
Article
Anchored-fusion enables
 targeted fusion search in
bulk and single-cell RNA sequencing data
Graphical abstract
Highlights
d Anchored-fusion detects fusion genes with high sensitivity in

paired-end RNA-seq

d Anchoring a gene of interest avoids over-filtering based on

homology alignment

d A deep learning module filters false positive chimeric reads

d Anchored-fusion shows high sensitivity in single-cell

applications
Yuan et al., 2024, Cell Reports Methods 4, 100733
March 25, 2024 ª 2024 The Authors. Published by Elsevier Inc.
https://doi.org/10.1016/j.crmeth.2024.100733
Authors

Xilu Yuan, Haishuai Wang,

Zhongquan Sun, Chunpeng Zhou,

Simon Chong Chu, Jiajun Bu, Ning Shen

Correspondence
haishuai.wang@zju.edu.cn (H.W.),
shenningzju@zju.edu.cn (N.S.)

In brief

Yuan et al. present Anchored-fusion, a

method for detecting fusion genes with

high sensitivity from paired-end RNA-

seq. Anchoring a gene of interest avoids

over-filtering, and a deep learning model

removes false positives. Anchored-fusion

demonstrates superior sensitivity in

various scenarios, particularly in

detecting fusion genes from single-cell

RNA-seq.
ll

mailto:haishuai.wang@zju.edu.cn
mailto:shenningzju@zju.edu.cn
https://doi.org/10.1016/j.crmeth.2024.100733
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crmeth.2024.100733&domain=pdf


OPEN ACCESS

ll
Article

Anchored-fusion enables targeted fusion search
in bulk and single-cell RNA sequencing data
Xilu Yuan,1,6 HaishuaiWang,1,2,6,* Zhongquan Sun,3,6 Chunpeng Zhou,1 SimonChongChu,4 Jiajun Bu,1 and Ning Shen5,7,*
1Zhejiang Provincial Key Laboratory of Service Robot, College of Computer Science, Zhejiang University, Hangzhou, China
2Shanghai Artificial Intelligence Laboratory, Shanghai, China
3The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
4Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
5Liangzhu Laboratory, Zhejiang University, Hangzhou, China
6These authors contributed equally
7Lead contact

*Correspondence: haishuai.wang@zju.edu.cn (H.W.), shenningzju@zju.edu.cn (N.S.)
https://doi.org/10.1016/j.crmeth.2024.100733
MOTIVATION Gene fusion is one of the key events driving cancer development. Identifying critical fusion
genes using RNA sequencing (RNA-seq) data has been applied in clinical samples for diagnosis, subtyping,
and targeted therapeutic purposes. However, current gene fusion detection algorithms of RNA-seq are
limited by their lack of sensitivity, making it difficult to apply them to low-read-depth data, for example in
single-cell and/or clinical contexts.
SUMMARY
Here, we present Anchored-fusion, a highly sensitive fusion gene detection tool. It anchors a gene of interest,
which often involves driver fusion events, and recovers non-uniquematches of short-read sequences that are
typically filtered out by conventional algorithms. In addition, Anchored-fusion contains a module based on a
deep learning hierarchical structure that incorporates self-distillation learning (hierarchical view learning and
distillation [HVLD]), which effectively filters out false positive chimeric fragments generated during
sequencingwhilemaintaining true fusion genes. Anchored-fusion enables highly sensitive detection of fusion
genes, thus allowing for application in cases with low sequencing depths. We benchmark Anchored-fusion
under various conditions and found it outperformed other tools in detecting fusion events in simulated data,
bulk RNA sequencing (bRNA-seq) data, and single-cell RNA sequencing (scRNA-seq) data. Our results
demonstrate that Anchored-fusion can be a useful tool for fusion detection tasks in clinically relevant
RNA-seq data and can be applied to investigate intratumor heterogeneity in scRNA-seq data.
INTRODUCTION

Chromosomal translocations, deletions, and other structural var-

iations can result in the fusion of partial sequences from two

genes, which creates a novel chimeric gene. This occurrence

is known as gene fusion, which can lead to the creation of

abnormal transcripts or proteins during subsequent biological

processes.1 Fusion genes play a crucial role in the occurrence

and development of cancer and are often utilized for cancer

diagnosis and classification. For example, the BCR-ABL1 fusion

gene encodes a chimeric protein that induces the development

of chronic myeloid leukemia (CML).2 Tyrosine kinase inhibitors

that specifically target BCR-ABL1 fusion,3 such as imatinib,4

are the standard therapy for CML. The TMPRSS2-ERG gene

fusion is a predictive biomarker for patients with prostate cancer

and plays a critical role in evaluating the characteristics and
Cell Reports Methods 4, 100733
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prognosis of the disease.5 Neurotrophic tropomyosin kinase re-

ceptor (NTRK).

(NTRK) gene fusions have been reported in at least 34 cancer

types and are considered biomarkers for predicting drug resis-

tance and survival.6 The small-molecule inhibitor larotrectinib7

provides a targeted treatment option for NTRK gene fusions pre-

sent in various cancer types. Targeted therapy drugs for fusion

genes have been approved and widely used in clinical practice.

Consequently, gene fusion events have been extensively em-

ployed as biomarkers in tumor classification, grading, prognosis

evaluation, and therapeutic guidance for patients with cancer.

Several bioinformatics tools have been developed to detect

gene fusion events de novo in transcriptome sequencing

(RNA sequencing [RNA-seq]) data.8–12 However, compared to

traditional methods such as fluorescence13 in situ hybridization

(FISH) and quantitative real-time PCR (real-time qPCR),14 such
, March 25, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:haishuai.wang@zju.edu.cn
mailto:shenningzju@zju.edu.cn
https://doi.org/10.1016/j.crmeth.2024.100733
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crmeth.2024.100733&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Workflow of Anchored-fusion

(A) Anchored-fusion workflow to identify fusion genes and their fusion breakpoints, including identifying potential fusion gene candidates, determining fusion

gene breakpoints, training the discrimination model, filtering out artificial chimeric reads, and, finally, confirming the final fusion gene and its breakpoints.

(B) The framework of the hierarchical view learning and distillation (HVLD) model used by Anchored-fusion consists of embedding layers, local blocks, and a

global block. It also incorporates self-distillation learning, which involves using the output of the global block to guide the output of local blocks.

(legend continued on next page)
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fusion detection is limited in sensitivity, which hinders its clinical

applications.15 Furthermore, these bioinformatics methods face

challenges when applied to single-cell RNA-seq (scRNA-seq)

data with low sequencing depth, the primary method for unrav-

eling cellular heterogeneity.

