβ IHC, pTau/Total Tau, HEK 
seeding, and HT7 Aggregated Tau. Filtering for DEGs based on nom-
inal p value < 0.01 and logFC > 1.2. Expression patterns included in 
respective comparisons are indicated by black boxes; expression pat-

terns of other regions are shown for completeness. b K-means gene 
clustering across regions, per pathology group. Gene numbers are 
color-coded. Sankey diagrams, color-coded according to pathology 
group, show percentage change of genes from given gene clusters in 
one pathology group to gene clusters in next pathology group. Pathol-
ogy group 3 and 4 gene clusters spike in PFC region, suggesting Aβ 
influenced expression, while pathology group 1 and 2 contain also 
gene clusters showing linear correlation along regions. c Spearman 
correlation per pathology group of each gene cluster with biochemi-
cal readouts; overall highest correlation is observed in pathology 
group 4, across gene clusters. High correlation is indicated by red and 
low correlation by blue color
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respect to amyloid or tau pathology in nearly adjacent sec-
tions in these 2 donors, despite their trend toward increase 
in relation to overall pathology load.

In summary, correlations between local biochemical 
and neuropathological measures of tau and Aβ pathology 
and microglia transcriptomic clusters enabled us to discern 
between homeostatic and AD-associated microglia in mul-
tiple brain regions.

Correlation with local tau vs. Aβ measures reveals 
distinct subsets of AD‑associated microglia

Once established that the existence of AD-associated micro-
glia is distinct from homeostatic microglia, we aimed to 
identify associations between microglia clusters and local 
tau vs. Aβ measures that may indicate specialized responses 
to one or the other pathology. Prior research suggested 
that microglia show unique responses to tau vs. tau & Aβ 
[16]. Thus, we investigated marker genes and pathways in 
microglia clusters positively or negatively correlated with 
tau measures, but with no significant association to Aβ 
pathology, like EC cluster 4 and PFC cluster 6. EC cluster 4 
showed upregulated markers of hypoxia and inflammatory 
response (HIF1A, DUSP1, FOS) and was represented by 
pathways including “response to decreased oxygen levels” 
(Table S5). Moreover, it correlated with cytokine response 
(“Mancuso_CYT_CRM1” p value 3.33e-3, “Mancuso_
CRM2” p = 1.26e-4), HLA (“Mancuso_HLA” p = 2.75e-
3), and tau fibril-treated microglia (“Wang_Tau_Fibril” 
p = 2.81e-6) as identified in published studies (Fig. S3a). 
PFC cluster 6 showed markers and pathways similar to those 
of EC cluster 4, including “response to decreased oxygen 
levels”, and exhibited a positive correlation with cytokine 
response microglia identified by Mancuso et  al., 2022 
(“Mancuso_CRM2” p = 3.43e-5) (Fig. S3a, Table S5).

Only V2 cluster 1 showed a significant positive corre-
lation with Aβ (3D6 p < 0.05) but not tau, and only two 
clusters (EC cluster 7 and V1 cluster 0) had a significant 
negative correlation with Aβ (both 3D6 p values < 0.05) but 
not tau. Finally, ITG clusters 3 and 9 correlated positively 
and V1 cluster 0 correlated negatively with both Aβ and tau 
readouts (ITG cluster 3: p values see above; ITG cluster 9: 
3D6 p < 2e-5, pTau231/Total Tau p < 0.001, HEK seeding 
p < 0.001, HT7 Aggregated Tau p < 5.53–5; V1 cluster 0: 
3D6 p < 0.05). While several tau and tau & Aβ-associated 
clusters showed significant correlation with Gerrits et al. 
“AD1” tau & Aβ signature (e.g., Fig. S3a, ITG microglia 
clusters 3 and 9, p values < 2.22e-16 and < 2.3e-6, respec-
tively), none of the tau-only associated clusters (e.g., EC 
cluster 4, ITG cluster 4, PFC cluster 6) showed a positive 
correlation with Gerrits et al. “AD2” tau-only signature, 
based on fold change comparisons against homeostatic 
microglia (Fig. S3a).

