
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7666  | https://doi.org/10.1038/s41598-024-58368-1

www.nature.com/scientificreports

Identification of ASF1A and HJURP 
by global H3–H4 histone chaperone 
analysis as a prognostic two‑gene 
model in hepatocellular carcinoma
Yongkang Liu 1,2, Shihui Liu 1, Rui Jing 1,2, Congcong Li 1, Yongqi Guo 1, Zhiye Cai 1, Pei Xi 1, 
Penggao Dai 1, Lintao Jia 2, Hongli Zhu 1* & Xiang Zhang 2,3*

Hepatocellular carcinoma (HCC) is a malignancy with poor prognosis. Abnormal expression of 
H3–H4 histone chaperones has been identified in many cancers and holds promise as a biomarker 
for diagnosis and prognosis. However, systemic analysis of H3–H4 histone chaperones in HCC is 
still lacking. Here, we investigated the expression of 19 known H3–H4 histone chaperones in HCC. 
Integrated analysis of multiple public databases indicated that these chaperones are highly expressed 
in HCC tumor tissues, which was further verified by immunohistochemistry (IHC) staining in offline 
samples. Additionally, survival analysis suggested that HCC patients with upregulated H3–H4 histone 
chaperones have poor prognosis. Using LASSO and Cox regression, we constructed a two-gene 
model (ASF1A, HJURP) that accurately predicts prognosis in ICGC-LIRI and GEO HCC data, which was 
further validated in HCC tissue microarrays with follow-up information. GSEA revealed that HCCs 
in the high-risk group were associated with enhanced cell cycle progression and DNA replication. 
Intriguingly, HCCs in the high-risk group exhibited increased immune infiltration and sensitivity 
to immune checkpoint therapy (ICT). In summary, H3–H4 histone chaperones play a critical role in 
HCC progression, and the two-gene (ASF1A, HJURP) risk model is effective for predicting survival 
outcomes and sensitivity to immunotherapy for HCC patients.
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TCGA-LIHC	� The Cancer Genome Atlas-Liver hepatocellular carcinoma
TMAs	� Tissue microarrays

Liver cancer is the sixth most common cancer worldwide, with an estimated incidence of > 1 million cases by 
2025, and the fourth leading cause of cancer-related death globally1. Hepatocellular carcinoma (HCC) is the most 
common form of liver cancer and accounts for ~ 90% of cases. Although clinical HCC treatments, including 
traditional therapy and immunotherapy, have improved significantly, unclear biomarkers for prognostic predic-
tion and immunotherapy sensitivity impair the improvement of the survival rate of HCC patients2. Therefore, it 
is urgent to uncover effective molecular models to improve the survival rate.

Histone chaperones represent a class of regulators that have evolved to deposit and evict histones in a spa-
tiotemporal manner throughout cell division, death and homeostasis. Their frequent misregulation in various 
cancers impacts tumor initiation and progression3,4. Recent studies concerning H3–H4 histone chaperones in 
several cancers illustrate their functions as tumor-promoting and/or useful biomarkers for clinical applications. 
Moreover, H3–H4 histone chaperones impact gene expression related to tumor initiation and progression by 
regulating DNA replication, DNA damage repair, and histone deposition5. Previous studies confirmed that some 
H3–H4 histone chaperones serve as useful biomarkers for prognosis evaluation and immunotherapy sensitivity 
prediction6–9. For example, the facilitates chromatin transcription complex (FACT), which consists of the his-
tone chaperones SUPT16H and SSRP1, has been proven to be remarkably upregulated and contribute to tumor 
progression by promoting oxidative stress adaptation in HCC10. However, a systematic analysis of H3–H4 his-
tone chaperones in HCC is still lacking. Therefore, we attempt to develop a prognostic model based on H3–H4 
histone chaperones and assess its association with immune infiltration, which will be of great contribution for 
improving the prognosis of HCC patients.

In this study, we investigated the expression level and prognostic value of H3–H4 histone chaperones in HCC 
patients in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. LASSO and Cox 
regression were used to construct a prognostic two-gene (ASF1A and HJURP) model based on H3–H4 histone 
chaperones for HCC in TCGA-LIHC, which was evaluated in International Cancer Genome Consortium-Liver 
cancer-RIKEN (ICGC-LIRI) and GSE14520. Moreover, immunohistochemistry (IHC) of serial sections from 
HCC patients proved the elevated expression of ASF1A and HJURP in tumor tissues, and HCC patients in the 
high-risk group had poorer prognosis by IHC staining of HCC tissue microarrays. Intriguingly, HCC patients 
in the high-risk group had much more infiltration of immune cells, indicating a greater sensitivity to immune 
checkpoint therapy (ICT) for these patients. Taken together, the present study established an effective risk model 
for predicting survival outcome and sensitivity to immunotherapy in patients with HCC.

Materials and methods
Dataset sources and preprocessing
We obtained RNA-seq gene expression data and clinical records from The Cancer Genome Atlas (TCGA) 
database (https://​portal.​gdc.​cancer.​gov/) and the International Cancer Genome Consortium (ICGC) database 
(https://​dcc.​icgc.​org/), respectively. The raw count matrix of RAN-seq was converted into transcripts per million 
(TPM), adding 1 to the value of TPM and using the logarithm of 2 as the base. The TPM matrix of RNA-seq was 
used for subsequent analysis. The GEPIA2 database (http://​gepia2.​cancer-​pku.​cn/#​index) was used for H3–H4 
histone chaperone expression analysis in pancancer. The ChEA3 database (https://​maaya​nlab.​cloud/​chea3/) was 
used to predict the potential transcription factors of genes. The UniProt database (https://​www.​unipr​ot.​org) was 
used to search for information about protein feature domains. Additionally, we downloaded the GSE121248, 
GSE33006, and GES14520 datasets from the Gene Expression Omnibus (GEO) repository. We integrated the 
two datasets (GSE121248 and GSE330006), comprising 113 samples from GEO, by removing the batch effect. 
This produced a larger combined cohort that provided a basis to validate the differential expression of H3–H4 
histone chaperones between normal and tumor tissues. In total, we used 346 samples from the TCGA-LIHC 
cohort to construct a prognostic model, and 230 samples from the ICGC-LIRI cohort and 209 samples from the 
GSE14520 dataset were used to test the prognostic risk model.