Sequence homology is an important reason for the low detec-

tion sensitivity of existing fusion detection tools. Sequence ho-

mologies are widespread in the human genome, resulting in

RNA read pairs potentially mapping to multiple locations. Most

fusion gene detection tools exclude data from these multi-map-

ping read pairs, which poses a long-standing challenge in de-

tecting fusion events involving sequence homology. Another

widely accepted challenge is to effectively eliminate false posi-

tives. During library preparation and second-generation

sequencing, accidental ligation of amplicons may happen, lead-

ing to the creation of artificial chimeric reads. These reads might

bemistakenly identified as fusion genes by the analysis tools, re-

sulting in false positive fusion evidences.16 However, implement-

ing stricter hard filtering to avoid false positives may further

reduce the sensitivity of detecting true fusions.17

To address the challenges mentioned above, we present a

fusion gene detection algorithm named Anchored-fusion (Fig-

ure 1). Anchored-fusion enables sensitive detection by

anchoring a user-specified gene of interest and controls false

positives through a deep learning framework using the hierarchi-

cal view learning and distillation (HVLD) architecture. We bench-

marked Anchored-fusion against other methods in several con-

ditions, including simulated fusion gene transcriptomic data,

real bulk RNA-seq (bRNA-seq) data, and scRNA-seq data. The

benchmark results demonstrate that Anchored-fusion is highly

sensitive in detecting fusion genes. As a result, Anchored-fusion

can serve as a valuable tool with clinical application to fusion

detection in shallow sequenced bulk and scRNA-seq data.

Anchored-fusion software is available at https://github.com/

ShenLab-Genomics/Anchored-Fusion.

RESULTS

Anchored-fusion overview
Anchored-fusion (Figure 1A) detects fusion events involving a

user-specified gene of interest with high sensitivity. Firstly, the

paired-end reads from the test sample are aligned to the

‘‘anchored’’ gene X. The process of anchoring maximally pre-

serves all reads that may have been transcribed from anchored

gene X, thus ensuring high sensitivity in detecting fusion genes.

In contrast, existing tools mostly align against the whole genome

or transcriptome, which often leads to compromised sensitivity

due to sequence homology. Subsequently, Anchored-fusion se-

lects the paired-end reads, whichwere partially matched to gene

X, and aligns the unmatched part against the genome to search

for the candidate partner gene set Y. Next, a refined alignment is

performed on the anchored gene X and the potential fusion gene

set Y to identify fusion breakpoints. Finally, instead of using a
(C) Chromosome 22 and chromosome 9 fuse to generate the BCR-ABL1 fusion

sequence on chromosome 5. Some supporting evidences have been excluded b

(D) The DUX4 gene is composed of D4Z4 repeat sequences and is also present
supporting read threshold to filter as most methods do,

Anchored-fusion incorporates a model with a deep neural

network called the HVLDmodel to filter out false positive fusions

that may be caused by artificial factors during the experimental

process (Figures 1B and S1). The anchoring approach enables

highly sensitive detection of supporting reads for fusion events,

while the HVLD deep learning framework effectively filters out

false positive fusion events customized to the input data, which

allows the tool to maintain highly sensitive detection of fusion

genes with a small number of supporting evidences.. Notably,

the HVLD model distinguishes true fusion reads from noise and

artifacts based solely on fusion sequence features, without

requiring other features such as read counts.

We tested fusion genes with existing detection challenges

caused by sequence homology. For example, the classical

BCR-ABL1 fusion gene contains a 47 bp short homologous

sequence with chromosome 5 near its fusion breakpoint, which

causes some supporting evidences at that location to be incor-

rectly matched or filtered out due to multiple alignments

(Figures 1C and S2). In another example, fusion events involving

the DUX4 gene with different fusion partners have been reported

to drive the occurrence of cancer.18–20 The DUX4 gene is located

within a region of macrosatellite repeats with each 3.3 kb repeat

unit called D4Z4 in the subtelomere region of chromosome 4.

This region contains dozens of D4Z4 copies and contains a sig-

nificant number of highly homologous sequence matches

throughout the genome. As a result, the supporting sequencing

reads of the DUX4 fusion gene are matched to hundreds of loci,

leading to few supporting evidences or even the erroneous

removal of the fusion event (Figures 1D and S3). These problems

have long been a challenge in the design of fusion gene detection

algorithms.11 To overcome these challenges, Anchored-fusion

utilizes an anchoring step that retains reads with sequence ho-

mology. Additionally, the HVLD module is used to dynamically

filter out false positives based solely on sequence features, inde-

pendent of the number of supporting evidences. Thus,

Anchored-fusion achieves the highest sensitivity among all

competing methods.

Anchored-fusion incorporates a hierarchical self-
distilling deep learning framework
To eliminate false positives while maintaining true fusion genes

with few supporting reads, Anchored-fusion incorporates a

module with an HVLD network to filter artificial fusion reads

based on sequence features alone. HVLD has a hierarchical

structure that integrates both local and global information of

the sequence, with a self-distillation learning framework to cap-

ture useful features. Previous studies have suggested that short

sequences on chimeric sequences exhibit distinguishing fea-

tures between artificially and naturally occurring fusion se-

quences. For example, natural fusion sites often exhibit splicing

site characteristics, while some specific sequences are more

likely to be present in fusion sequences generated by PCR
gene. The sequence near the fusion site of the BCR gene has a homologous

ecause they are aligned to the homologous sequence.

on chromosomes 10, 22, Y, etc., with hundreds of copies.
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misannealing and erroneous extension.9,12,16 Thus, we designed

a local information extraction module based on 1D convolution

to extract local sequence features. We also incorporated a

global block with multi-head self-attention21 to capture the

sequence features that are correlated but spatially distant. To

further enhance the predictive performance, we integrated

self-distillation learning.22 The self-distillation learning is de-

signed to reduce the interference of noise on the shallow neural

network and improve the model’s generalization capability. In

summary, we developed a hierarchical deep learning model

called HVLD that can dynamically capture both local and global

information for the classification of true or false fusion genes.

Before we evaluated the full model, we first evaluated the abil-

ity of the HVLD model to discover artificially chimeric reads. We

selected six bRNA-seq datasets from cancer cell lines of K562,

TE441T, NALM6, NCI-H660, NCIH3122, and KM12. Additionally,

we included two scRNA-seq datasets: one from the K562 cell

line and the other from a clinical cohort of patients with multiple

myeloma (MM). For each dataset, we selected chimeric reads

from the input dataset to generate negative samples, assuming

these chimeric reads depict the characteristics of artificially false

fusions in the dataset. We believe this is a reasonable assump-

tion since real fusion events produce very few chimeric reads,

if any, and the vast majority of chimeric reads in the dataset

are generated for artificial reasons. For all test cases, we took

the real fusions downloaded from Pan-Cancer Analysis of Whole

Genomes as positive samples (Figure S4).