These data suggest that there are distinct transcriptomic 
responses of AD-associated microglia to tau vs. Aβ pathol-
ogy as well as a signature common to both pathologies. To 
better understand the similarities and differences in homeo-
static, tau and Aβ-associated clusters between regions, we 
mapped the homeostatic and pathology-associated clusters 
from individual regions to our cross-region clusters. Individ-
ual region microglia clusters showing a negative correlation 
with tau pathology (Fig. 3a, Fig. S3a, S3f, dashed boxes/ cir-
cles) aligned into cross-region clusters 0 and 3 (Fig. 3b, Fig. 
S3f). Moreover, AD pathology-associated EC cluster 4 and 
PFC cluster 6 aligned with cross-region cluster 4, while ITG 
clusters 3 and 4 mapped to cross-region clusters 5, 8, and 2, 
respectively (Fig. 3b, S3f). Genes characterizing these cross-
region pathology-associated clusters 2, 4, 5, and 8 include 
the top regulated genes CD163 (a typical marker of brain 
macrophages) and RGS1, PTPRG, and CPM, respectively 
(Fig. S3g, Table S6, Fig. S3h, Tables S7), and pathways 
such as “CDC42 GTPase cycle”, and “binding and uptake of 
ligands by scavenger receptors” (Fig. S3i, Table S8). PvMs 
(CD163, LYVE1, MRC1, and F13A1) were mainly found 
in cross-region cluster 6, while cluster 10 was marked by 
increased expression of CCR2, suggesting that cells in this 
cluster constitute myeloid cells of a peripheral origin, e.g., 
monocytes (Fig. S3j).

Identification of shifts in microglia states 
from homeostatic to AD‑associated

Next, we asked whether homeostatic microglia transition 
to an AD-associated state along the disease course. We first 
investigated shifts in microglial density from homeostatic 
to AD-associated along the accrual of pTau/Total tau, HT7 
aggregated tau, and Aβ plaques. We binned these readouts 
into 5 classes and plotted the density of microglia in each 
pathology bin and cross-region cluster (Fig. 3c; 3 of 5 bins 
[no/early/late] shown for simplicity). Interestingly, of the 
cross-region AD-associated clusters 2, 4, 5, and 8, clusters 
2 and 4 showed the highest density of microglia nuclei in 
the early and late tau bins, while clusters 5 and 8 showed a 
high density of microglia nuclei in the late Aβ bin (Fig. 3c, 
Table S9, Table S10), suggesting differential early vs. late 
responses of these microglial clusters to tau and Aβ pathol-
ogies. Notably, the tau progression-associated clusters 2 
and 4 showed correlations with Gerrits et al. “AD1” and 
tau fibril-treated microglia (Fig. 3d, Gerrits et al. “AD1” 
p values < 0.01 and < 2e-5, respectively, and “Wang_Tau_
Fibril” p values < 2.8e-6 and < 0.05, respectively). Fur-
thermore, the Aβ-associated cross-region clusters 5 and 8 
showed the strongest correlation with “AD1” signatures 
(rho = 0.8 and 0.7, respectively; p values < 2.22e-16 for 
both), positive correlations with laser capture microdissected 
plaques and peri-plaque signatures (“Das_LCM_Plaque”: 
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rho = 0.61 and 0.55, with p < 8.3e-6 and < 1.9e-6, respec-
tively, and “Das_LCM_Peri_Plaque”: rho = 0.54 and 0.56, 
with p < 0.05 and < 0.01, respectively) [9], and a negative 
correlation with “Mancuso_HM” (homeostatic microglia, 
rho =  – 0.48 and – 0.49, with both p values < 0.05), and 
cluster 5 additionally showed a positive correlation with 
“Mancuso_DAM” (p < 0.05) (Fig. 3d). Interestingly, the 
tau-associated cross-region clusters 2 and 4 did not show 
significant positive correlations with any of the Mancuso 
et al. signatures or the Gerrits et al. “AD2” tau signature 
(Fig. 2d), but cluster 4 did show positive correlations with 
“Das_LCM_Plaque”, “Das_LCM_Peri_Plaque”, and “Das_
LCM_Plaque_vs_NFT” (p < 2.13–5, < 0.05 and p < 0.001, 
respectively). This suggests that the Gerrits et al.’s study, 
with limited brain regions, and the Mancuso et al.’s study, 
which used human iPSC-derived microglia transplanted into 
mouse brain, incompletely describe the microglia and mac-
rophage signatures that we were able to detect in human AD 
across all 5 brain regions.

