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MOTIVATION Detecting isoform switch events (differential transcript usage) can provide insights into
various disease mechanisms, tissue-specific cell functions, and developmental processes. Frequently, da-
tasets analyzed in these experiments exhibit intricate causal relationships, involving subgroups of patients
and cells experiencing distinct events as well as shared events. We sought to develop a tool that considers
this structural complexity and identifies differential transcript usage events specific to subgroupswithin da-
tasets.
SUMMARY
Differential transcript usage (DTU) plays a crucial role in determining how gene expression differs among
cells, tissues, and developmental stages, contributing to the complexity and diversity of biological systems.
In abnormal cells, it can also lead to deficiencies in protein function and underpin disease pathogenesis.
Analyzing DTU via RNA sequencing (RNA-seq) data is vital, but the genetic heterogeneity in populations
with complex diseases presents an intricate challenge due to diverse causal events and undetermined
subtypes. Although the majority of common diseases in humans are categorized as complex, state-of-the-
art DTU analysis methods often overlook this heterogeneity in their models. We therefore developed SPIT,
a statistical tool that identifies predominant subgroups in transcript usagewithin a population alongwith their
distinctive sets of DTU events. This study provides comprehensive assessments of SPIT’s methodology and
applies it to analyze brain samples from individuals with schizophrenia, revealing previously unreported DTU
events in six candidate genes.
INTRODUCTION

Alternative splicing enables eukaryotic cells to produce a

diverse batch of transcripts and, consequently, proteins from

a single gene. While for some genes, these distinct transcripts

(isoforms) may be used interchangeably, many protein-coding

genes have a dominant isoform that is favored in expression

across the healthy individuals of a human population.1 Predom-

inant expression of alternative isoforms may subject these

genes to changes and potential errors in their function.2 Differ-

ential transcript usage (DTU) analysis is conducted, using

RNA sequencing (RNA-seq) data to search for systematic

differences in the expression ratios of isoforms that may

explain changes in phenotype between cell types, tissues, or

populations.2,3
Cell Reports Methods 4, 100736, M
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Isoform abundance is often tissue specific, and DTU (also

called isoform switching) may result in proteins with distinct

functions, which, in turn, may play different roles in the cell.2–6

There is also a growing interest in the effects of DTU in complex

human diseases. Instances of DTU have been associated with

DNA repair, numerous human cancer types, heart failure, and

psychiatric diseases such as autism, schizophrenia, and bipolar

disorder.7–9 State-of-the-art DTU analysis tools provide a frame-

work to detect cases where the isoform proportions are consis-

tent within and significantly different between any two groups of

samples. However, transcriptomic profiles within populations

comprising individuals affected by a complex disease are rarely

consistent due to a multiplicity of causal events and disease

subgroups; i.e., a cohort of patients diagnosed with the same

disease might actually have several distinct underlying genetic
arch 25, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:berdogd1@jhu.edu
mailto:elapertea@gmail.com
https://doi.org/10.1016/j.crmeth.2024.100736
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crmeth.2024.100736&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Article
ll

OPEN ACCESS
disorders.10 Therefore, a DTU analysis method that measures

and accounts for the structured heterogeneity within complex

disease populations is still needed.

We present SPIT, a statistical tool that identifies subgroups

within populations at the transcript level and compares their iso-

form abundance measures. Using both simulated and real RNA-

seq data from human heart tissue, we show that SPIT improves

specificity rates compared with the state-of-the-art tools with

similar sensitivity and detects DTU events exclusive to subgroups

as well as DTU events shared among all case samples. Down-

streamofDTUanalysis,SPITusesdetectedDTUevents toprovide

insight intopotentially hierarchical subgroupingpatternspresent in

complex disease populations using hierarchical clustering.

Within the SPIT algorithm, subgroups with divergent abun-

dance for each transcript are detected using a kernel density esti-

mator, after which the distributions are compared via a nonpara-

metric Mann-Whitney U test. SPIT provides a conservative

approximation of the biological and technical variability within da-

tasets with its SPIT-Test module, significantly reducing false dis-

covery rates. Rather than estimating the expression variability

per transcript, SPIT-Test samples a null distribution of minimal U

statistic p values based on the control group and assumes that,

for each transcript, the minimal U statistic p value is drawn from

the same underlying distribution when there is no real disease as-

sociation independent of biological or technical variability.

We applied SPIT to search for DTU events associated with

schizophrenia, a psychiatric disorder canonically recognized

as a heritable complex disease with an undetermined number

of subtypes.11–13 Genetic causes of schizophrenia have long

been studied; however, a clear consensus on the level of genetic

liability or the acting set of causal events has not been reached to

this day. Whole-genome, exome and RNA-seq studies suggest

that a wide range of both common and rare genetic variations,

including single-nucleotide polymorphisms (SNPs), copy num-

ber variations (CNVs), ultra-rare coding variants (URVs), and

alternative splicing events, may contribute to the pathogenesis

of schizophrenia.9,14–16 After analyzing RNA-seq data from the

dorsolateral prefrontal cortex (DLPFC) of 146 schizophrenia pa-

tients and 208 controls, SPIT identified six candidate genes that

had statistically significant DTU events associated with schizo-

phrenia. Previously reported disease associations for these

candidate genes include neurodegenerative and psychiatric

disorders such as Alzheimer’s disease, bipolar disorder, schizo-

phrenia, major depressive disorder, attention deficit hyperactiv-

ity disorder, and autism spectrum disorder. No previous report

has identified DTU events in any of these genes.

SPIT is open-source software freely available as a PyPI

package at https://github.com/berilerdogdu/SPIT. Additionally,

a user-friendly Google Colaboratory configuration and step-by-

step guide are provided at https://colab.research.google.com/

drive/1u3NpleqcAfNz_0EAgO2UHItozd9PsF1w?usp=sharing.

RESULTS

A demonstration on simulated data
A DTU event is defined as a significant difference in the propor-

tions of isoforms contributing to the overall expression of a locus

between individual or groups of samples. We are particularly
2 Cell Reports Methods 4, 100736, March 25, 2024
interested in cases where there is a clearly dominant isoform in

healthy individuals, where DTU can potentially disrupt cellular

function and cause anomalies.