We trained and evaluated the ability of HVLD and other

competing models to distinguish between false and true fusion

on the eight datasets downloaded. The positive and negative

samples were generated through the above methods. We per-

formed a random split of the total set into the training-validation

set and the test set, with a 7:3 ratio. To mitigate model bias, we

ensured that both sets contained an equal number of positive

and negative samples for training and testing. For performance

evaluation, accuracy, area under the curve (AUC), precision-

recall AUC (PRAUC), precision, and recall were all applied as

evaluation metrics. Furthermore, we compared the HVLD model

with four existing methods: the bidirectional long short-term

memory (bi-LSTM) model used in scFusion,12 the Transformer

model,21 the multi-layer perceptron (MLP) model, the support

vector machine (SVM) model, and our model framework without

distillation learning (HVL).

Our HVLD model outperformed multiple machine learning and

deep learning models across all metrics. As shown in Figure 2, in

the bRNA-seq dataset, the average accuracy of our self-distilla-

tion model was 82.1% (maximum: 83.4%, median: 82.1%, min-

imum: 80.8%). Compared to the suboptimal Transformer model,

our model HVLD achieved an average improvement of 8.85% in

accuracy (with a maximum of 9.95%, a median of 9.05%, and a

minimum of 7.40%). Furthermore, compared to HVL, HVLD

achieved an average improvement of 0.75% (with a maximum

of 1.27%, a median of 0.68%, and a minimum of 0.38%) on

the bRNA-seq dataset. Similarly, in scRNA-seq datasets of pa-

tients with MM and the K562 cell line, HVLD also achieved the

best performance with AUC values of 94.5% and 91.0%, repre-

senting improvements of 4.80% and 5.45% compared to the

Transformer model, respectively. This phenomenon can be
4 Cell Reports Methods 4, 100733, March 25, 2024
attributed to the following reasons: (1) HVLD, which combines

1D convolution and Transformer, is capable of simultaneously

discovering short feature sequences of both natural and artificial

fusion events, as well as capturing the relationships between

these feature sequences. (2) The distillation learning part allows

the shallow model to better capture discriminative features,

thereby further enhancing the deep model’s ability to distinguish

between these two types of fusion events.
Anchored-fusion detects fusion genes from simulated
RNA-seq data with high sensitivity
To comprehensively evaluate the performance of Anchored-

fusion, we benchmarked Anchored-fusion against other widely

used tools including STAR-Fusion,9 FusionInspector,10

FusionCatcher,8 and Arriba11 using simulated reads for six fusion

genes. The six fusion genes, namely BCR-ABL1, CIC-DUX4,

DUX4-IGH, TMPRSS2-ERG, EML4-ALK, and TPM3-NTRK1,

which are known as driver mutations of the previouslymentioned

six cell lines, respectively, were supported by ample research

evidences. Due to different fusion breakpoints between fusion

partners, each pair of fusion partners may form several different

fusion genes. We chose the fusion gene that is supported by

experimental evidence and exhibits the highest expression level

in its corresponding cell line for simulation. We used the wgsim23

to generate fusion transcripts with different expression levels.

The simulated fusion transcripts were then added to the RNA-

seq data of the GM12878 cell line. We simulated different levels

of expression for the fusion transcripts by varying the coverage,

resulting in a total of seven different expression levels ranging

from a base coverage of 128 to 2.

Anchored-fusion was able to find the most supporting evi-

dences in both spanning and split reads in almost every fusion

gene test case (Figure 3). Additionally, compared to other tools,

Anchored-fusion had a lower coverage rate limit for identifying

fusion genes. These results indicate that Anchored-fusion is bet-

ter at capturing supporting evidences compared to other tools,

due to its remarkably high sensitivity. Thus, Anchored-fusion

can detect fusion genes with low expression and can be applied

to RNA-seq samples with shallow sequencing. Furthermore,

Anchored-fusion provided a balanced combination of spanning

and split supporting evidences simultaneously, which contrib-

uted to the robustness of its results. In contrast, only

FusionCatcher among the other tools guaranteed the provision

of both types of supporting evidences. However, it showed a

much higher requirement for coverage rate.

Among all methods, Anchored-fusion demonstrated the best

detection capability in the case of BCR-ABL1 and CIC-DUX4. In

the test for another fusion gene, DUX4-IGH, only Anchored-

fusion and FusionCatcher detected this fusion gene, where

Anchored-fusion achieved only one-fourth of the detection limit

of FusionCatcher. Taken together, Anchored-fusion outper-

formed other tools in the detection of fusion genes with homol-

ogous sequences. This advantage can be attributed to the fact

that other tools may discard or misalign sequencing reads with

multiple mapping against the genome whereas Anchored-

fusion retains them completely through the anchoring

approach.



Figure 2. Performance of differentmachine learning and deep learning algorithms in distinguishing false fusion genes from true fusion genes

across 6 test bRNA-seq datasets

(A) Indicator values of different algorithms on various bRNA-seq datasets.

(B) AUC plots of different algorithms on various scRNA-seq datasets.
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Anchored-fusion demonstrates high sensitivity in
detecting fusion genes in cancer cell line RNA-seq data
Next, we compared Anchored-fusion against other tools in

bRNA-seq data of previously mentioned cell lines with varying

sequencing depths. By progressively randomly downsampling

half of the original cancer cell line bRNA-seq data, we simulated

the gradient dilution to evaluate the detection sensitivity of

different methods. In this experiment, we performed a total of

7 subsampling iterations, resulting in eight different datasets

with varying sequencing depths, including the original data.

Some pairs of fusion partners form multiple fusion genes with

different fusion breakpoints, including DUX4-IGH in the NALM6

cell line, TMPRSS2-ERG in the NCI-H660 cell line, and TPM3-

NTRK1 in the KM12 cell line. For fusion genes with multiple

fusion transcripts identified, we selected the fusion transcript
with the highest expression level to display in the results. The

fusion breakpoints identified by each tool among the fusion part-

ners are listed in Table S1.