Patients and specimens
Serial sections from HCC patients were obtained from the Department of Pathology in Xijing Hospital. The 
clinicopathological characteristics of the HCC patients are listed in Supplementary Table S1. HCC tissue microar-
rays (TMAs) (D160Lv01S-ZK) were purchased from Xi’an Bioaitech Co., Ltd. (Xi’an China). The samples were 
analysed by IHC using anti-ASF1A and anti-HJURP antibodies according to the standard method and microarray 
instructions (the details of the primary antibodies for IHC are listed in Supplementary Table S2).

Analysis of H3–H4 histone chaperone expression and patient survival
Wilcoxon tests were used to compare the expression of H3–H4 histone chaperones in normal and tumor tissues 
in HCC. Kaplan‒Meier (KM) survival curve analysis was implemented by the R software packages “survival” 
and “survminer”. High/low expression of H3–H4 histone chaperones was distinguished by the optimal cut-off 
value identified with the surv_cutpoint() function in the “survival” R package.

Construction of the risk model
To construct the prognostic model, univariate Cox regression was used to identify whether the gene signifi-
cantly correlated with survival outcome. Moreover, least absolute shrinkage and selection operator (LASSO) and 
multivariate Cox analyses were employed to further select reliable predictors. A forest plot was used to display 
the p value, HR and 95% CI of each variable through the “forestplot” R package. The risk score of each patient 
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from the databases was assessed using RiskScore = Σ coefficientmRNAn * expression levelmRNAn. Then, KM survival 
curves were used to analyse the correlation of the risk score and prognosis of patients, and TimeROC analysis 
was performed to compare the prediction accuracy of the risk score in the ICGC-LIRI and GEO databases.

Immunohistochemistry (IHC) staining and analysis
Tissue microarrays (TMAs) and sections were deparaffinized with xylene (3 × 15 min) and rehydrated with serial 
dilutions of ethanol (2 × 100%, 1 × 85%, and 1 × 75%, 5 min each) followed by rinsing in ddH2O. Heat-mediated 
antigen retrieval was performed by microwaving with EDTA pH 9.0. The sections were cooled on a decoloriza-
tion shaker in PBS (3 × 5 min), immersed in 3% hydrogen peroxide, incubated at room temperature in darkness 
for 25 min, washed three times with PBS, and incubated for 30 min in blocking solution (3% BSA). The primary 
antibodies (the primary antibodies for IHC are listed in Supplementary Table S2) were diluted with PBS and 
incubated with sections for 1 h at 37 °C or overnight at 4 °C. The sections were washed three times for 5 min 
(3 × 5 min) with 1 × PBS on a shaker and then incubated with secondary antibody (HRP labelled) for 500 min at 
37 °C. The sections were then washed 3 × 5 min with PBS and stained with the Immunohistochemical kit DAB 
chromogenic agent (Servicebio, G1211). The color development time was controlled under the microscope. 
The sections were counterstained with hematoxylin stain solution for approximately 3 min. Finally, tissues were 
dehydrated and mounted in Eukitt medium. Images were captured with a light microscope and analysed by using 
AIPATHWELL software (developed by Wuhan Servicebio Technology Co.).

Differential expression analysis and functional annotation
A total of 346 samples with HCC were selected from the TCGA database and divided into high- and low-risk sub-
groups according to the median risk score. The Wilcoxon test was used to determine the differentially expressed 
genes (DEGs). The selection criteria for DEGs were as follows: |logFC|> 2 and p value < 0.05. GO and KEGG 
pathway enrichment analyses were performed with the “cluster-Profiler” R package11–14. Gene Set Enrichment 
Analysis (GSEA) was performed to investigate the functions correlated with different-risk subgroups of HCC 
by using the “clusterProfiler” R package. The gene sets used in GSEA were “c2.cp.kegg.v2022.1.Hs.entrez.gmt”, 
which was obtained from the Molecular Signature Database (MSigDB, https://​www.​gsea-​msigdb.​org/).

Evaluation of immune cell infiltration
The CIBERSORT algorithm was used to quantify cell composition from gene expression profiles. In this study, the 
proportions of 22 immune cells between the high- and low-risk groups were analysed using CIBERSORT, run-
ning with 1000 permutations. To explore the correlation of the risk score with immune infiltration, we selected 
the samples from the top 50 and bottom 50 risk scores and performed single-sample GSEA (ssGSEA) using the 
R package “GSVA”. Spearman’s correlation analysis was used to evaluate the correlation between the abundance 
of immune cells and the risk score.

Cell culture
The human HCC cell lines Hep3B, Huh-7, LM3, SNU-368, and SNU-739 and the human normal liver cell line 
LO2 were purchased from the National Infrastructure of Cell Line Resource and maintained in Dulbecco’s 
modified Eagle’s medium (Gibco, USA) or RPMI1640 (Gibco, USA) supplemented with 10% fetal bovine serum 
(Gibco, USA) at 37 °C with 5% CO2.