We describe a modeled DTU case with artificially generated

data to exemplify such DTU events and to demonstrate the key

steps of the SPIT algorithm. Consider a locus from which two

distinct isoforms, isoform 1 and isoform 2, are transcribed, as rep-

resented in Figure 1A . Suppose that the protein translated from

isoform 1 is a functional protein, whereas isoform 2 is translated

into a dysfunctional, aberrant protein. Consequently, the primary

expression profile of this locus in a healthy individual is expected

to be isoform 1. Figure 1B shows the relative abundances of iso-

form 1 and isoform 2 for four individuals with varying levels of

expression at the locus. The left of Figure 1B demonstrates a clear

exampleofDTUbetween individual 1 and individual 2,with isoform

1 dominant for individual 1 and isoform2dominant for individual 2.

The right of Figure 1B illustrateswhy changes in overall expression

at the gene/locus or transcript/isoform level are not sufficient indi-

cators of DTU, as illustrated for the same isoforms in individuals 3

and 4, where overall expression changes, but the relative propor-

tion of the isoforms remains the same.

DTU analysis usually entails comparing two groups of samples

rather than individuals. In the interest of brevity, suppose that, for

any given individual, either isoform 1 or isoform 2 is significantly

dominant for the locus in our model DTU case, and note that

each individual is color coded based on their dominant isoform

in Figures 1C–1F. Small sample sizes are quite common in

RNA-seq experiments,17 and Figure 1C represents a typical

experiment setup for DTU analysis with 12 samples in each

group. For instances where a DTU event between isoform 1

and isoform 2 has a causal link to a disease, Figure 1C depicts

the expected scenario for a simple genetic disease where the

disease is caused by a single or a small set of genes. In this sce-

nario, one assumes that all or nearly all controls have normal

gene expression patterns, while the cases all share a distinct

but abnormal gene or transcript expression pattern that has

caused them to be placed in the disease cohort.

In contrast, the causal set of genes or events are not expected

to be shared among all individuals affected by a complex disor-

der. The idea that the majority of complex disorders are likely

polygenic and that distinct combinations of causal events might

lead to similar pathogenesis in different patient groups is widely

accepted.18 When focusing on a particular causal event, such as

the DTU case between isoform 1 and isoform 2, this implies that

only a subgroup of patients within the case group is likely to have

this event among its causal factors, as depicted in Figure 1D. By

segregating this subgroup from the remaining case group, we

gain the capability to detect a DTU event that might have other-

wise gone unnoticed and to differentiate potential subclusters of

the disease group based on shared DTU events.

To do so, we compare the distributions of isoform fractions

(IFs) between the two groups, which refers to the proportion of

total expression attributed to each isoform. Figure 1E shows

the IF levels for isoform 1 in both control-complex and case-

complex groups, which is expectedly high for individuals with

isoform 1 as the dominant isoform at the locus and low for indi-

viduals with isoform 2 as the dominant isoform. By fitting a kernel

density estimator (KDE)19–21 on the IF distributions, we can

https://github.com/berilerdogdu/SPIT
https://colab.research.google.com/drive/1u3NpleqcAfNz_0EAgO2UHItozd9PsF1w?usp=sharing
https://colab.research.google.com/drive/1u3NpleqcAfNz_0EAgO2UHItozd9PsF1w?usp=sharing


Figure 1. DTU detection demonstration

(A) Gene locus going though alternative splicing to produce isoform 1 and isoform 2.

(B) Left: isoform abundances in a sample case of DTU between individuals 1 and 2. Right: isoform abundances in a sample case without DTU but with changes in

overall expression between individuals 3 and 4.

(C) Conventional DTU analysis assumption with no structured heterogeneity in either group.

(D) Heterogeneity structure in complex disease samples, where a subset of cases shares the same genetic abnormality (case-complex).

(E) Corresponding isoform fraction (IF) distributions and KDE fits for the samples represented in groups control-complex and case-complex.

(F) Three SPIT-Test iterations demonstrated with random splits of the control-complex group.

(G) Random forest regression representation when there is not a significant confounding effect in the DTU transcript (top) vs. when there is a clear confounding

effect by the covariate ‘‘age’’ (bottom). Corresponding permutation importance scores for age and vj are shown on the right.

Samples (dots) are color coded based on their dominant isoforms for the locus in (C)–(F). Blue, isoform 1; red, isoform 2.
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search for bimodality, which, if found, indicates a separation

within the groups themselves. Regardless of the number of iso-

forms or switching events within the same gene, a separation will

be detected if the abundance of an isoform shifts for only a sub-

group withing the case samples. The right of Figure 1E demon-

strates the clear partition of the case-complex subgroups by a

global minimum marked with a triangle on the KDE curve. We

should note that SPIT does not presuppose the existence of a

partition in populations and still detects any shared DTU events

in the absence of bimodality.

Partitioning of subgroups and DTU detection
The transcript counts are transformed into IFs for each sample

as follows:

IFi;j = ti;j

,X
Gj

ti;j
(Equation 1)

where IFi;j is the IF for transcript j in sample i, ti;j is the transcript

count for transcript j in sample i, and Gj stands for the set of all

transcripts that belong to the same gene as transcript j. We fit

a KDE with Gaussian kernel19–21 (details on bandwidth selection

are described in the STARMethods section on parameter fitting)

on the two vectors of IFIc ;j, where Ic stands for the samples in

groups c˛ fcase; controlg. If the IFIcase ;j distribution is bimodal,

indicating a significant stratification of two subgroups based

on the dominance status of transcript j, then we observe this

as a global minimum of the KDE (Figure 1E). While we acknowl-

edge the possibility of observing a similar divergence within the

control group due to technical or biological variability, our pri-

mary objective is to identify subgroups within the case samples

for potential associations with disease status. The KDE on the

control group is utilized for flagging the most significant candi-

date DTU genes, as described in the STAR Methods.

There are several advantages to detecting subgroups based

on density estimation, the most important of which is the ability

to avoid an underlying distribution assumption for the dataset,

which can be challenging for RNA-seq-driven data even after

multiple normalization steps.22 Furthermore, while outlier sam-

ples can alter the shape of a KDE, they have a relatively negligible

impact on the global minima/maxima as long as appropriate

smoothing is applied.21 Unlike k-means or hierarchical clustering

methods, there is not a hyperparameter that fundamentally af-

fects whether clusters are detected in the data, and the choice

of the bandwidth parameter (h) works to our advantage to ac-

count for overdispersion by oversmoothing (see STAR Methods

section on parameter fitting).