Figure 4 showed that Anchored-fusion detected fusion genes

with high sensitivity in cancer bRNA-seq datasets. Except for the

TMPRSS2-ERG gene with a relatively low expression, Anchored-

fusion successfully detected the corresponding fusion genes

even when the datasets were subsampled 7 times with less than

1 M sequence depth. In contrast, none of the other tools were

able to achieve this. The remarkable performance of Anchored-

fusion in real cell line data demonstrates its sensitivity in the detec-

tion of fusion genes in reality. Because of the high sensitivity,

Anchored-fusion is applicable in situations with lower sequencing

depth, allowing for cost savings and enabling the detection of

fusion genes with low expression levels.
Cell Reports Methods 4, 100733, March 25, 2024 5
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As an example, Anchored-fusion, FusionCatcher, and STAR-

Fusion have detected the DUX4-IGH fusion gene. However,

both Anchored-fusion and FusionCatcher reported that the

breakpoint of DUX4 is located at nucleotide position 1224 within

its transcript sequence (NM_001306068.3), while STAR-Fusion

identified the DUX4 breakpoint at position 1511. The breakpoint

identified by Anchored-fusion and FusionCatcher aligns with the

DUX4-IGH fusion reported by Tian et al.,24 where the last 16

amino acids of the DUX4 protein were replaced by IGH. Thus,

the accurate detection of fusion genes involving DUX4 by

Anchored-fusion proves its advantage in identifying fusion

events involving sequence homology.

Anchored-fusion detected BCR-ABL1 fusion in the K562
cell line scRNA-seq
scRNA-seq has revolutionized our understanding of cellular het-

erogeneity and has beenwidely used for exploring disease mech-

anisms and finding personalized therapeutic approaches. Howev-

er, scRNA-seq often suffers from low sequencing depth, and the

sensitive detection of fusion genes under such low-sequencing

conditions remains a challenge for existing fusion gene detection

tools. Among the current gene detection tools, only scFusion12

has been shown to have the ability to detect fusion genes in full-

length-transcript-based scRNA-seq datasets.

To evaluate the fusion gene detection capability of Anchored-

fusion in scRNA-seq data, we tested a K562 cell line Smart-seq2

dataset consisting of 350 cells, with an average of 1.3 M reads

per cell. The K562 cell line harbors the BCR-ABL1 fusion gene.

In this dataset, Anchored-fusion successfully detected 35 cells

containing the BCR-ABL1 fusion gene (Figure 5A). In compari-

son, other methods reported lower numbers of cells with BCR-

ABL fusion (Figure 5B).

To further elucidate why Anchored-fusion detects more single

cells with BCR-ABL1 fusion genes compared to other tools, we

examined the supporting evidences detectable in this dataset.

Specifically, wemapped the sequences of all cells in this dataset

to the reference sequence of the BCR-ABL1 fusion gene and

counted two types of supporting evidences. In 42 cells, we iden-

tified both spanning and split reads for BCR-ABL1, of which

83.3% were discovered by Anchored-fusion (Figure 5C). Subse-

quently, we classified these cells into categories of very low (1–2

supporting evidences), low (3–4 supporting evidences), moder-

ate (5–6 supporting evidences), high (7–8 supporting evidences),

and very high (9 ormore supporting evidences) based on their to-

tal supporting evidences count. As depicted in Figure 5C,

Anchored-fusion detected almost all cells apart from the very

low category, of which it identified two-thirds of the cells (10

out of 15). In comparison, the suboptimal tools Arriba and

scFusion only detected 2 and 3 cells of the very low category,

respectively, whereas STAR-Fusion, FusionInspector, and

FusionCatcher failed to detect cells in this category. Taken
Figure 3. Benchmark for fusion gene detection using simulated fusion

Wesimulated fusion gene bRNA-seq data with varying coverage and appliedmult

x axis represents the ratio of simulated transcript base pairs to fusion gene base

(A)–(F) represent specific fusion genes, and the fusion breakpoints are annotated w

the y axis represents the logarithmbase 2 of the quantity of evidences. Themiddle se

evidences. The y axis indicates the ratio of detected supporting evidences for eac
together, Anchored-fusion demonstrates ultra-high sensitivity

compared to other tools in detecting fusion genes, especially

for cells with low levels of supporting evidence. The high sensi-

tivity of Anchored-fusion helps facilitate downstream analysis

such as analyzing intratumor heterogeneity.

Anchored-fusion accurately detected the NSD2-IGH
fusion gene in patients with MM
To further demonstrate the application of Anchored-fusion to pa-

tient stratification in clinical scRNA-seq data, we analyzed an

MM scRNA-seq dataset from Jang et al.,25 which comprises

597 individual cells from 15 patients with MM. Our analysis

focused on the NSD2-IGH fusion gene, which is caused by chro-

mosome 4 and 14 translocations, written as t(4; 14). Previous

studies have indicated that this fusion event can lead to NSD2

overexpression in 15%–20% of patients with MM, and these pa-

tients were reported to have lower survival rates and to exhibit

poor response to cytotoxic chemotherapy.26 Using the FISH

method, Jang et al. have revealed that three out of fifteen pa-

tients (including two patients with refractory MM, RRMM1 and

RRMM2, and one patient with smoldering MM, SMM0) have

t(4; 14) translocation. Their further gene expression analysis re-

vealed that the cells of patients with t(4; 14) had high-risk

characteristics.25

We successfully identified the NSD2-IGH fusion gene with

Anchored-fusion in all of the three patients as reported in the

original study. In total, we identified 99 single cells with the

NSD2-IGH fusion gene in theMMdataset, which were all derived

from the aforementioned three patients (Figure 6A). Specifically,

we detected two distinct breakpoints in NSD2, located at the

464th and 1,091st nucleotides of the NSD2 transcript sequence

(NM_133330.3), specifically at positions 1,902,353 and

1,905,943 on chromosome 4, respectively. The fusion gene

with the breakpoint at 1,905,943 is derived from RRMM1 and

RRMM2, and the one with the breakpoint at nucleotide

1,902,353 is derived from SMM0 (Figures 6B and S5).

Next, we plotted all single cells that were detected by

Anchored-fusion as well as those that contained NSD2-IGH reads

but were not detected by Anchored-fusion (Figures 6C and 6D).