Quantitative real‑time polymerase chain reaction (qRT‒PCR)
RNA from cells was extracted using TRIzol reagent (Invitrogen, USA) according to the manufacturer’s instruc-
tions. cDNA was prepared from 1 μg RNA using the PrimeScript RT Reagent Kit Perfect Real Time Kit (Takara, 
Japan). qRT‒PCR was performed on a Bio-Rad CFX96 (Bio-Rad, USA) by using TB Green Premix Ex Taq II 
(Takara, Japan) according to the manufacturer’s protocol. The expression levels of the target genes were deter-
mined by amplification with specific primers with GAPDH as the internal control. All primers were obtained 
from Tsingke (Beijing, China), and the reactions were repeated three times. The primer sequences are listed in 
Supplementary Table S3.

Western blotting
Cell extracts were prepared and lysed with RIPA buffer. The protein concentration was determined using a BCA 
kit. Samples were separated on 10% SDS‒PAGE gels and blotted onto nitrocellulose membranes (Millipore, 
USA). Membranes were incubated at 4 °C overnight with primary antibodies at the following concentrations: 
anti-ASF1A (1:000, 10784-1-AP, Proteintech), anti-HJURP (1:1000, 15283-1-AP, Proteintech), and anti-β-actin 
(1:2000, Sigma). The membranes were then washed three times with TBST and incubated with HRP-conjugated 
anti-rabbit IgG (1:20,000, 7074, Cell Signaling Technology) or anti-mouse IgG (1:20,000, 7076, Cell Signaling 
Technology) diluted in TBST at room temperature for 1 h. After a final wash with TBST, the membranes were 
developed with ECL reagents and visualized using a Tanon 5500 imaging system. The ratio of the expression of 
the indicated molecule to that of β-actin was determined using ImageJ software (National Institutes of Health, 
Bethesda, MD, USA).

Statistical analysis
In this study, data analysis and visualization were performed using R software (version 4.0.2) and GraphPad 
Prism v9.0 software (GraphPad, La Jolla, CA, USA). Student’s t test, one-way ANOVA, Kruskal‒Wallis test, and 
Mann‒Whitney test were selected for statistical analysis of data according to the results of the test for normal 

https://www.gsea-msigdb.org/


4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7666  | https://doi.org/10.1038/s41598-024-58368-1

www.nature.com/scientificreports/

distribution and test for homogeneity of variances. The statistical methods used for each result are described in 
the corresponding figure legends. Median survival time was identified by KM survival analysis, and survival was 
compared among groups with the log-rank test. Spearman’s correlation coefficients were calculated to determine 
the correlation between two continuous variables. All statistical tests were two-sided, and a p value < 0.05 was 
considered statistically significant.

Ethics approval and consent to participate
The study involving human samples was approved by the Medical Ethics Committee of the First Affiliated Hos-
pital of the Fourth Military Medical University (Approval Number: XJYYLL-2015625). The study was conducted 
in accordance with the local legislation and institutional requirements. Informed consent from all patients was 
obtained for participation in the study.

Results
Elevated expression of H3–H4 histone chaperones in hepatocellular carcinoma
A flowchart of this study is displayed in Fig. 1. We summarized all the known H3–H4 histone chaperones and 
their involved biological processes from publications (Table 1). We compared the expression of H3–H4 histone 
chaperones in normal and liver hepatocellular carcinoma (LIHC) tissues in TCGA, and we identified that all 
19 H3–H4 histone chaperones are highly expressed in tumor tissues (Fig. 2A). A similar result was obtained 
by analysing the GSE121248 and GSE33006 datasets from the GEO database, and nearly all H3–H4 histone 

Figure 1.   Flowchart of this study. First, the indicated datasets with prognostic information were collected 
from public databases. Second, the expression and prognostic value of all 19 H3–H4 histone chaperones in 
HCC were compared in the GEO and TCGA-LIHC databases. Third, a two-gene prognostic model based on 
H3–H4 histone chaperones was constructed by using LASSO and Cox regression analysis, and the accuracy 
and reliability of the prognostic model were evaluated in the ICGC-LIRI and GEO databases. Fourth, 
immunohistochemistry of serial sections of HCC patients was used to verify the difference between the 
expression levels of ASF1A and HJURP in tumor and normal tissues, and HCC tissue microarrays were used to 
validate the prognostic model. Finally, the signaling pathways involved in the prognostic model were analysed 
by GO, KEGG and GSEA analyses. CIBERSORT and ssGSEA were applied to explore the relationship between 
the risk score and immune cell infiltration.
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chaperones were significantly overexpressed in tumor tissues, except for APLF, HIRA and NASP (Fig. 2B). 
Overall, our comprehensive analysis showed that the expression of H3–H4 histone chaperones is significantly 
higher in HCC tissues than in normal tissues in the liver and suggested that H3–H4 histone chaperones are good 
candidate prognostic predictors.

Additionally, we analysed all tumor types containing normal samples in the TCGA database and found that 
different H3–H4 histone chaperones are expressed differently in different tumors. Of all the H3–H4 histone 
chaperones, HJURP is significantly highly expressed in almost all tumor types. In tumor types, almost all histone 
chaperones were significantly highly expressed in liver hepatocellular carcinoma (LIHC) and cholangiocarcinoma 
(CHOL) (Supplementary Fig. S1).

To explore whether elevated H3–H4 histone chaperones are regulated by common transcription factors in 
HCC. We predicted the potential transcription factors of these H3–H4 histone chaperones by using the ChEA3 
database. There is no certain transcription factor that can regulate all histone chaperones. Instead, 23 transcrip-
tion factors regulating more than 10 H3–H4 histone chaperones (Supplementary Table S4) were selected to 
analyse their expression changes with the progression of tumor stages in TCGA-LIHC. As displayed in Sup-
plementary Fig. S2, five transcription factors (CREB1, CTCF, YY1, E2F1, MYBL2) were significantly elevated 
with tumor progression in HCC, indicating that these potential transcription factors may be responsible for the 
upregulation of H3–H4 histone chaperones in HCC.