In the presence of a global minimum in the case group at

IFi;j = mcase, we define the left tails of the case and control IFj

distributions as the samples that fall to the left of point mcase

and the right tails as the samples that fall to the right:

lcase = fi˛ Icase jIFi;j %mcase

�
and rcase = fi˛ Icase jIFi;j >mcase

�
;

lcontrol = fi˛ Icontrol jIFi;j %mcase

�
and

rcontrol = fi˛ Icontrol jIFi;j >mcase

�
:

(Equation 2)
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To independently search for candidate DTU events in lcase and

rcase, the left tails of the case and control IFj distributions are

compared internally, as are the right tails, using the non-para-

metric Mann-Whitney U test; i.e.,
S

i˛ lcase

IFi;j is compared

with
S

i˛ lcontrol

IFi;j, while
S

i˛ rcase

IFi;j is compared with
S

i˛ rcontrol

IFi;j. This

analysis determines whether the samples in lcase could have

been drawn from the left-tail control samples with IFi;j %mcase

or whether they exhibit significant differences. Likewise, the

same rationale applies for the right tails.

In the absence of a global minimum, a Mann-Whitney U test is

conducted between the entire groups of Icase and Icontrol.

While it is possible for a set of samples to have more than two

subgroups for an isoform, such as those with low abundance,

moderate abundance (�0.5), and high abundance, the KDE fitting

process tends to oversmooth, making it challenging to observe

such subtle distinctions. Attempting to identify fine differences be-

tween individuals as a split in distribution is impractical and may

result in excessively jittery KDE curves, inflating false discovery

rates. In such cases, the nuances among several small subgroups

may be overlooked, leading to a general comparison between

entire groups of cases and controls. If the shapes of the distribu-

tions significantly differ between the case and control groups,

then a DTU event will be detected for the entire case group.
Accounting for inferential uncertainty
DTU analysis is conventionally conducted after transcript quantifi-

cation, and its accuracy is affected by the uncertainty in mapping

reads to transcripts, introducingadditional variability inabundance

estimates. SPIT adopts a strategy similar to that of the Swish23

method by incorporating inferential replicates generated by quan-

tification tools. While SPIT allows for analysis without inferential

replicates, if provided by the user, the DTU detection process out-

lined earlier is reiterated for each replicate to avoid inflated false

discovery rates caused by inferential uncertainty. Subsequently,

the results from each inferential replicate are combined into a final

set of candidate DTU events with amajority vote protocol. For any

transcript to be included in this final set, a significant DTU event

must be detected in the majority of the inferential replicates.
Estimating dispersion with SPIT-Test
Although the use of non-parametric statistical tests can help

control the false discovery rate (FDR) in differential analyses,

the effectiveness of several competing methods is notably

diminished when the input data are overdispersed and contains

outliers,24 a common characteristic of RNA-seq data.25 This

prevalent phenomenon suggests that we are not capable of pre-

cisely estimating dispersion for each individual transcript or

gene, in addition to not being able to adequately correct for

the vast number of hypotheses being tested. To overcome this

challenge, we choose to estimate a single null distribution for

the minimal Mann-Whitney U-statistic p values and assume

that these observed minimal p values reflect the upper threshold

of dispersion in the input dataset.

We want to estimate the lowest expected p values that we

might find when there is no real association between a pheno-

type and changes in isoform abundance. We call this the null
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distribution PS of the minimal U-statistic p values. To create this

estimate bPS, SPIT-Test evaluates the control group, in which we

assume such an association is absent, although some amount of

variation in isoform usage can be observed. As illustrated in Fig-

ure 1F, SPIT-Test is an iterative process that randomly splits the

control group in half and identifies the greatest difference in IFs

across all genes between the two halves. This process gauges

the level of random variation (or noise) within the dataset

because we assume that disparities between random halves of

the control group are not relevant to our search for genuine dif-

ferences in isoform usage. Later on, the candidate DTU events

between the case and control groups are compared, in terms

of their significance, with the observed differences between

random halves of the control group.

The following steps are performed at each iteration s.

(1) Randomly split the control samples into two sets of equal

size, hk;s, where k˛ f1;2g represents each half for itera-

tion s.

(2) Select a random split point os to define the left and right

tails of each half as

lh1;s =
�
i ˛ Ih1;s

��IFi;j % os

�
and rh1;s =

�
i ˛ Ih1;s

��IFi;j > os

�
;

lh2;s =
�
i ˛ Ih2;s

��IFi;j % os

�
and rh2;s =

�
i ˛ Ih2;s

��IFi;j > os

�
(3) For each transcript j, conduct a Mann-Whitney U test

between the sets of lh1;s and lh2;s , yielding a Mann-Whitney

U-statistic p value, pjl;s . Similarly, conduct a Mann-Whitney

U test between the sets of rh1;s and rh2;s , yielding pjr;s .

(4) Assign pj;s = minðpjl;s ;pjr;sÞ to each transcript j for itera-

tion s.

(5) Among the U-statistic p values assigned to all transcripts,

store p0
s = min

S
Jpj;s. To avoid excessive influence from

outlier transcripts, we only sample p0 once from the same

transcript throughout all iterations. In other words, in iter-

ation s, we consider transcripts from which p0
s1 ;.;sn� 1

has

not been sampled.

(6) bPS = bPSW p0
s.

SPIT-Test estimates dispersion on a global scale, assuming

that any transcript could have been subject to the highest

observed level of dispersion. Therefore, for an arbitrary transcript

j, bPS is considered as an empirical null distribution of the minimal

U-statistic p value. This approach emulates themin-P andmax-T

procedures26 and is employed to set a p value threshold,

p0
threshold, based on bPS that determines the set of candidate

DTU transcripts between case and control samples as

p0
threshold = ðk � j bPSjÞth smallest p-value in bPS; (Equation 3)

where k is a user-set parameter. For instance, if k = 0:1 for 1,000

iterations, then the threshold would be the 100th smallest

p value. SPIT-Test deviates from a traditional permutation test

in its randomization steps 1 and 2 and its exclusion of the case

samples due to the potential presence of unknown subgroups.

Although k cannot directly translate into a target family-wise error
rate (FWER), we experimentally show that smaller values of k

achieve remarkable control over FWER.