The results indicated that Anchored-fusion was able to detect

92.5%of the total NSD2-IGH-positive cells. Among all single cells

from the three NSD2-IGH-positive patients, Anchored-fusion

identified 60.3% of them with NSD2-IGH, accounting for 32.6%,

59.5%, and 77.6% in the three patients, respectively. In contrast,

other methods have identified fewer cells with the fusion gene

compared to Anchored-fusion (Figure 6E). Of note, Anchored-

fusion identified many more fusion-containing cells in patient

RRMM1 than other methods. This is consistent with Jang

et al.’s analysis of its single-cell gene expression, which suggests

a high risk.25 In contrast, scFusion and Arriba did not detect

NSD2-IGH in this patient. Anchored-fusion identified the highest
transcripts

iple fusion detection tools to identify supporting evidences for fusion genes. The

pairs.

ith GRCh38. The left section of the subgraph depicts all support evidences, and

ction corresponds to spanning evidences,while the right section represents split

h tool compared to the maximum supporting evidences among them.
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Figure 5. Benchmark of BCR-ABL1 fusion detection in K562 scRNA-seq dataset

(A) Uniformmanifold approximation and projection (UMAP) visualization of all K562 scRNA-seq data, with cells containing the BCR-ABL1 fusion gene detected by

Anchored-fusion highlighted.

(B) Bar chart showing the number of cells containing the BCR-ABL1 fusion gene detected by Anchored-fusion and five other methods in the K562 single-cell

dataset.

(C) UMAP visualization plot of all cells in the K562 scRNA-seq data. All cells containing the BCR-ABL1 fusion gene are circled, and the highlighted ones indicate

those detected by Anchored-fusion tool. We identified the cells containing the BCR-ABL1 fusion gene with its reference sequence.

(D) The number of single cells with the BCR-ABL1 fusion gene in different cell types detected by various tools. The single cells are categorized based on the

amount of supporting evidences, and the bubble size represents the number of detected cells.
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number of cells with this fusion gene in two other patients as well.

In summary, these findings suggest that Anchored-fusion can

serve as a valuable tool for single-cell fusion gene detection

because of its high sensitivity.

DISCUSSION

In this study, we present Anchored-fusion for sensitive detection

of fusion genes. Anchored-fusion achieves highly sensitive

fusion detection by anchoring a fusion gene of interest. Within

the Anchored-fusion framework, we developed a deep learning

module that effectively filters out artificially generated fusion

reads using only sequence information. The evaluation of fusion

gene discovery acrossmultiple RNA-seq datasets demonstrates

that Anchored-fusion effectively addresses the challenge of de-

tecting fusion genes from genes with sequence homology. Addi-
Figure 4. Benchmark results of fusion gene detection using bRNA-seq

Each tool detects the supporting evidences of fusion genes using real cell line trans

the labels correspond to subsampling ranges of 0 � 1
128, respectively.

(A)–(F) correspond to the detection results of a specific fusion gene in the cell line,

subgraph depicts all support evidences, and the y axis represents the logarithm b

evidences, while the right section represents split evidences. The y axis indicat

maximum supporting evidences among them.
tionally, the high sensitivity allows Anchored-fusion to detect

fusion genes at lower expression levels or sequencing depths.

In particular, we demonstrate the advantage of applying

Anchored-fusion to analyze full-length-based scRNA-seq data.

Previous studies suggest that the number of fusion partners

for each gene follows a power-law distribution, meaning that

the majority of genes involved in fusion have only one or two

fusion partners while a small number of genes have a large num-

ber of fusion partners. These genes that participate in a large

number of fusion events are called central genes.27 For example,

in non-small cell lung cancer, it has been discovered that the ALK

gene has over 90 fusion partners.28 The prevalence of fusion

events involving NTRK genes in solid tumors is as high as 1%

and has been discovered in at least 34 types of cancer.6 Drugs

targeting central genes have been proven effective against can-

cer driven by their fusion genes. As an example, TRK inhibitors
of cancer cell lines for 5 different tools

criptome data. The x axis represents the number of transcripts (inmillions), and

and the fusion breakpoints are annotated with GRCh38. The left section of the

ase 2 of the quantity of evidences. The middle section corresponds to spanning

es the ratio of detected supporting evidences for each tool compared to the

Cell Reports Methods 4, 100733, March 25, 2024 9



Figure 6. Fusion detection using different tools for scRNA-seq dataset from a clinical cohort of patients with multiple myeloma

(A) UMAP visualization ofMMscRNA-seq data. The single cells identified by Anchored-fusion as having the NSD2-IGH fusion gene in each patient are highlighted.

(B) UMAP visualization of MM scRNA-seq data. The single cells identified by Anchored-fusion with different breakpoints of NSD2 are highlighted.

(C) UMAP visualization of MM scRNA-seq data. All cells containing NSD2-IGH fusion gene are circled. The highlighted cells indicate those detected by Anchored-

fusion tool from three NSD2-IGH-positive patients. We identified the cells containing the NSD2-IGH fusion gene with its reference sequence.

(D) The percentage of cells positive for NSD2-IGH detected by Anchored-fusion among all NSD2-IGH-positive cells. In the lower part of the image are the indices

of the number of the support evidences per 1 million reads in NSD2-IGH-positive cells detected by Anchored-fusion.

(E) Bar charts showing the total number of cells containing the NSD2-IGH fusion gene detected by Anchored-fusion and five other methods in the MM single-cell

dataset, along with the number of cells detected in each patient.
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such as entrectinib and larotrectinib have been shown to be

effective in various NTRK-fusion-positive solid tumor diseases.7

Therefore, it is crucial to accurately and sensitively identify fusion

events involving central fusion genes to guide clinical therapeutic

strategies.

There is widespread sequence homology in the human

genome, which inevitably affects the alignment of RNA-seq

reads. Notably, dozens of known driver fusion genes contain ho-

mologous sequences in the genome. The supporting evidence

for such events, which contain short homologous sequences,

will be discarded by existing algorithms, resulting in a decrease

in the number of detected supporting evidences. Additionally,

existing algorithms often struggle to detect fusion genes when

the sequencing depth or expression level is low. In contrast,

Anchored-fusion retains all the sequencing reads that map or

partially map to the anchored gene, thus gathering all relevant

supporting evidence. This feature supports Anchored-fusion in

discovering key fusion genes with high sensitivity.

The commonly used approach to filter artificial fusion frag-

ments is to set a hard filtering cutoff of supporting reads. Howev-

er, this approach may decrease the sensitivity of the tool. To

address this issue, Anchored-fusion employed a deep learning

framework to exclude false fusion genes using only sequence in-

formation. Artificial fusion sequences often result from acci-

dental connections between PCR products and templates, fol-

lowed by erroneous extensions. Unlike naturally occurring

fusion genes, the fusion sites of artificial fusion products do

not display characteristics of splice sites. Furthermore, certain

sequences, such as polyA and polyT sequences, aremore prone

to mismatch errors. Therefore, considering both global and local

information of the sequence helps distinguish between artificial

and real fusion events.