In silico modeling identifies “phasic” genes 
as potential regulators of microglia transition 
during disease

The shifts in proportion of homeostatic and AD-associated 
microglia clusters with increasing levels of pathology sup-
ported a transition from the former to the latter. To model 
human microglia transition along disease progression, we 
calculated trajectories and identified transitionally upregu-
lated genes (‘phasic’ genes) in the conversion from the main 
homeostatic microglia cluster (cluster 0) to the AD-associ-
ated clusters identified in Fig. 3c (Fig. 4a). These suggest 
that human AD microglia can transition from a homeostatic 
(cluster 0, HOM) to either a ribosomal activation state (clus-
ter 3, ribosomal response or RR) or AD-associated states 
that correlate with increases in AD pathology (clusters 4, 5) 
(Fig. 4b). Cluster 3 was marked by upregulation of ribosomal 
response-associated genes, while clusters 4 and 5 showed 
separate trajectories, and were designated as early Aβ/late 
tau (EALT), and late Aβ response (LAR), respectively, based 
on mapping to pathology readouts in Fig. 3c. Phasic genes 
from homeostatic (cluster 0) to AD-associated clusters 3, 4, 
and 5 included genes implicated in CDC24 GTPase cycle, 
RHO GTPase cycle, fibrin clot formation, IRAK1 recruit-
ment of IKK complex (Fig. 4b, top, cluster 0 to 3), IL-4/
IL-13 signaling, response of EIF2AK1 to heme deficiency, 
signaling by interleukins, IFNγ signaling (Fig. 4b, middle, 
cluster 0–4), and genes involved in axon guidance, fibrin clot 
formation, semaphorin interactions, and IL-4/IL-13 signal-
ing (Fig. 4b, bottom, cluster 0 to 5). Of note, we also were 
able to identify trajectories from homeostatic microglia to 
PvM and monocyte clusters 6 and 10, respectively, indi-
cating that microglia, PvMs and monocytes may exist on 

a continuum once these cells are localized within the brain 
parenchyma (Fig. S4a).

Comparison with prior mouse single‑cell 
transcriptomics studies highlights differences 
between microglial responses in human and mice

To determine whether microglia AD progression signatures 
are shared between human disease and mouse models, we 
compared our cross-region brain myeloid dataset to several 
previously reported disease-associated microglia (DAM) 
mouse signatures. Prior mouse scRNA-seq studies have 
identified a Trem2-dependent and a subsequent Trem2-
independent stages of AD progression in the 5xFAD model, 
termed DAM1 and DAM2, respectively [27], as well as 
two additional DAM phenotypes, early DAM (EADAM), 
increased in dual Aβ and tau pathology mice, compared 
to single pathology mice, and late DAM (LADAM) [28]. 
We observed high expression of mouse homeostatic genes 
in our cluster 0 and of DAM1 genes in our cluster 3, and 
moderate expression of DAM2 genes across clusters with 
some expression in our clusters 5 and 8 (Fig. 4e, Fig. S4b, 
black boxes). Interestingly, in our data, DAM1-like cluster 
3 did not precede later stage DAM2-like clusters in pseudo-
time (i.e., the positioning of cells along the trajectory that 
quantifies the relative progression of the underlying biologi-
cal process), suggesting a different pathology-associated 
microglia transcriptional program in mouse vs. human. 
Remarkably, our cross-region cluster 3 contains individual 
region clusters with significant negative correlation with 
AD pathology (ITG cluster 1, PFC cluster 2), yet showed 
the strongest DAM1 signature (mainly ribosomal response-
associated genes), suggesting that these microglia disappear 
with increasing pathology in human disease, which contrasts 
with microglial DAM1 phenotype observations in mouse 
models. Furthermore, expressions of EADAM and LADAM 
genes were not clearly delineated across human myeloid 
clusters, with clusters 4, 5, and 10 showing both EADAM 
and LADAM gene upregulation (Fig. 4c, black boxes), sug-
gesting that this mouse early pathology-specific response 
may not be clearly identifiable within human donors even 
when analyzing multiple brain regions across a spectrum of 
pathology severity.