DTU simulation and evaluation
Simulated RNA-seq reads are conventionally used to evaluate

differential analysis tools, as we lack knowledge of ground truth

in real data. However, research has consistently shown that

simulated reads do not accurately represent the overdispersion

levels in real RNA-seq experiments, leading to underestimation

of the FDR.24,27 To obtain amore accurate assessment of SPIT’s

performance, we make use of both simulated and real RNA-seq

data. In these two types of evaluation sets, we compare the true

positive rate (TPR) and FDR outcomes of SPIT and the state-of-

the-art tools DEXSeq,28 DRIMSeq,29 satuRn,30 edgeR diffS-

plice,31 limma diffSplice,32 and Swish.23

To improve control over FDR in DEXSeq, DRIMSeq, and

satuRn, each analysis was followed by the stage-wise adjust-

ment tool stageR.33 In the case of both edgeR diffSplice and

limma diffSplice, we applied the Simes adjustment to the ob-

tained p values, aligning with the recommended approach in

their documentation for datasets where only a minority of tran-

scripts within a gene exhibit differential usage, which is consis-

tent with the simulation studies incorporated in this evaluation.

We evaluate the performance of SPIT with and without the use

of inferential replicates when available. Overall, SPIT is the only

tool that maintains effective control over FDR across various

evaluation test sets while upholding high sensitivity levels.

Computation times for each tool on evaluation experiments are

summarized in Table S1.

Evaluation with simulated RNA-seq reads
Weborrow the DTU simulation with the largest sample sizes from

the ‘‘SwimmingDownstream’’ pipeline by Love et al.34 as our test

dataset with simulated RNA-seq reads (please see the corre-

sponding STAR Methods section for details). This dataset simu-

lates a large number of (> 1;500) DTU events in relatively homo-

geneous populations, resembling the scenario depicted in

Figure 1C. While dispersion is incorporated into the transcript

expression patterns, there are no subgroups or divergence in

the DTU events.

The TPR and FDR at the gene level are reported for each tool in

Figure 2B, where DEXSeq, DRIMSeq, and satuRn have 3 out-

comes corresponding to stageR target overall FDR (OFDR)

values 0:01, 0:05, and 0:1: Similarly, for edgeR diffSplice and

limma diffSplice, we report 3 outcomes from using target FDR

values of 0:01, 0:05, and 0:1 with the Simes adjustment. We

used the qvalue35 package as outlined in their vignette for Swish

to control for local FDR and also provide the results from target

FDR values of 0:01;0:05;and 0:1. For SPIT, we report 3 outcomes

corresponding to setting hyperparameter k = 0:2, 0:4, and 0:6

over 100 iterations. Although the tuning of target OFDR for

stageR and k for SPIT are not directly comparable, lower values

of both parameters lead to more conservative behavior, allowing

better control over FDR and often yielding decreased TPR.

TPR and FDR outcomes of DEXSeq and DRIMSeq were

consistent with the evaluation by Love et al.34 Both tools yield

high sensitivity levels, while DEXSeq maintained a better control

over FDR. edgeR diffSplice, satuRn, and SPIT also exhibit
Cell Reports Methods 4, 100736, March 25, 2024 5
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effective FDR control, and using inferential replicates with

SPIT reduces false discoveries. Conversely, limma diffSplice,

DRIMSeq, and Swish do not display sufficiently low FDR levels.

The TPR levels of satuRn, DEXSeq, and SPIT are also more

favorable compared with those of edgeR diffSplice and Swish.

satuRn achieves the highest TPR level within the FDR % 0:05

window.

Evaluation with real RNA-seq reads
Genotype-Tissue Expression (GTEx) simulations

To form the basis of our test dataset with real RNA-seq reads, we

quantified Illumina reads of 235 normal heart (left ventricle) sam-

ples obtained from the GTEx project.36 Figure 2A shows the

mean-standard deviation plots of the two datasets, revealing a

significantly higher level of dispersion in the GTEx dataset

compared with the ‘‘Swimming Downstream’’ dataset of simu-

lated RNA-seq reads.

Next, we conducted 20 separate experiments, in each of

which we compared random halves of the GTEx dataset after

introducing 100 simulated DTU events into one of the halves

(please see the corresponding STAR Methods section for de-

tails). In an effort to model the expected heterogeneity in a com-

plex disease group, we distributed the 100 DTU events between

5 subgroups in such a way that some DTU events are shared be-

tween the subgroups while some are exclusive (see Figure 2E for

an example). For the rest of the paper, we will refer to any such

subgroup that shares the same DTU events as a ‘‘spliceotype’’

group.

In any random partition of real RNA-seq samples into two

groups, it is not certain that there are no actual DTU events

beyond the ones we introduced. Therefore, the TPR and FDR

measures for the GTEx experiments are only estimates. Our hy-

pothesis for evaluating these experiments was that, if any

method consistently detected additional DTU events between

random partitions of a healthy sample group, then the discov-

eries were either noise or else due to biological variance not of

interest. Therefore, we present the mean estimated FDR and

TPR values of 20 experiments for each DTU tool in Figure 2C,

with error bars indicating the minimum and maximum FDR/

TPR values obtained. For readability, only the error bars for

target FDR levels 0:05 (and k = 0:4 for SPIT) are provided here.

Error bars of all target FDR (and k) values are included in

Figure S1.

To run Swish, which requires the use of inferential replicates,

we generated pseudo-inferential replicates for each GTEx

experiment (for details, please see the relevant section in STAR

Methods). Due to its generalized linear model (GLM) fitting

step, DEXSeq requires significant computing time for large sam-

ple sizes. After running for 168 h on 24 cores and 256 GB RAM,
Figure 2. Evaluation

(A) Mean vs. standard deviation of the transcript counts are plotted for the ‘‘S

dispersion levels.

(B) Gene-level DTU performance evaluation on the ‘‘Swimming Downstream’’ da

(C) Gene-level DTU performance evaluation on GTEx experiments. Error bars ind

(D) Gene-level DTU performance evaluation on the satuRn (GTEx, 50 vs. 50) sim

(E) The DTU event sharing Venn diagram for the first experiment in the GTEx simul

SPIT DTU matrix (left). The subclusters are color coded based on their distinct s
dispersion estimation for the first experiment remained unfin-

ished. Therefore, we do not include DEXSeq in evaluation of

this dataset.