Single-cell transcriptomics plays an important role in identi-

fying cell types, analyzing cellular heterogeneity, and thereby

revealing the dynamic gene expression and cell fate.29 In prac-

tice, cell- or cluster-type annotation is often performed based

on known marker genes that are specifically expressed in those

cells or clusters.30 Some fusion genes that function as driver

genes in cancer serve as marker genes to distinguish between

normal cells and cancer cells. For example, the BCR-ABL1

gene is the sole definitive marker to differentiate between normal

hematopoietic stem cells and CML stem cells.31 However, previ-

ous methods have often struggled to detect fusion genes due to

the low sequencing coverage in scRNA-seq.32 In contrast,

Anchored-fusion detects fusion genes with high sensitivity in

scRNA-seq data and adapts flexibly to situations where fusion

breakpoints may vary.

Anchored-fusion needs users to provide the anchored gene of

interest for fusion detection. Fusions not involving the anchored

gene cannot be detected. This approach improves detection

sensitivity by compromising the comprehensiveness of de novo

fusion discovery. Compared to other methods that can discover

multiple fusion genes at the same time, Anchored-fusion seems

to perform worse in discovering new fusion genes. However,

fusion genes involving the central gene are more likely to act as

driver events in cancer development, and the high sensitivity of

Anchored-fusion for such genes makes it easier to find these

more important fusion genes. Additionally, in the clinical setting,
it is more cost effective to use PCR to specifically detect target

fusion genes when the fusion genes and fusion sites are known,

as opposed to conducting RNA-seq. Therefore, we recommend

using Anchored-fusion for cases where the other fusion partner

is unknown or the fusion site is unknown. Alternatively, it can be

used to detect fusion genes in RNA-seq data obtained before.

We anticipate that Anchored-fusion can be a useful tool to

analyze bulk RNA-seq and scRNA-seq data from clinical sam-

ples from patients with cancer for cost-effective and efficient

detection. Given the high sensitivity of Anchored-fusion, it can

help to evaluate whether the fusion genes identified by different

methods are real or not. Haas et al. pursued an approach called

‘‘wisdom of crowds,’’ which took the fusion genes found by over

n different methods as true fusions.9 We believe that Anchored-

fusion can be regarded as one of the methods and that its high

sensitivity could potentially aid in the verification of fusion genes

that are challenging to detect. Additionally, the HVLDmodel may

help distinguish true fusion genes from false positives. Moreover,

wemay reevaluate the frequency of different cancer driver fusion

genes in public databases and accurately assess the correlation

between fusion gene expression levels and clinical phenotypes

with extensive application of Anchored-fusion to diverse tumor

types and various cases of cancer.

Limitations of study
Anchored-fusion as implemented requires users to provide the

reference sequence of their target gene. As a result, fusion

genes that do not include the target gene will not be detected.

Additionally, Anchored-fusion can only detect fusion genes

based on paired-end RNA-seq data and cannot be used for sin-

gle-end RNA-seq data or whole-genome or whole-exome

sequencing data.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Cancer cell lines bRNA-seq for K562,

TE441T, NALM6, NCI-H660,

NCIH3122 and KM12

Ghandi et al.33 SRA:SRP186687

K562 cell lines scRNA-seq Gupta et al.34 SRA:SRP291312

Multiple myeloma patients scRNA-seq Jang et al.25 SRA:SRP158590

True fusion genes Aaltonen et al.35 Synapse:syn10003873

Software and algorithms

Anchored-fusion This paper https://doi.org/10.5281/zenodo.10677267 or

https://github.com/ShenLab-Genomics/Anchored-Fusion

scFusion Jin et al.12 https://github.com/XiDsLab/scFusion

STAR-Fusion v1.12.0 Haas et al.9 https://github.com/STAR-Fusion

FusionInspector v2.8.0 Haas et al.10 https://github.com/FusionInspector/FusionInspector

FusionCatcher v1.30 Nicorici et al.8 https://github.com/ndaniel/fusioncatcher

Arriba v2.4.0 Uhrig et al.11 https://github.com/suhrig/arriba
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to andwill be fulfilled by the lead contact, Ning Shen (shenningzju@

zju.edu.cn).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources

table.

d All original code has been deposited at GitHub and is publicly available as of the date of publication. URLs and DOIs are listed in

the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

The framework of Anchored-fusion
To detect fusion events involving the anchored gene X with high sensitivity, Anchored-fusion first maps all paired-end reads to the

reference sequence of the anchored gene X. All reads aligned to gene X are collected, including those aligned to other copies of X or

sequences havemicrohomology with X. This approach maximizes the retention of reads that are potentially transcribed from gene X.

Next, it selects paired-end reads in which only one read can be mapped to the anchored gene X and aligns the remaining unmapped

read to the entire genome. The set of genes they align to is referred to as a potential fusion partner gene set, called Y. Anchored-fusion

removes genes with homologous regions to gene X from the gene set Y, as those genes may be erroneous template matched during

annealing or incorrectly aligned during mapping. Due to its superior performance in terms of RNA-seq mapping accuracy, transcrip-

tome coverage, and efficiency, we have chosen BWA-MEM as the alignment tool.33

Next, Anchored-fusion utilizes the BLAT tool36 to perform local alignment on candidate chimeric reads to accurately predict the

precise location of gene fusion. Candidate fusion genes with uncertain fusion positions are filtered out. The process of searching

for fusion genes considers paired-end reads spanning across fusion sites (referred to as spanning reads) and single reads containing

fusion sites (referred to as split reads) as supporting evidences for the fusion gene. Candidates with a significantly imbalanced num-

ber of spanning and split reads will be filtered out. Finally, a deep neural network called HVLD is used to predict the probability that
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each candidate fusion gene is naturally occurring, and genes with a low probability (less than 0.1) will be filtered out. We train a de-

cision model to learn the distribution of the artificial fusion genes of the current dataset for each dataset inputted by users. Given

almost all of the chimeric reads obtained from the inputted dataset are artificial, we regard all of them as false fusion and process

them into negative samples for training and testing the HVLD model. By comparing these artificial samples and real fusion samples,

which are downloaded from PCAWG, our HVLDmodel can learn the distribution difference between the real fusions and false fusion

of the current dataset. If the dataset provided by the user is too small, we recommend using the default model parameter provided on

our GitHub.

HVLD model inference
We have designed a deep neural network called HVLDwith a hierarchical structure from local to global, based on 1D convolution and

multi-head self-attention,21 to learn to distinguish between artificial and natural fusion sequences. Additionally, we employed the

technique of self-distillation learning22 to enhance the feature extraction capability of the shallow network. First, the fusion sequences

containing fusion breakpoints are encoded into sequence matrices using the one-hot encoding method. Then, these matrices pass

through the embedding module, local information extraction module, and global information extraction module sequentially. Except

for the embeddingmodule, eachmodule outputs the sequence-splitting result through a classifier following it. Empirically, we choose

the output of the last module serving as the final classification probability for the sequence.