Moreover, we investigated the expression of histone H3, H4 and CENP-A when their corresponding chaper-
ones were upregulated in HCC. Because there are many genes encoding H3–H4 histone proteins and the process 
of assembling histone proteins into nucleosomes requires the participation of multiple chaperone molecules, the 
chaperone corresponding to histone proteins is not invariable and unique. Therefore, we used TCGA-LIHC data 
to determine the genes encoding histone H3 and H4 that are mainly expressed in liver cancer. We recognized 
that the genes encoding histones H3 and H4 are H3F3B and HIST1H4I in HCC, respectively (Supplementary 
Fig. S3A,B). We then conducted correlation analysis of H3F3B, HIST1H4I and CEPN-A with each H3–H4 
histone chaperone (Supplementary Table S5, Supplementary Fig. S3C). H3F3B and CENP-A are significantly 
positively correlated with all H3–H4 histone chaperones, and HIST1H4I is positively correlated with most (11 
out of 19) H3–H4 histone chaperones (p < 0.05), suggesting that the expression of histone levels may also be 
upregulated in HCC when their corresponding chaperones are upregulated.

Construction of the prognostic model based on H3–H4 histone chaperones in HCC
First, for each H3–H4 histone chaperone, we analysed the overall survival probability of HCC patients with 
different expression levels. In this section, HCC patients were divided into a high-expression group and a low-
expression group according to the optimal cut-off value. We observed significantly shorter overall survival (OS) 
in HCC patients with higher expression of most H3–H4 histone chaperones (Supplementary Fig. S4). Then, we 
used univariate Cox regression to analyse the relationship between H3–H4 histone chaperone expression, clinical 

Table 1.   H3–H4 Histone chaperones in human species. APLF aprataxin and PNKP like factor, ASF1 
antisilencing factor 1, ATRX α-thalassemia, mental retardation, X-linked syndrome, DAXX death domain-
associated protein 6, CAF-1 chromatin assembly factor 1, RBBP4 retinoblastoma binding protein 4, DEK 
DEK proto-oncogene, DNAJC9 DanJ heat shock protein family member C9, FACT​ facilitates chromatin 
transcription, SUPT16H suppressor of Ty 16 Homolog, SSRP1 structure specific recognition protein 1, HIRA 
histone regulator A, CABIN1 calcineurin binding protein 1, UBN1 ubinuclein 1, HJURP Holliday junctions-
recognition protein, MCM2 minichromosome maintenance 2, NASP nuclear autoantigenic sperm protein, 
NPM nucleophosin.

H3–H4 histone chaperone Histone variant selectivity Mediated biological process References

APLF H2A–H2B
H3–H4 DNA repair, chromatin assembly 34

ASF1A H3.3–H4 Proper folding of monomeric H3 and H4, expressed throughout the cell cycle; inter-
acts with the HIRA histone chaperone in the nucleus

4

ASF1B H3.1/2–H4 Expressed in the S-phase of the cell cycle, interacts with the CAF-1 complex on 
chromatin

4

ATRX-DAXX complex H3.3–H4 H3.3 enrichment in heterochromatin region of telomeres with over repetitive DNA 4,6,35

CAF-1 complex (CHAF1A, CHAF1B, RBBP4) H3.1/2–H4 DNA replication, new H3.1, H3.2 deposition 7

DEK H3.3–H4 Chromatin organization

DNAJC9 H3–H4 Recruiting of heat shock factors and release of misfolding H3–H4 8

FACT complex (SUPT16H, SSRP1) H2A–H2B
H3–H4 Histone eviction and recycling, transcriptional regulation; DNA repair and cell cycle 9

HIRA complex (HIRA, CABIN1, UBN1) H3.3–H4 DNA repair and replication, new H3.3 deposition in transcriptionally active region 36

HJURP CENP-A-H4 Chromatin deposition of CENP-A-H4 4

MCM2 H3–H4 Initiating nucleosome disassembly with FACT​ 4

NASP H3–H4
H1 Assembling and folding of H3–H4 heterodimers 4

NPM1 CENP-A-H4 Chromatin deposition of CENP-A-H4 4
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factors (such as sex, age, and stage) and OS in HCC patients. Univariate Cox analysis indicated that clinical stages 
and the expression of most H3–H4 histone chaperones are significantly correlated with OS in HCC (Table 2).

Second, LASSO Cox regression analysis was used to reduce the number of candidate H3–H4 histone chap-
erones in the prognostic model. The change trajectory of each candidate H3–H4 histone chaperone is shown 
in Fig. 3A,B. After LASSO regression analysis, 4 histone chaperones (ASF1A, HJURP, NASP and NPM1) were 
subjected to multivariate Cox regression analysis to construct the final prognostic risk model (Fig. 3C, Sup-
plementary Table S6).

Finally, two H3–H4 histone chaperones, ASF1A and HJURP, were identified to generate a risk model based 
on the univariate and multivariate Cox results. Furthermore, the analysis revealed that higher TNM stage and 
ASF1A or HJURP expression were independent prognostic factors for HCC (HR > 1, p < 0.05). The two-gene 
model formula was as follows: RiskScore = 0.343 * ExpressionASF1A + 0.247 * ExpressionHJURP.