In line with the ‘‘Swimming Downstream’’ evaluation, we

include results from setting target OFDR values of 0:01, 0:05,

and 0:1 for each DTU tool. Because the SPIT pre-filtering pro-

cess is included in the DTU simulation, we apply each method

on the SPIT-prefiltered counts.

In contrast to the TPR and FDR values obtained with the simu-

lated ‘‘Swimming Downstream’’ dataset, every DTU tool yielded

a wider range of estimated TPR and FDR values on the GTEx ex-

periments. The FDR estimates increased notably for DRIMSeq,

satuRn, and limma diffSplice. We also observe substantially

wide error bars for these tools, indicating a large range of perfor-

mance and lack of consistency across all 20 experiments. This

variability could be attributed to the distinct biological differ-

ences between the random partitions in each experiment or to

the level of heterogeneity introduced in the simulation through

varying compositions of DTU events shared between random

spliceotypes.

SPIT, edgeR diffSplice and Swish demonstrate effective con-

trol over FDR. This is consistent with the ‘‘Swimming Down-

stream’’ evaluation for SPIT and edgeR diffSplice. Furthermore,

we observe relatively narrow error bars for all three of these tools,

indicating consistency in performance over 20 experiments. Us-

ing inferential replicates with SPIT helps improve FDR control in

these experiments as well. The TPR levels of both SPIT and

edgeR diffSplice are favorable in this dataset, while SPIT

achieves the highest TPR within the FDR % 0:05 window.

For input datasets with a large number of control samples (nR

32), SPIT offers an optional cross-validation procedure to esti-

mate the optimal value k� based on inferred dispersion, which

is detailed in the STAR Methods section on parameter fitting.

In Figure 2C, the TPR and FDR obtained using the estimated

k� are represented by a triangle, which for this dataset is 0:6.

The optimal bandwidth was estimated to be 0:09 through the

same procedure. For all other evaluation experiments, the band-

width was set to 1 as we are not looking for subclusters.

Upon detecting the DTU events for any given dataset, SPIT

outputs a binarymatrixM of DTU events that marks the presence

(1) or absence (0) of a DTU event at the gene level for any sample

in the case group relative to the control group. We show that us-

ing SPIT’s output matrixM, we are able to cluster the case sam-

ples into their separate spliceotype groups based on their shared

events by applying hierarchical clustering. The chosen distance

metric calculates the proportion of unique events between any

two samples relative to the total number of DTU events. As

shown in Figure 2E, SPIT perfectly captures the five clusters

that were artificially created. Clustering on the first experiment
wimming Downstream’’ and GTEx experiment samples to represent relative

taset.

icate the minimum and maximum FDR/TPR values obtained.

ulation.

ations (right), and the corresponding final subcluster dendrogram based on the

ets of simulated DTU events (spliceotypes).
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is shown in Figure 2E based on the SPIT output with k�; the re-

maining experiments can be found in Figures S2A–S2S, showing

similar results.

Null GTEx simulation

For robustness of evaluation, we also generated a null GTEx

experiment in which we did not introduce any DTU events into

the random halves of the dataset. We ran SPIT, DRIMSeq,

edgeR diffSplice, limma diffSplice, and satuRn on the null data-

set as described above. SPIT and edgeR diffSplice each re-

ported a single DTU gene, while the other tools reported none.

The absence of numerous DTU genes identified by any tool

serves as further confirmation that the only reliable signal in the

simulated GTEx experiments above is the DTU events intro-

duced the simulation.

satuRn GTEx simulations

Both the ‘‘Swimming Downstream’’ dataset and the GTEx ex-

periments we simulated involve at most two transcripts per

gene in DTU. In real experiments, it is possible for several tran-

scripts to be involved in switching events. To demonstrate the

performance of each DTU detection tool on such events, we

borrow the GTEx simulation datasets by Gilis et al.,37 which

were used in evaluation of the satuRn method. These simula-

tions follow the strategy introduced by Van den Berge et al.33

to select the number of transcripts implicated in DTU. For

each gene, the number of transcripts are selected from a bino-

mial distribution with n = the number of transcripts of that

gene, and p = 1=3, allowing for multiple transcripts in DTU.

The abundance estimates of the selected transcripts are then

swapped.

Three different experiments were generated by Gilis et al.30,37

with sample sizes 50 vs. 50, 20 vs. 20, and 5 vs. 5. For this eval-

uation, we used the 50 vs. 50 dataset with scaledTPM38 counts

filtered by the filterByExpr function of edgeR (with default param-

eters) as provided by Gilis et al.37 The sample sizes were too

large for running DEXSeq, and inferential replicates were not

available to run Swish. We ran the remaining DTU tools using

the same approach as in the experiments above without

applying any additional filters.

As shown in Figure 2D, DRIMSeq and limma diffSplice demon-

strate notably high FDR values coupled with high sensitivity.

edgeR controls FDR relatively better but with a lower in TPR

than all tools in comparison. SPIT and satuRn are themost effec-

tive in controlling FDR while maintaining high sensitivity rates.

Their TPR and FDR values closely align, with SPIT exhibiting

marginally lower FDR values. The comparison of methods on

the 20 vs. 20 dataset is provided in Figure S3. The SPIT algorithm

is better suited for analyzing groups of at least 8 samples each,

since statistical test approximations will lose power with lower

sample sizes, yielding unreliable results. Therefore, the 5 vs. 5

simulation dataset is excluded from our evaluation.

Detecting known tissue-dependent DTU events

As a positive control experiment, we next investigated a set of

four tissue-dependent DTU events that had been previously

confirmed individually by various studies and also collectively

validated by Reyes and Huber39 in 2018. Reyes and Huber37

showed that tissue-specific transcript usage is common in hu-

mans, and numerous such events are found in each tissue com-

parison. Our objective was to verify whether SPIT could identify
8 Cell Reports Methods 4, 100736, March 25, 2024
these known examples among the broader pool of detected DTU

events. For this analysis, we utilized samples from the GTEx

dataset (Table S2) that were aligned as part of the CHESS 3

project.40 Figure 3 visually illustrates differentially expressed

transcripts between tissues at each locus. All transcriptional

landscapes were created using the sashimi plot module in

TieBrush after aggregating read alignments from all samples in

each tissue. SPIT results on all four DTU events are detailed

below. For results from other DTU tools, please refer to STAR

Methods and Table S3.