(1) Embedding block

The encoding layers encode the sequence represented by ‘A’, ‘T’, ‘G’, and ‘C’, as well as the splitting breakpoints ‘H’, into a

sequence matrix using one-hot encoding. Then, it is put into a fully connected layer (FC layer). The FC layers expand the feature

dimension of each unit in the sequence from 5 to 256 dimensions.

(2) Local sequence information extraction blocks

The local sequence information extraction block consists of two 1D convolutional blocks, each has a kernel of size 3. These con-

volutional operations are performed to extract local features from the sequence. Then, we use a max pooling layer to reduce redun-

dancy and highlight significant features. Finally, the extracted local information of the sequence is passed to the next block. At the

same time, the block’s classifier outputs the sequence classification probability based on the current block’s output.

(3) Global information extraction block

The global information of the sequence is integrated with the Transformer encoder,21 which utilizes a multi-head attention mech-

anism to capture the global dependencies within the sequence. Based on the relationships between the current unit and other units

including itself, the multi-head attention layer integrates information from all units to generate new features for the current unit. This

block not only receives the local information extracted from the previous module but also integrates the local information based on

their relevance. By doing so, it effectively captures the global information of the sequence, enabling more accurate sequence clas-

sification. The global information obtained from this block is also used to generate sequence classification probability through the

classifier. However, unlike previous modules, this global information serves as the final output of the whole model.

(4) Self-distill learning

Traditional distillation learning involves training a complex model as a teacher model and transferring knowledge from it to a rela-

tively simpler model, known as the student model. The goal is to make the student model’s output as close as possible to that of the

teacher model. Through distillation learning, the complexity of the student model is reduced while maintaining its performance com-

parable to the complex model.37 In self-distillation learning, both the deep and shallow networks are part of the same model. The

deep network acts as the teacher model, while the shallow network serves as the student model. Bymaking the output of the shallow

network as close as possible to the output of the deep network, the knowledge learned by the deep network is transferred to the

shallow network. Self-distillation learning can reduce the interference of noise on the shallow neural network, enhance the deep net-

work’s ability to extract discriminative features and improve the model’s generalization capability. As a result, it leads to better pre-

dictive performance.22

Self-distillation learning employs two types of labels to train the shallow neural network: the ground-truth labels of the sequence

itself (hard labels) and the output distributions of the classifier in the deepest layer of the neural network (soft labels), which in our work

specifically refers to the output distributions of the Global information extraction block. The loss between the hard labels and all clas-

sifiers is calculated with cross-entropy loss (CE loss), and the loss between the soft labels and the shallow classifier is computed with

Kullback-Leibler divergence loss (KL loss). Therefore, the loss function of the HVLD model can be represented as follows:

Loss = a
Xn� 1

i

CEðqi; yÞ + ð1 � aÞ
Xn� 1

i

kdðqi; yÞ + CEðqn; yÞ (Equation 1)
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Where qi represents the output of the i-th classifier, n is the number of classifiers, and y is the sequence label. And a is the hyper-

parameter used to balance the two types of losses.

Data for HVLD generate process
We utilized six Cancer Cell Line Encyclopedia (CCLE) cancer cell line bRNA-seq datasets, namely K562, TE441T, NALM6, NCI-H660,

NCIH3122, and KM12.38 These cell lines have been confirmed by CCLE to harbor the following fusion genes: BCR-ABL1,2 CIC-

DUX4,39 DUX4-IGH,40 TMPRSS2-ERG,41 EML4-ALK,34 TPM3-NTRK1.35 We also collected two scRNA-seq datasets, including

one K562 cell line with 350 cells42 and a clinical multiple myeloma (MM) dataset, including 15 patients and 597 cells.25

We used the subsequences containing fusion breakpoints from real fusion genes and technical artifacts as positive and negative

training samples, respectively. The specific process of obtaining training and testing data is shown in Figure S4. For positive samples:

We downloaded the 3540 fusion genes from Pan-Cancer Analysis of Whole Genomes (PCAWG) for positive samples, which contain

positions of partner gene breakpoints. These fusion genes can be taken as the true golden standard because artificial fusion genes

have been strictly excluded from this dataset.43 For negative samples: We regarded all of the chimeric reads found in the RNA-seq

dataset provided by the user as negative samples. Because in sequencing data, there are ten thousand times more chimeric reads

caused by artificial than ones generated from fusion genes.12 To be specific, first, we used BWA to map all of the RNA-seq reads in

the user’s dataset to the whole genome, and those aligned to two different genes were considered candidate chimeric reads. Sec-

ondly, we aligned the candidates to the whole genome again with BLAT to remove the chimeric reads that were aligned incorrectly in

the first step. Specifically, the reads generated from one gene but mistakenly mapped to two genes with BWA. Thirdly, reads that

were aligned to homologous genes were also filtered out. Finally, we calculated the fusion breakpoint of these chimeric reads

from their alignment position. Based on the breakpoint positions and the genome annotation, we inferred the input sequences of pos-

itive and negative samples for training and testing. The input sequences were combined by two subsequences of each partner gene.

The subsequencewas 100 base pairs long, starting from or ending at the fusion breakpoint, depending onwhether the gene it derived

from was located at the 50 end or the 30 end of the fusion gene. To explicitly include information about the fusion breakpoints, we

inserted a fusion point marker ’H’ between two subsequences of partner genes, resulting in a total length of 201 bp for the input

sequence.

To avoid potential harmful impacts, all negative training samples containing anchored gene X were removed. While building the

positive training and testing sets, we included all positive samples from the PCAWG fusion gene dataset. To maintain a balanced

number of positive and negative samples, we randomly selected 3,540 chimeric reads in all from the negative samples for training

and testing. Randomly selecting negative samples and using the entire set for training showed no significant differences in perfor-

mance. (Figure S6). We randomly divided the total samples into a training-validation set, which comprised 70% of the data, and a

testing set, which comprised 30% of the data. The training-validation set was used for model building and hyperparameter optimi-

zation, while the testing set was used for model evaluation. Then, we divided the training-validation set samples randomly into five

equal parts and used each part as the validation set while using the remaining parts as training sets alternately. We saved the best

parameters of the model when it achieved the best AUC score among the five validation sets. We repeated this process ten times,

taking the mean of the results as the final outcome.