We further observed strong downregulation of mouse 
homeostatic microglia markers in clusters 6 and 10 (Fig. 4c, 
blue boxes). While cluster 6 corresponded to macrophages 
identified in our individual region analysis, characterized by 
increased expression of LYVE1, MRC1, F13A1, and CD163, 
cluster 10 showed increased expression of the peripheral 
monocyte marker CCR2 [37]. Recent studies have identi-
fied microglia/macrophage-like cells expressing both the 
microglial marker TMEM119 and the macrophage marker 
CD163 surrounding Aβ plaques in human AD brains but not 
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in control brains [40, 44]. Although microglia clusters 4 and 
5 and monocyte cluster 10 were associated with EADAM 
and LADAM mouse microglia signatures, clusters 4 and 5 
showed comparatively higher expression of canonical micro-
glia genes P2RY12 and TMEM119, and of the “AD1” gene 
SPP1 (Fig. 4d, e, Table S11). Cluster 6, the PvM cluster, 
showed elevated F13A1, MRC1, LYVE1, and CD163, mac-
rophage marker expression, and increased P2RY12 as com-
pared to monocyte cluster 10 (Fig. S4c).

In summary, some aspects of microglia transcriptomic 
responses to AD pathology are shared between human and 
mouse models, but not others.

Pseudobulk analysis reveals genes impacted by tau, 
Aβ, or both, and confirms early tau dysregulation 
of the transcriptional regulators BACH1 and PRR5

While analysis at the single-cell level is a powerful tool to 
characterize microglial phenotypes based on cell-to-cell var-
iation, single cells from the same tissue sample cannot be 
considered truly independent sample. Leveraging the cohort 
size, we were interested in expanding our analysis to also 
identify disease-associated genes at a population level. To 
confirm tau vs. tau & Aβ driven changes in late-stage AD 
brain myeloid cells, we compared pseudobulk gene expres-
sion in high-tau/low Aβ vs. low-tau/low-Aβ (EC vs. V1, tau-
driven), high-tau/high-Aβ vs. high-tau/low-Aβ (PFC vs. EC, 
Aβ-driven), and high-tau/high-Aβ vs. low-tau/low-Aβ (PFC 
vs. V1, tau & Aβ-driven) regions within high pathology 
group 4 donors, controlling for regional changes observed 
in low-pathology group 1 donors (Fig. 5a, Table S12). Tau-
driven changes included interferon-related genes (IFITM10, 
IFI44L, and IFG20), which were also increased in tau-
associated clusters from our single-cell level analysis (e.g., 
IFI44L in cross-region tau-associated cluster 2 vs. cluster 
0), as well as the previously “AD2” identified gene GRID2. 
Tau & Aβ-driven changes included genes related to cytokine 
(TNFRSF21, TGFBI) signaling. Clustering of genes across 
regions per pathology group demonstrated that the majority 
of pathology group 3 and 4 genes spike in PFC, suggest-
ing mainly Aβ-influenced signatures later in disease pro-
gression. These included pathology group 3 gene cluster 2, 
represented by pathways such as “antigen processing: ubiq-
uitination & proteasome degradation” (Fig. 5b, Table S13, 
S5a, Table S14). On the other hand, pathology groups 1 and 
2 had gene clusters following tau progression (high EC–low 
V1 expression or low EC–high V1 expression), e.g., pathol-
ogy group 1 gene cluster 4, mainly corresponding to pathol-
ogy group 2 gene cluster 2 and represented by pathways 
such as “extracellular matrix organization” (Fig. 5b, Fig. 
S5a). Correlation of each gene cluster with biochemical 
readouts indicated overall highest correlation in pathol-
ogy group 4, across gene clusters (Fig. 5c). Additionally, 

pathology group 2, gene cluster 3 showed positive correla-
tions with all pathology readouts, while pathology group 
3 gene cluster 2 showed positive correlations with Aβ but 
not tau, as expected based on gene expression patterns of 
EC > ITG > PFC > V2/V1 and EC < ITG < PFC > V2/V1, 
respectively. We further sought to identify genes that showed 
opposite expression patterns in early disease stages (path 
group 1 compared to path group 2), indicating early tau-
associated dysregulation, which included the transcriptional 
regulators BACH1 and PRR5 (Fig. S5b, Table S15). Notably, 
genes previously identified as transitionally upregulated in 
the conversion from cluster 0 (HOM) to 4 (EALT) showed 
significant overlap (p value 1.74e-5) with genes showing 
early tau pathology-driven dysregulation, e.g., BACH1 and 
PRR5, thus supporting the validity of our trajectory results.