SLC25A3

The mitochondrial phosphate transporter gene SLC25A3 ex-

hibits a phenomenon known as ‘‘mutually exclusive exons,’’3

which refers to the observation that specific exons within the

gene are spliced into distinct isoforms, but they are not simulta-

neously present within the same isoform. We compared 497

samples of heart tissue and 380 samples of colon tissue from

theGTEx dataset, and SPIT was able to confirm that one of these

isoforms, which is recognized as the primary expression prefer-

ence in heart and skeletal muscle, is indeed more prevalent in

heart tissue samples (Figure 3A).

ANK3

Together with two more ankyrin genes, ANK3 plays a crucial role

in generating a diverse array of ankyrin proteins inmammals. Tis-

sue-specific splicing ofANK3 has been shown previously in skel-

etal muscle and tibial nerve tissue.39,41 A total number of 480

muscle and 339 nerve tissue samples from GTEx were analyzed

using SPIT, confirming the presence of an isoform switch char-

acterized by alternative start sites and distinct patterns of exon

splicing (Figure 3B).

MEF2C

MEF2 transcription factors are significant in regulating cell

differentiation and expression, and they undergo tissue-specific

alternative splicing, adding to their functional diversity.MEF2C in

humans has two mutually exclusive exons, one of which is

shown to be more prevalent in skeletal muscle.42 We compared

480 muscle tissue samples from GTEx with 361 thyroid samples

using SPIT and were able to detect the isoform switching as a

significant DTU event (Figure 3C).

MYO1C

Myosin IC encodes a protein of the myosin family, which serves

multiple cellular functions, including vesicle transportation, tran-

scription, and DNA repair.43,44 The presence of a tissue-depen-

dent transcription start site inMyosin IC has been demonstrated,

leading to splicing of an alternative first exon,43 which SPIT

successfully detects upon comparing 497 heart and 199

pancreas samples from GTEx (Figure 3D).

Schizophrenia application

After evaluating its performance, we explored the application of

SPIT in identifying DTU genes associated with schizophrenia,

where we expected a divergence in the causal mechanisms un-

derlying pathogenesis for individual or groups of patients. We

obtained RNA-seq samples of postmortem DLPFC tissue from

a total of 354 adult brains, which were sequenced by the Lieber

Institute for Brain Development.45 After applying various quality

filtering criteria that are described in detail in the STARMethods,

we selected 146 schizophrenia samples and 208 control sam-

ples for comparison in our analysis (Table S4).



Figure 3. Tissue-dependent DTU events

Shown are sashimi plots with normalized coverage and junction values fromGTEx samples of theCHESS 3 project. Only the relevant isoforms and junction values

are included for readability. The normalized coverage values for each tissue were subtracted from the normalized coverage of the entire GTEx dataset, and the

results were illustrated as the D track.

(A) SLC25A3 DTU event between heart and colon tissues.

(B) ANK3 DTU event between muscle and nerve tissues.

(C) MEF2C DTU event between muscle and thyroid tissues.

(D) MTO1C DTU event between heart and pancreas tissues.

Article
ll

OPEN ACCESS
The parameter-fitting process was applied to the control sam-

ples, resulting in ðh�; k�Þ = 0:06; 0:6. We took a conservative

approach by employing ðh;kÞ = 0:06;0:4. Prior to confounding

analysis, SPIT detected 135 potential DTU events between the

case and control samples. The binary DTU matrix for these

135 transcripts was then inputted to the confounding control

module of SPIT, which is described in the STARMethods. Cova-

riates considered for all samples included sex, race, age, batch

identification, and RNA integrity number (RIN), which highly cor-

relates with RNA degradation.46 129 candidate transcripts were

eliminated based on their permutation importance scores, leav-

ing a final set of six DTU transcripts in six genes (Figure 4C). The

SPIT-Chart for this analysis (Figure 4A) shows the relationship

between the median p values obtained from 100 iterations of

SPIT-Test and the p values resulting from comparing control

and schizophrenia samples for transcripts.
Among the six candidate genes, four (BDH2, CLDND1,GAS8,

and TRIP4) displayed DTU events in all schizophrenia samples,

while the other two genes (LARP4 and NVL) showed significant

DTU events in specific subgroups. Figure 4B depicts the clus-

tering of schizophrenia samples based on identified DTU events,

revealing a partitioning into four subgroups in this dataset. We

present short descriptions of the functions and associations of

the six candidate genes below.

GAS8 (Growth Arrest Specific 8). A multitissue study exam-

ined SNPs for enrichment of expression quantitative trait loci

(eQTLs) across 11 genome-wide association studies (GWASs)

focused on schizophrenia and affective disorders (including

bipolar disorder, major depressive disorder, autism spectrum

disorder, and attention deficit hyperactivity disorder).47 The

study identified GAS8 among genes affected by the high-con-

fidence cis-eQTLs in multiple brain regions and reported its
Cell Reports Methods 4, 100736, March 25, 2024 9



Figure 4. Schizophrenia application

(A) Dendrogram representation of hierarchical clustering applied on the SPIT DTU matrix for schizophrenia samples.

(B) SPIT-Chart for the schizophrenia analysis. For each transcript that passed the initial filtering steps, the median p value that has been observed through 100

iterations of the SPIT-Test

�
median

�S
S

pj;s

��
is plotted on the x axis, and the p value observed in the actual comparison of the schizophrenia samples with the

controls is plotted on the y axis, both on � log10 scale.

(C) Boxplots of permutation importance scores (generated from 100 permutations) of the SPIT output vector and provided covariates for the final 6 DTU genes.
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cross-disorder associations as well as specific associations

with bipolar disorder.

NVL (Nuclear VCP Like). This gene is amember of the AAA fam-

ily (ATPases associated with diverse cellular activities) and en-

codes for two proteins with recognized distinct functions,

NVL1 and NVL2,48 the latter of which is involved in regulating

ribosome biogenesis in eukaryotes.49 There is a growing body

of evidence suggesting correlations between disrupted ribo-

some synthesis and aging, as well as neurodegenerative dis-

eases like Alzheimer’s disease and Parkinson’s disease.50–55 In

the subset of schizophrenia samples where NVL is implicated

in DTU, we observed that the NVL1 isoform was preferred,

potentially indicating perturbed ribosomal synthesis (Figure S6).