Figure 2.   The elevated expression of H3–H4 histone chaperones in HCC. (A) The differences in 19 H3–
H4 histone chaperones expressed in normal (n = 50) and tumor tissues (n = 367) in TCGA-LIHC. (B) The 
difference in 19 H3–H4 histone chaperones expressed in normal (n = 40) and tumor tissues (n = 73) in GEO 
(GSE121248 + GSE33006). Abbreviations: TCGA-LIHC, The Cancer Genome Atlas-Liver Hepatocellular 
Carcinoma; GEO, Gene Expression Omnibus; HCC, hepatocellular carcinoma; Kruskal‒Wallis test 
was performed to determine significance in (A,B); ns, not significant; *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001.
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The two‑gene model passes the prognostic prediction test in the ICGC‑LIRI and GEO HCC 
cohorts
After construction of the two-gene model, we first calculated the risk scores based on the model for each patient 
in the ICGC-LIRI cohort and plotted the risk score distribution of the patients. HCC patients were divided into 
high- and low-risk groups according to the median risk score. As expected, patients in the high-risk group had 
higher risks of death than those in the low-risk group (Fig. 4A). Survival analysis also exhibited poorer prognosis 
in patients with high-risk scores than in those with low-risk scores (Fig. 4B). The receiver operating character-
istic (ROC) curve indicated that the risk score can perfectly predict the survival rate for HCC patients at 1, 3, 
and 5 years in the ICGC-LIRI cohort, and its areas of under the curves (AUCs) were 0.767, 0.731, and 0.809, 
respectively (Fig. 4C). To further evaluate this two-gene model, we tested it in another GEO dataset (GSE14520) 
(Fig. 4D). Similarly, the patients in the high-risk group presented a significantly shorter overall survival rate 
than those in the low-risk group (Fig. 4E). Moreover, the areas under the curves in the GSE14520 cohort were 
0.782, 0.781, and 0.732 at 1, 3, and 5 years, respectively, indicating that the risk scores generated by this two-gene 
model can precisely predict the survival time of HCC patients (Fig. 4F). Additionally, we investigated whether 
a single gene from the two-gene model exhibited comparable prognostic performance to the two-gene model 
in HCC. ROC curves revealed that the AUC values for ASF1A or HJURP in predicting 1, 3, and 5-year survival 
rates among HCC patients were relatively low in ICGC and GSE14520 datasets (Supplementary Fig. S5). These 
findings suggest that ASF1A and HJURP are both essential for constructing the prognostic model. In summary, 
we created an excellent risk model for predicting the survival probability in HCC.

Validation of the two‑gene model in HCC clinical samples and cell lines
To investigate the protein levels of ASF1A and HJURP in HCC and adjacent normal tissues, we first collected 62 
clinical samples from Xijing Hospital. Immunohistochemical (IHC) staining showed that ASF1A and HJURP 
were expressed more highly in tumor tissues than in normal tissues (Fig. 5A,B,E). Meanwhile, IHC staining 
results also revealed that tissues from patients with a higher stage had higher levels of both ASF1A and HJURP 
(Fig. 5C,F). Intriguingly, the RNA levels of ASF1A and HJURP also gradually increased with tumor stage pro-
gression in the TCGA-LIHC data (Fig. 5D,G).

To further validate the prognostic value of the two-gene model, we investigated ASF1A and HJURP levels 
in prognosis-containing HCC tissue microarrays (TMAs) (Supplementary Fig. S6). Similar to our previous 
observations in clinical samples, ASF1A and HJURP mainly localize in the nucleus and exist in the cytoplasm 
(Fig. 6A). Statistical analysis showed increasing mean densities of ASF1A and HJURP with tumor development 

Table 2.   Univariate Cox regression analysis of H3–H4 histone chaperones in TCGA-LIHC. HR hazard 
ratio, 95% CI 95% confidence interval, ns not significant, TCGA-LIHC The Cancer Genome Atlas Liver 
Hepatocellular Carcinoma. *，p < 0.05；**，p < 0.01；***，p <0.001；****，p < 0.0001

Variates HR (95% CI for HR) p value Significance

Gender 1.24 (0.5–1.2) 0.286 ns

Age 1.01 (1–1) 0.167 ns

Stage

II 1.39 (0.84–2.3) 0.196 ns

III 2.37 (1.5–3.7) 0.000123 ***

IV 5.57 (1.7–18) 0.00426 **

APLF 1.03 (0.86–1.2) 0.752 ns

ASF1A 1.67 (1.3–2.1) 2.94E−05 ****

ASF1B 1.25 (1.1–1.4) 0.000586 ***

ATRX 1.1 (0.9–1.3) 0.357 ns

DAXX 1.53 (1.1–2) 0.0045 **

CHAF1A 1.36 (1.1–1.7) 0.00175 **

CHAF1B 1.24 (1.1–1.4) 0.000491 ***

RBBP4 1.52 (1.2–1.9) 0.000516 ***

DEK 1.23 (1–1.5) 0.0328 *

DNAJC9 1.27 (1.1–1.5) 0.0122 *

SUPT16H 1.46 (1.1–1.9) 0.00499 **

SSRP1 1.79 (1.4–2.3) 1.41E−05 ****

HIRA 1.37 (1–1.8) 0.0259 *

CABIN1 1.23 (0.97–1.6) 0.0853 ns

UBN1 1.21 (0.93–1.6) 0.158 ns

HJURP 1.37 (1.2–1.6) 1.30E–06 ****

MCM2 1.35 (1.2–1.6) 1.63E−05 ****

NASP 1.6 (1.3–2) 3.41E–05 ****

NPM1 1.69 (1.3–2.1) 1.10E−05 ****
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and progression (Fig. 6B–E). Moreover, substituting the expression values of ASF1A and HJURP into the con-
structed two-gene model (RiskScore = 0.343 * ExpressionASF1A + 0.247 * ExpressionHJURP), the patients were divided 
into high-/low-risk groups based on the median risk score, and high-risk patients truly had a significantly worse 
prognosis (Fig. 6F), indicating that the two-gene model can accurately predict the prognosis of patients with 
HCC based on not only RNA levels but also proteins. Intriguingly, each gene between the two-gene model had 
no significance in predicting patient prognosis (Fig. 6G,H); therefore, ASF1A and HJURP are both necessary 
for prognostic analysis in HCC.