Discussion

This study analyzes the highest number of microglia and 
brain macrophages in human AD at the single-cell level to 
date. It leverages additional biochemical and immunohisto-
chemical readouts from the same tissue samples, making it 
a unique and comprehensive data resource to understand the 
AD landscape of brain myeloid cells across tau progression 
[1, 14, 30, 41]. In a cohort of 32 human donors, we charac-
terized the progression of AD pathology, both temporally, 
from low to high pathology, and spatially, from more to less 
vulnerable regions.

While here, we focused on brain myeloid cells, our parent 
study included snRNA-seq of all brain cell types. We found 
that microglia are relatively uniform across the neocortex, 
whereas astrocytes and endothelial cells have brain region-
specific signatures [6, 46]. Astrocytes develop an apparent 
decreased activation (“burnt out”) phenotype in end-stage 
disease [46], whereas we see no evidence of an analogous 
state for microglia.

Entorhinal cortex, part of the periallocortex, is one of 
the first regions typically affected by tau pathology in AD 
and displays a different cortical layer structure compared 
to neocortex. We found that while most brain myeloid cells 
are similar between neocortical regions (ITG, PFC, V1, 
V2), there was a subpopulation of EC microglia showing a 
distinct signature, with genes involved in vesicle and potas-
sium ion transport. Whether or not these differences relate 
to functionally distinct allocortical microglia is unclear, but 
these data suggest that there are region-specific phenotypes 
of microglia in the human brain that we observed are neither 
specific to donors with high or low pathology, nor enriched 
for Aβ or tau pathology readouts.

Across the five brain regions, we identified clusters of 
microglia that were both positively or negatively corre-
lated with tau and/or Aβ pathology. From this dataset, it is 
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impossible to determine whether positively correlated clus-
ters are cause or consequence of pathology, since human 
postmortem brain snRNA-seq studies are inherently cross-
sectional, and AD progression likely involves intricate inter-
actions between all brain cell types including astrocytes, 
neurons, and those of the vasculature [10]. On the other 
hand, microglia clusters negatively correlated with pathol-
ogy suggest either microglial degeneration or transition to 
alternate phenotypes. Our analysis points to the latter as it 
indicates transition of homeostatic microglia to multiple dis-
ease-associated states, and we found no transcriptional evi-
dence of microglial apoptosis or senescence. However, we 
filtered out nuclei with high mitochondrial content, which 
in cells indicates cell death, so our dataset may not fully 
characterize degenerating cells.

Besides sampling different brain regions, our study 
included multiple biochemical assays for pathological tau, 
such as phosphorylated tau, aggregated tau, and propensity 
for tau seeding, which increased our ability to identify tau-
associated microglia at different stages of pathological tau 
progression. Building on previous studies, e.g., [15], our 
study encompasses not only microglia but also brain mac-
rophages, including perivascular macrophages. Perivascular 
macrophages have been suggested to trigger neurovascu-
lar dysfunction in AD through release of reactive oxygen 
species [43]. Although PvMs are normally localized to 
the Virchow–Robin space around blood vessels and differ 
from microglia by expression of markers including CD163, 
recent studies have identified microglia/macrophage-like 
cells expressing both the microglial marker TMEM119 and 
the macrophage marker CD163 surrounding Aβ plaques in 
human AD brain but not in control brains [40, 44]. It has 
been suggested that peripheral monocytes become PvMs 
when the blood–brain barrier is disrupted [37] and that 
blood–brain barrier damage starts early in the course of AD 
[24, 38]. This suggests that macrophages, including PvMs, 
migrate toward plaques or that microglia differentiate into 
macrophage-like cells during AD progression and accumu-
late to a significant degree in donors with high AD pathol-
ogy. Of note, we calculated trajectories from homeostatic 
microglia to the macrophage-like clusters 6 and 10 in our 
cross-region dataset, suggesting that microglia could exist on 
a continuum with brain macrophages; however, this in silico 
observation needs to be experimentally validated. In con-
trast to our study, Gerrits et al. removed brain macrophages 
from their analysis, which may explain some of the differ-
ences between the studies. Future human brain snRNA-seq 
studies should carefully consider how microglia and brain 
macrophages are analyzed and differentiated, as both cell 
types likely contribute to the AD disease course and can be 
therapeutic targets.