LARP4 (La Ribonucleoprotein 4). The protein encoded by this

gene enables RNA-binding activity and plays a critical role in

translation regulation.56 LARP4 has been found to show differen-

tial expression between the unaffected siblings and first-degree

relatives of schizophrenia patients compared with unaffected in-

dividuals unrelated to the patients.57

BDH2 (3-Hydroxybutyrate Dehydrogenase 2). This gene is

responsible for encoding a siderophore that plays a crucial role

in maintaining iron balance within cells, offering protection

against oxidative stress.58 Studies have indicated a significant

downregulation of BDH2 in response to inflammation and endo-

plasmic reticulum (ER) stress.59 Disrupted iron homeostasis and

ER stress have long been associated with neurodegenerative

diseases like Alzheimer’s disease and Huntington’s disease.60,61

Recent studies report BDH2 to be directly implicated in Alz-

heimer’s disease progression.62

TRIP4 (Thyroid Hormone Receptor Interactor 4). The protein

encoded by this gene is one of the four components of the acti-

vating signal cointegrator 1 (ASC-1) complex. Mutations in

ASC-1 components have been described as shared anomalies

between the neurodegenerative diseases amyotrophic lateral

sclerosis (ALS) and spinal muscular atrophy (SMA).63 Mutations

in TRIP4 andASCC1, another component of the ASC-1 complex,

are widely recognized as a cause of SMA.64,65

CLDND1 (Claudin Domain Containing 1). This gene encodes

transmembrane proteins of tight junctions, which play a role in

regulating the permeability of brain endothelial cells.66 CLDND1

has been linked to Alzheimer’s disease,67 with one study indi-

cating a potential correlation specifically with a subgroup of

the condition.68

DISCUSSION

Transcriptomic profiles in populations with complex diseases

can exhibit inherent complexity where differentially expressed

events are not necessarily shared among all individuals affected

by the specific disorder. Consequently, applying the same statis-

tical assumptions for these populations as those used for simple

genetic disorders can lead tomisleading results in differential an-

alyses. SPIT is built to accommodate and detect structured het-

erogeneity within populations. Through DTU simulations built on

GTEx samples, we show that SPIT not only achieves improved

sensitivity and specificity in detecting DTU genes in heteroge-

neous populations but also successfully captures the specific

DTU events for the prevalent subpopulations present.
Our results on the ‘‘Swimming Downstream’’ dataset by Love

et al.34 also demonstrate that SPIT is equally effective on rela-

tively homogeneous populations and proves to be applicable

for diverse scenarios, including simple genetic disorders, tis-

sue-to-tissue comparisons, and other types of DTU studies.

SPIT consistently maintains notably low FDRs regardless of

the level of dispersion in the datasets.

In addition to simulated experiments, we present four previ-

ously confirmed tissue-specific DTU cases that SPIT success-

fully detected in GTEx samples, as well as six novel DTU associ-

ations with schizophrenia. However, to establish any causal link

between these six candidate DTU events and schizophrenia, a

much more comprehensive investigation is needed, which is

beyond the scope of this paper.
Limitations of the study
SPIT demonstrates optimal performance with larger sample

sizes (n R 12), and the use of small sample sizes may lead to a

reduction in statistical power, a phenomenon observed in

various statistical models. Specifically, with diminished sample

sizes, SPIT-Test is susceptible to a loss of range in the null p

value distribution. Furthermore, a substantial imbalance be-

tween the two groups under comparison may introduce inaccur-

acies in the results.

It is also crucial to recognize that the DTU associations with

schizophrenia reported in this study are exemplars of the appli-

cation of this method and require further validation. Additional

analyses are required to confirm the reported DTU events in

diverse settings and populations.
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H., Robinson, J.T., Mesirov, J.P., Airoldi, E.M., and Burge, C.B. (2015).

Quantitative visualization of alternative exon expression from RNA-seq

data. Bioinformatics 31, 2400–2402. https://doi.org/10.1093/bioinformat-

ics/btv034.

81. Benjamini, Y., and Hochberg, Y. (1995). Controlling the False Discovery

Rate: A Practical and Powerful Approach to Multiple Testing. J. Roy.

Stat. Soc. B 57, 289–300.

82. O’Leary, N.A., Wright, M.W., Brister, J.R., Ciufo, S., Haddad, D., McVeigh,

R., Rajput, B., Robbertse, B., Smith-White, B., Ako-Adjei, D., et al. (2016).

Reference sequence (RefSeq) database at NCBI: current status, taxo-

nomic expansion, and functional annotation. Nucleic Acids Res. 44,

D733–D745.

83. Andrews, S. (2010). FastQC: a quality control tool for high throughput

sequence data. Babraham Bioinformatics (Cambridge, United Kingdom:

Babraham Institute).

84. Ewels, P., Magnusson, M., Lundin, S., and Käller, M. (2016). MultiQC:
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satuRn GTEx simulation Gilis et al.30 https://zenodo.org/records/6826603

20 simulated GTEx experiments This paper https://zenodo.org/record/8128846

Quantification files for the GTEx samples

used in the tissue-dependent DTU

detection

This paper https://zenodo.org/record/8128945

The RNA-Seq data used in the

Schizophrenia analysis

Collado-Torres et al.45 http://eqtl.brainseq.org/phase2/

Software and algorithms

SPIT This paper https://github.com/berilerdogdu/SPIT

https://doi.org/10.5281/zenodo.10695079

DRIMSeq Nowicka and Robinson29 https://bioconductor.org/packages/

release/bioc/html/DRIMSeq.html

DEXSeq Anders et al.28 https://bioconductor.org/packages/

release/bioc/html/DEXSeq.html

satuRn Gilis et al.30 https://www.bioconductor.org/packages/

devel/bioc/vignettes/satuRn/inst/doc/

Vignette.html

limma diffSplice Smyth32 https://bioconductor.org/packages/

release/bioc/html/limma.html

edgeR diffSplice Chen et al.31 https://bioconductor.org/packages/

release/bioc/html/edgeR.html

swish Zhu et al.23 https://bioconductor.org/packages/

release/bioc/vignettes/fishpond/inst/doc/

swish.html
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to the lead contact, Beril Erdogdu (berdogd1@jhu.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d This study utilized publicly available datasets. These and the supporting datasets generated by this study are:
d The ‘‘Swimming Downstream’’ dataset is uploaded to Zenodo by Love et al.: Quantification files: https://zenodo.org/record/