Moreover, further validation was performed in HCC cell lines. We used a normal hepatocyte-derived cell 
line (LO2) as the control and compared the relative expression levels of ASF1A and HJURP in LO2 and five 
hepatocellular carcinoma (HCC) cell lines (Hep3B, Huh-7, LM3, SNU-368, SNU-739) using qRT‒PCR) and WB 
experiments. As displayed in Supplementary Fig. S7, we confirmed that the expression of ASF1A and HJURP 
was significantly upregulated in most HCC cells compared to LO2 cells at both the RNA and protein levels. This 
conclusion is consistent with the results in Figs. 2, 5, and 6. Therefore, we confirmed that ASF1A and HJURP 
are elevated in HCC.

Exploration of biological function underlying the two‑gene model
Based on the two-gene model, the samples in the TCGA-LIHC cohort were divided into high-risk and low-
risk groups according to the calculated risk scores. The differentially expressed genes (DEGs) between the two 
groups were identified by the Wilcoxon test, and we observed that 492 genes were upregulated and 16 genes were 
downregulated in the high-risk group (Fig. 7A). Gene Ontology (GO) term annotation demonstrated that the 

Figure 3.   Construction of the risk model based on H3–H4 histone chaperones in HCC. (A) LASSO coefficient 
profile plots of each independent variable. (B) The partial likelihood deviance for the LASSO Cox regression 
analysis. (C) Multivariate Cox analysis of H3–H4 histone chaperones and clinical pathological variables. 95% CI, 
95% confidence interval. p value < 0.05 was considered statistically significant.
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upregulated genes were mainly involved in organelle fission, nuclear division, chromosome segregation, nuclear 
chromosome segregation, mitotic nuclear division, sister chromatid segregation, the meiotic cell cycle, and other 
processes (Fig. 7B). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the 
upregulated genes were enriched in the neuroactive ligand‒receptor interaction, cell cycle, DNA replication 
and other pathways (Fig. 7C). To investigate whether pathway activation is attributed to the direct interaction of 
ASF1A and HJURP at the regulatory genomic regions of these genes, we checked the ASF1A and HJURP protein 
feature domains in the UniProt database and drew corresponding schematic diagrams containing the protein 
feature domains (Supplementary Fig. S8). It was found that neither ASF1A nor HJURP proteins have DNA 
binding domains, indicating that the two histone chaperones do not directly interact with DNA. Additionally, 
GSEA results also proved a positive correlation between the high-risk group and cell cycle, DNA replication, 
primary immunodeficiency, and neuroactive ligand receptor interaction (Fig. 7D–G) and a negative correlation 
between high risk and primary bile acid biosynthesis and citrate cycle (Fig. 7H,I). Furthermore, increased AFP 

Figure 4.   Evaluation of the predictive efficacy of the prognostic model in HCC. (A) The risk score distribution, 
patient status, ASF1A and HJURP expression heatmap for the ICGC-LIRI cohort. (B) Kaplan–Meier curve of 
the two-gene model for the ICGC-LIRI cohort. (C) Time-dependent receiver operating characteristic (ROC) 
curves of the risk model for the prediction of 1-, 3-, and 5-year survival in the ICGC-LIRI cohort. (D) The 
risk score distribution, patient status, ASF1A and HJURP expression heatmap for the GSE14520 cohort. (E) 
Kaplan–Meier curve of the two-gene model for the GSE14520 cohort. (F) ROC curves of the risk model for the 
prediction of 1-, 3-, and 5-year survival in the GSE14520 cohort.



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7666  | https://doi.org/10.1038/s41598-024-58368-1

www.nature.com/scientificreports/

Figure 5.   The expression levels of ASF1A and HJURP in serial sections of HCC and normal liver tissues. (A) 
Immunohistochemical (IHC) staining for ASF1A and HJURP in serial sections of HCC and normal liver tissues. 
Black arrows indicate cells positive for ASF1A or HJURP. Scale bar, top, 30 µm, bottom 10 µm. (B) Comparison 
of the mean density of ASF1A in HCC and normal liver tissues. (C) Comparison of the mean density of ASF1A 
in serial sections of HCC at different stages and normal liver tissues. (D) The boxplot of ASF1A expression in 
different stages of HCC and normal tissues in TCGA-LIHC. (E) Comparison of the mean density of HJURP 
in HCC and normal liver tissues. (F) Comparison of the mean density of HJURP in serial sections of HCC 
at different stages and normal liver tissues. (G) Boxplot of HJURP expression in different stages of HCC and 
normal tissues in TCGA-LIHC. Mean density, the average integrated optical density of positive pixel area 
analysis by AIPATHWELL software, and the value represents the relative level of the protein expressed in the 
tissue. Statistical significance was computed using Student’s t test (B,C), ordinary one-way ANOVA (D,E), and 
the Kruskal‒Wallis test (F,G); **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Figure 6.   IHC and survival analysis of HCC tissue microarray. (A) IHC staining results of ASF1A and HJURP 
in HCC tissue microarrays. Scale bar, 100 µm. Comparison of the mean density of ASF1A (B) and HJURP (C) 
in HCC and normal tissue microarrays. Comparison of the mean density of ASF1A (D) and HJURP (E) in 
different stage HCC and normal tissue microarrays. (F) Kaplan–Meier curves of the expression of the two-gene 
model for the tissue microarray data. Kaplan–Meier curves of the expression of ASF1A (G) and HJURP (H) for 
the tissue microarray data. Mean density, the average integrated optical density of positive pixel area analysis 
by AIPATHWELL software, and the value represents the relative level of the protein expressed in the tissue. 
Statistical significance was computed using the Mann‒Whitney test (B), Student’s t test (C), Kruskal‒Wallis test 
(D), and ordinary one-way ANOVA (E); ns, not significant; *p < 0.05, ****p < 0.0001.
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(alpha-fetoprotein) and bilirubin in the patients of high-risk group were also observed (Supplementary Fig. S9). 
Taken together, these results suggested that alterations mainly in sustaining proliferation and avoiding immune 
destruction contribute to the increased risk of HCC based on the two-gene model. Sustaining proliferation is 
known to be associated with high levels of H3–H4 histone chaperones; however, the relationship between H3–H4 
histone chaperones and immune cell infiltration is still unclear in HCC.