The three distinct microglia trajectory endpoints were 
marked by upregulation of genes including SPP1 (cluster 

4). SPP1, encoding the secreted phosphoprotein osteopontin, 
has been implicated in microglia-mediated synaptic engulf-
ment [45]. Functional studies involving genes in microglia 
trajectories and endpoints will help determine microglial 
involvement, either directly via tau processing, or indirectly 
through secretion of soluble factors, in tau progression and 
associated sequelae including synaptic loss.

In contrast with mouse datasets [27, 28], we found that 
human AD microglia can transition from homeostatic to a 
state associated with low AD pathology and characterized 
by upregulation of ribosomal genes (ribosomal response or 
RR), or to other states associated with increased AD pathol-
ogy (early Aβ, late tau or EALT, and late Aβ response or 
LAR). Of note, part of the human AD microglial response 
is clearly modeled by the single Aβ pathology model 
(“DAM1”, derived from the 5xFAD model, corresponding 
to our cross-region cluster 3). Three of our additional human 
microglia clusters also correlate with EADAM and LADAM 
signatures from the dual pathology Aβ & tau mouse model. 
However, these differences suggest a need for better ani-
mal modeling of the unique spatial and temporal interac-
tion of human tau progression with Aβ deposition. On a 
technical level, some of the mouse vs. human differences 
could be due to differential detection of transcripts in cells 
vs. nuclei, as the mouse datasets used scRNA-seq, while 
the human datasets used snRNA-seq. Finally, our study 
focused on transcriptional changes in myeloid cell subtypes. 
We investigated several cluster markers at the protein level 
(TMEM119, CPM, and CD163) and found similar patterns 
of gene and protein expression for these markers. However, 
further study would be required to determine global cor-
relations in gene and protein expression in brain myeloid 
subtypes at the single-cell level, which is beyond current 
available proteomics technology.

Finally, we found that in early stages, (e.g., pathol-
ogy groups 2 vs. 1), tau pathology is the main driver of 
microglial transcriptional signatures, while in later stages 
(e.g., pathology groups 3 and 4), microglial transcrip-
tional changes are also strongly associated with Aβ plaque 
burden. We used early progression expression patterns to 
identify genes that reversed their pattern early in the stereo-
typical spatial progression of pTau neurofibrillary tangles 
(EC > ITG > PFC > V2 > V1) and identified their potential 
involvement in microglia subtype conversion to a diseased 
state (cluster 4, EALT). Among them, the transcriptional 
regulators BACH1 and PRR5 stood out. BACH1 has been 
proposed as a therapeutic target for several neurological 
diseases (e.g., Parkinson’s disease, multiple sclerosis), 
and PRR5 is part of the mTORC2 protein complex that is 
decreased in the AD brain at the protein level [1, 29, 36, 54]. 
Thus, targeting these genes, or their upstream/downstream 
pathways, could slow gene programs initiated by early pro-
gression of tau pathology.
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Although this dataset represents the largest high-quality 
and high-information published human microglia single-cell 
study to date, the major challenge remains: Human tissue 
cannot be sampled in a longitudinal fashion, and postmor-
tem autopsies necessitate use of age-matched disease-free 
controls. Consequently, we could not include tau-negative 
controls in our study, as aged human brains rarely have no 
tau pathology in the EC [41, 49]. We took two approaches to 
partially overcome these challenges: (1) We split the cohort 
into four pathology groups, which allowed us to cross-com-
pare donors with less tau pathology vs. donors with more 
tau pathology, and (2) We harnessed the power of snRNA-
seq and used trajectory analysis to model in silico disease 
progression [52].

In summary, we identified previously unknown regional 
microglia states, as well as early and late disease-associated 
microglia signatures across brain regions, and uncovered 
human microglia transitions associated with pathology pro-
gression in AD. From a homeostatic state human microglia 
either develop into a ribosomal response state, similar to 
that of mouse DAM1, or into distinct pathology-associated 
states. However, unlike in mouse, the ribosomal response 
state does not precede later stage disease states but is of a 
different trajectory. We propose these microglia states as 
the focus of future functional studies to determine whether 
interference can halt, or at least stall, the progression of 
human AD.
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