Simulation setup
We used six fusion genes BCR-ABL1,2 CIC-DUX4,39 DUX4-IGH,40 TMPRSS2-ERG41, EML4-ALK,34 TPM3-NTRK135 for simulation.

We downloaded the transcription sequence reference files of these genes fromNCBI (https://www.ncbi.nlm.nih.gov/) and aligned the

RNA-seq reads from cancer cell lines K562, TE441T, NALM6, NCI-H660, NCIH3122 and KM1238 to these references. These cell lines

have been confirmed by CCLE to harbor the above fusion genes. Through this approach, we identified the fusion breakpoints on the

transcript sequences for these fusion genes. Next, we concatenated half of the reference sequences involved in the fusion as fusion

partners to construct the transcriptional reference sequence for the fusion gene. We used wgsim23 to simulate the RNA-seq of these

fusion genes from their transcription reference and set the length of short reads as 101bp. For each gene, we set seven levels of the

simulated reads count, which range from 2 to 128. The number of simulated reads for a transcript gene can be obtained bymultiplying

the reference length by the simulated level and dividing it by the length of the short reads. It can be represented as follows:

Simulatedreads0count =
ðTranscriptlength3SimulatedlevelÞ

shortreadslength
(Equation 2)

The simulated level can be regarded as the base coverage of the fusion genes. Finally, we combined these simulated readswith the

RNA-seq samples from GM12878 as the test data.

Brief description of competing methods
We used STAR-Fusion (v1.12.0), FusionInspector (v2.8.0), FusionCatcher (v1.30), and Arriba (2.4.0) as bRNA-seq competing

methods. Together with scFusion, these methods formed the scRNA competition method.

STAR-Fusion bases on the STAR aligner to map the pair-end RNA-seq reads to the whole genome. STAR44 is a fast method that

can align each part of the chimeric sequences to the appropriate position in the whole genome using sequential maximummappable

seed search. Those spanning reads and split reads discovered by STAR are inputted into STAR-Fusion as support evidences.
e3 Cell Reports Methods 4, 100733, March 25, 2024
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Subsequently, STAR-Fusion9 utilizes a series of complex filters to discard fusion genes with homologous partners or with low sup-

porting evidences. FusionInspector10 is used to evaluate a specified set of candidate fusions. The STAR-Fusion method uses the

FusionInspector tool to further assess the candidate fusion genes it outputs. To evaluate the quality of the input fusion genes,

FusionInspector assigns them to previously known clusters according to their expression levels and sequence features. These clus-

ters are composed of known true fusion genes and false ones, which are clustered based on their expression levels and sequence

features. FusionInspector describes the characteristics of the input fusion genes with the mutual features of the assigned clusters,

such as quality, oncogenicity, and other relevant information. Arriba11 also utilizes the alignment results from STAR and applies

expression filtering and homology filtering. Additionally, Arriba provides a blacklist of recurrent false fusion genes and a whitelist

of known true fusions, which are used to filter out false fusions or rescue true fusions respectively. FusionCatcher8 uses four aligners,

Bowtie, BLAT, STAR, and Bowtie2, to confirm fusion genes simultaneously. FusionCatcher allows reads to be aligned to intronic re-

gions to discover fusion genes containing intronic sequences, but this approach also leads to higher false positive rates. scFusion is a

fusion gene detection algorithm specifically designed for single-cell data. It aims to improve the precision of fusion gene detection.

scFusion utilizes zero-inflated negative binomial (ZINB) distributions to calculate the expression distribution range of false fusions in

single-cell sequencing. True fusion genes always exhibit higher expression levels compared the false ones, which allows them to be

identified based on this distribution. In addition, scFusion12 also employs deep learning-based methods to filter out false fusions. We

have provided the versions and download links for these methods in the STAR Methods: key resources table.

BRNA-seq and scRNA-seq analysis
We used STAR-Fusion (v1.12.0), FusionInspector (v2.8.0), FusionCatcher (v1.30), and Arriba (2.4.0) for bRNA-seq. For scRNA-seq,

we added scFusion in the test, which can only be used to detect scRNA-seq data and cannot be applied to bRNA-seq data. All of

themwere run on the default parameters. Except for scFusion, all tools, including Anchored-fusion, searched for fusion genes in each

cell’s RNA-seq data in the same way as in bRNA-seq data. The results from all cells were then aggregated to obtain the final result.

The parameter details of the bi-LSTM
We used the same model and parameters as scFusion.12 Specifically, the sequences were represented by five different

5-dimensional feature vectors. Next, they were passed on to the three sequence-to-sequence bi-LSTM layers (with 32,64 and

128 bi-LSTM units, respectively) and further to a sequence-to-one bi-LSTM layer with 256 bi-LSTM units. Finally, the outputs of

the deepest bi-LSTM layer were fed to two fully connected layers followed by a softmax layer to produce the softmax probabilities

of the read being classified to chimeric artifacts. The learning rate of it was 0.0001.

The parameter details of encoding the SVM
We referred to the method proposed by Bari et al.45 to convert the input DNA sequence into a feature tensor. Specifically, we rep-

resented the four nucleotides, ‘A’, ‘T’, ‘G’, and ‘C’, as vectors [1,0,0,0], [0,1,0,0], [0,0,1,0], and [0,0,0,1], respectively. The fusion site

was represented as [1,1,1,1]. Additionally, we calculated the nucleotide density feature based on the number and distance of match-

ing nucleotides to the fusion site as follows:

di =
1

1

Xl

j = 1

fðsjÞ (Equation 3)

Where sj is the j � th basic group of the sequence and di represents the nucleotide density of basic group i. l is the length between di

and breakpoint. fðxiÞ =

�
1 if sj = di

0 otherwise
, i = 1;2;3;.; l:

QUANTIFICATION AND STATISTICAL ANALYSIS

In the process of evaluating the performance of HDVL and other models in distinguishing between naturally occurring fusion frag-

ments and artificially created fusion fragments, we selected accuracy (ACC), area under the curve (AUC), precision-recall area under

the curve (PRAUC), precision, and recall as metrics. We employed 5-fold cross-validation to obtain the optimal parameters and eval-

uated themodel’s performance on the test set using these parameters. Specifically, we randomly divided the training dataset into five

subsets. Each subset was used as a validation set in turns, while the remaining four subsets were used for training themodel. The five

subsets were rotated as validation sets, and themodel parameters achieving the best AUC value on the validation set throughout the

entire process were retained. This process was repeated 10 times, and the average value was taken as the final performance metric,

with results showing a variance of less than 0.01.
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