Association between risk score and infiltration immune cells in HCC
CIBERSORT was conducted to assess the proportion of immune cells between the high-/low-risk groups. As a 
result, immune cell populations, including CD8 + T cells, CD4 + memory resting T cells, CD4 + memory activated 
T cells, follicular helper T cells, activated NK cells, monocytes, M0 macrophages, M2 macrophages, and neutro-
phils, were found to be significantly different between the two groups (Fig. 8A). We estimated the abundance of 
28 kinds of immune cells using ssGSEA based on RNA-seq data from the TCGA-LIHC cohort. We observed more 
immune cell infiltration in the patients with high risk scores (Fig. 8B). Moreover, the correlation analysis revealed 
that the risk score was positively correlated with the abundance of activated CD4 T cells (R = 0.47, p < 2.2e−16), 
natural killer T cells (R = 0.22, p = 0.000039) and type II T cells (R = 0.4, p = 6.2e−15) (Fig. 8C-E). Moreover, we 
also examined the association of the risk score with multiple predictors of response to immunotherapy. We 
observed a positive correlation of the risk score with known immune checkpoint genes, including PD-1 (R = 0.21, 

Figure 7.   Functional enrichment analysis of different risk groups in TCGA-LIHC. (A) Volcano plot of 
differentially expressed genes between low- and high-risk patients. (B) Representative GO terms and pathways 
enriched from upregulated genes in the high-risk group. (C) Representative KEGG terms and pathways 
enriched from upregulated genes in the high-risk group. Gene set enrichment analysis (GSEA) revealed that 
genes with higher expression in the high-risk group were enriched in KEGG pathways such as cell cycle (D), 
DNA replication (E), primary immunodeficiency (F), and neuroactive ligand receptor interaction (G), and 
genes with higher expression in the low-risk group were enriched in KEGG pathways such as primary bile 
acid biosynthesis (H) and citrate cycle TCA cycle (I). NES, normalized enrichment score. p value < 0.05 was 
considered statistically significant.
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Figure 8.   Analysis of the difference in immune infiltration between the high- and low-risk groups. (A) The 
proportions of 22 immune cells in the low- and high-risk groups. (B) Heatmap showing the distribution of 28 
types of immune cells in HCC patients with the top and bottom 50 risk scores. Spearman’s correlation analysis 
of the relationship between the risk score and immune cells, including activated CD4 T cells (C), natural 
killer T cells (D), and type II T helper cells (E). Spearman’s correlation analysis was also conducted to assess 
the relationship between the risk score and the expression of PD-1 (F), CTLA4 (G), and LAG3 (H). R values 
represent Spearman’s correlation coefficient. The Kruskal‒Wallis test was performed to determine significance 
in (A); ns, not significant; *p < 0.05, ****p < 0.0001.
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p = 6.3e−05), CTLA4 (R = 0.28, p = 9.8e−08) and LAG3 (R = 0.26, p = 1.3e−06) (Fig. 8F–H). These results sug-
gested that HCC patients in the high-risk group may be more sensitive to immune checkpoint therapy (ICT).

Discussion
Liver cancer remains a global health problem with a growing incidence. Hepatocellular carcinoma (HCC) is 
the most common form of liver cancer and accounts for ~ 90% of cases1. Most HCC patients are diagnosed at 
an advanced stage and resistant to current therapies, resulting in poor prognosis and high mortality. It is neces-
sary to develop effective biomarkers for prognostic and treatment-effect prediction to improve the survival of 
HCC patients. Previously, the majority of H3–H4 histone chaperones have been identified as tumor-promoting 
factors through their upregulation or mutation in multiple cancers; however, systematic analysis of H3–H4 
histone chaperones is still lacking in HCC15. Thus, in this study, we focused on H3–H4 histone chaperones and 
investigated their predictive effect for prognosis and immune checkpoint therapy in HCC.

Prognostic roles of H3–H4 histone chaperones and creation of a two‑gene model in HCC
Before our study, there were sporadic papers investigating the role of single H3–H4 histone chaperones in 
HCC10,16,17. Increased ASF1A expression is observed in multiple types of cancers, facilitating acetylation of 
H3K56 in these tumors18,19. ASF1B has also been confirmed to promote cell growth20,21. Additionally, a previous 
study suggested that HJURP is an indispensable factor for chromosomal stability in immortalized cancer cells 
and is a potential novel therapeutic target for the development of anticancer drugs22. Xu et al.17 reported that 
CHAF1A may function as a poor prognostic indicator for 5-year overall and disease-free survival in patients 
with HCC. However, the current work is the first study to provide a comprehensive analysis of the expression 
level and prognostic value of H3–H4 histone chaperones in HCC. We demonstrated that the expression of 19 
known H3–H4 histone chaperones was higher in HCC tumor tissues than in normal liver tissues in the TCGA 
and GEO datasets (Fig. 2), and KM curves showed that HCC patients with high H3–H4 histone chaperone 
expression had a shorter survival (Supplementary Fig. S4), but not all of these H3–H4 histone chaperones could 
be used to predict the prognosis of HCC patients. Thus, univariate Cox analysis was used to identify risk genes 
associated with patient survival, and we discovered that 15 H3–H4 histone chaperones are risk genes in HCC 
(Table 2). Given that a single risk gene is not accurate and stable enough to predict the outcome of HCC patients, 
if all 15 risk genes are included in the construction of a prognostic model, the model will be complicated and 
redundant, resulting in a lack of clinical practicability. Therefore, we further used LASSO and multivariate Cox 
to identify important risk genes that can be used for prognosis, and finally, we screened ASF1A and HJURP for 
the construction of a prognostic model (Fig. 3).

Indeed, in the last decade, bioinformatic analysis tools have improved, and multi-omics data have accumu-
lated rapidly. Many prognostic models for HCC have been developed by using various data sources23–27. However, 
due to the previously limited sample size used to test and validate the models and the lack of validation at the 
protein level, these models are rarely applied in clinical practice. In this study, first, we constructed a two-gene 
model (ASF1A and HJURP) using TCGA-LIHC data (346 samples included) as a training set. The model was then 
evaluated with ICGC-LIRI (230 samples included) and GSE14520 (a prevailing dataset in HCC study, 209 samples 
included) as the testing sets, and we identified that the model has high sensitivity and specificity for predicting 
the outcome of HCC patients (1-, 3-, and 5-year AUC of 0.767, 0.731, and 0.809, respectively, in ICGC-LIRI; 1-, 
3-, and 5-year AUC of 0.782, 0.782, and 0.732, respectively, in GSE14520) (Fig. 4). We compared our two-gene 
model with other previous HCC prognostic models28,29, and the performance of our model is comparable with 
previously published models by comparing the areas of under the curve (AUCs) among models to predict 1-, 3-, 
and 5-year survival in HCC patients. In addition, we used prognostic information-containing tissue microar-
ray data as a validation set to verify the model at the protein level. Although ASF1A or HJURP alone could not 
significantly distinguish the prognosis of patients (Fig. 6G,H), the two-gene model could effectively predict the 
prognosis of HCC patients (Fig. 6F), which also indicated the stability and reliability of the model in predicting 
the prognosis of HCC patients. Taken together, the two-gene model passes the examination with nearly 800 
samples and is validated at the protein level. Given that immunohistochemical staining assays are readily acces-
sible in many hospitals, this two-gene model may have promising clinical applicability.

Signaling pathways involving this two‑gene model in HCC
Why can the two-gene model be used to predict the prognosis of HCC patients? Either the two genes are the key 
hinges of their involved signaling pathways, or the abnormal expression of these two genes reflects changes in 
the activity of related signaling pathways in HCC. Therefore, we explored the signalling pathways underlying the 
two-gene model, divided HCC patients into high- and low-risk groups according to the risk scores obtained by 
the model, and performed differential expression gene analysis, GO, KEGG, and GSEA. We observed that the cell 
cycle and DNA replication were significantly activated in high-risk patients (Fig. 7B–E), which is consistent with 
previous findings30,31. In addition, we also identified changes in other signaling pathways in high-risk patients, 
such as primary immunodeficiency, neuroactive ligand receptor interaction, primary bile acid biosynthesis, TCA 
circulation, and primary immune deficiency (Fig. 7F–I).

The potential application of two‑gene models to predict immunotherapy outcomes offers 
hope for HCC patients
Previously, HJURP was reported to be associated with tumor-infiltrating immune cells, immune checkpoints, 
and immune suppression in HCC32,33. Moreover, in this study, we found that a high risk score was positively cor-
related with immune deficiency, suggesting that immune dysfunction may exist in high-risk patients (Fig. 7F). 
To investigate whether the two-gene model can predict the level of immune infiltration in HCC patients and 
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provide guidance for immunotherapy, we evaluated the level of immune cell infiltration in HCC patients by 
CIBERSORT and ssGSEA and observed a higher proportion of immune cells in high-risk patients (Fig. 8A,B). 
In addition, we identified a positive correlation of the risk score with the expression of PD1, CTLA4, and LAG3 
(Fig. 8F–H), suggesting that high-risk patients may be more sensitive to these immune checkpoint therapies.

In summary, we developed a two-gene model based on H3–H4 histone chaperones that can not only predict 
the survival outcome of HCC patients but also evaluate the levels of immune cell infiltration in HCC tissues to 
assess immunotherapy sensitivity for patients with HCC.

Prospect of the study
Future applications of the two-gene model are considered to accurately predict the prognosis of HCC patients 
and distinguish patients sensitive to ICT immunotherapy, which is beneficial for improving the survival rate, 
treatment accuracy and quality of life of HCC patients.

Limitations of the study
Although our study demonstrated that the two-gene model is effective for predicting survival outcomes and 
sensitivity to immunotherapy for HCC patients, several issues remain. First, for a prevailing prognostic model 
in the clinic, nearly 800 samples are still not enough, and more extensive clinical data are needed for further 
validation. The data utilized in this study encompassed transient gene expression patterns of patients at a specific 
point in time, thereby lacking the capacity to capture the dynamic characteristic changes associated with tumor 
progression. Additionally, the importance of H3–H4 histone chaperones in their involved signaling pathways 
also needs to be explored in vivo and in vitro.

Data availability
The data generated in this study are included in the supplementary material. Further inquiries can be directed to 
the corresponding author. In this study, RNA-Seq data and corresponding clinical characteristics were obtained 
from the TCGA database (https://​www.​cancer.​gov/​ccg/​resea​rch/​genome-​seque​ncing/​tcga, accessed on 3 Janu-
ary 2023) and International Cancer Genome Consortium (ICGC) database (https://​dcc.​icgc.​org/, accessed on 3 
January 2023). The GSE121248, GSE33006, and GSE14520 datasets were downloaded from the Gene Expression 
Omnibus (https://​www.​ncbi.​nlm.​nih.​gov/​geo/, accessed on 3 January 2023). The absolute abundance of immune 
and stromal cell expression profiles was obtained from CIBERSORT (http://​CIBER​SORT.​stanf​ord.​edu/, accessed 
on 3 January 2023).
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