1291522 Scripts and simulation data: https://zenodo.org/record/1410443

d The satuRn GTEx simulations are uploaded to Zenodo by Gilis et al.: https://zenodo.org/records/6826603

d All 20 of the GTEx simulation experiments are uploaded to Zenodo: https://zenodo.org/record/8128846

d uantification files and phenotype information for the GTEx samples used in the detection of tissue-dependent DTU events

are uploaded to Zenodo: https://zenodo.org/record/8128945

d The RNA-Seq data used in the Schizophrenia analysis are made available by the Lieber Institute for Brain Development at

http://eqtl.brainseq.org/phase2/.

d SPIT is open-source software freely available as a PyPI package and at https://github.com/berilerdogdu/SPIT. Additionally, a

user-friendly Google Colaboratory configuration and step-by-step guide are provided at https://colab.research.google.com/

drive/1u3NpleqcAfNz_0EAgO2UHItozd9PsF1w?usp=sharing. An archival version of the code is listed in the Key Resources

Table.
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d Any additional information required to re-analyze the results reported in this paper are available from the lead contact upon

request.

METHOD DETAILS

Pre-filtering
The main input SPIT requires is transcript-level count data from an RNA-Seq quantification tool, a mapping file that assigns gene

names to each of the transcripts, and anymetadata for the samples. Pre-filtering the transcripts before DTU analysis has been shown

to improve performance for state-of-the-art tools,34,69 which also holds true for SPIT. The default behavior of SPIT involves the strin-

gent pre-filtering steps listed below which build upon the DRIMSeq filtering criteria.

(1) Each transcript must have a Counts per million (CPM) value of at least 1 in at least nsmall samples, where nsmall is a user-set

parameter that defines the smallest sample size presumed for the subgroups within populations.

(2) Each transcript must have a positive read count in at least a fraction pr of the samples in both the case and control groups,

respectively. pr is a user-set parameter and defaults to 00:2.

(3) Each genemust have a read count of at least gc in at least gn samples, where gc and gn are user-set parameters and default to

01.

(4) Each transcript must have an IF value larger than f in at least nsmall samples, where f is a user-set parameter and defaults to 10:.

(5) After the filtering steps above, there must remain at least 2 transcripts for each gene.

(6) The control group must have a consistently dominant isoform for each gene. This criterion is met for a gene when the same

isoform of the gene has the largest IF in at least a fraction pd of the control samples, where pd is a user-set parameter and

defaults to 0:75.

As is the case for any filtering criteria prior to differential analyses, these steps may inadvertently exclude genuine DTU cases and

lower sensitivity. Thus, while these steps are included and recommended in the SPIT pipeline, any or all of them can be excluded from

the analysis by the user. Figure S4 outlines the application of this filtering pipeline on the Lieber brain samples discussed in the Re-

sults section.

Prefiltering processes in general tend to have a significant impact on the performance of DTU tools.34 The effectiveness of filtering

criteria also highly depends on the input dataset. In order to observe the effects of applying filters with divergent stringency levels on

datasets with varying noise levels, we switched the prefiltering processes applied between our GTEx experiments and the Swimming

Downstream Simulation. As discussed above, The GTEx datasets exhibit significantly higher dispersion levels than the Swimming

Downstream dataset which is comprised of simulated reads. In the initial analysis, the stringent SPIT prefilters were applied prior

to analyzing GTEx experiments for all DTU tools, whereas more lenient filters by DRIMSeq were applied on the Swimming Down-

stream dataset. We now apply the SPIT prefilters on the Swimming Downstream dataset, and the DRIMSeq filters on the GTEx ex-

periments (Figure S5).

Switching the prefiltering processes caused an expected harmonious drop in sensitivity levels of all tools in the Swimming Down-

stream analysis. Interestingly, for the GTEx experiments, the more lenient filters were well-tolerated by the two permutation-test-

based methods, SPIT and Swish. While the remaining DTU tools displayed a significant jump in their FDR levels with the DRIMSeq

filter on GTEx experiments, SPIT and wish were able to maintain very similar TPR and FDR rates to their performance in the original

analysis.

Ultimately, we observe that for DTU analysis, precision and sensitivity are greatly improved by selecting a suitable set of criteria

based on the level of dispersion present in the dataset. In real experiments, the user is responsible for determining the level of strin-

gency in their filtering criteria prior to analysis based on their input dataset.

Test set with simulated RNA-Seq reads: ‘‘Swimming Downstream’’
Love et al. simulated DTU events in 1,500 genes by swapping Transcript Per Million (TPM) abundance values between two isoforms.

In an additional 1,500 genes, they simulated differential transcript expression (DTE) by altering the abundance value of a single iso-

form by a fold change between 2 and 6. For these DTE genes, if the differentially expressed transcript is not the only isoform, they

were also considered DTU cases as the relative isoform abundances were also expected to change. We include both types of these

DTU events as ground truth in our analysis.

Love et al. conducted four experiments with various sample sizes in the case and control groups (n = 3 vs: 3;n = 6 vs: 6;n =

9 vs: 9; n = 12 vs:12) to evaluate state-of-the-art DTU tools DEXSeq, DRIMSeq, RATs, and SUPPA2. They reported that while

SUPPA2 and RATs always controlled their FDR, their sensitivity levels remained consistently low across all experiments, hovering

around 50%. DRIMSeq and DEXSeq had considerably higher sensitivity (R75%) while sometimes exceeding their target FDR.

Both DRIMSeq and DEXSeq demonstrated improved FDR control with larger sample sizes, and 12 vs: 12 yielded the most favorable

TPRs and FDRs.

Based on these findings, we chose to reproduce the ‘‘Swimming Downstream’’ results obtainedwithDEXSeq andDRIMSeq on the

n = 12 vs: 12 experiment and to evaluate SPIT’s performance on the same dataset. We downloaded the released Salmon70
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quantification files by Love et al.,71 and obtained a scaledTPM count matrix for a total number of 203,027 transcripts by running txim-

port. 87,100 of these transcripts had a non-zero scaledTPM counts values in at least one sample.

To facilitate comparisons, Love et al. restrict their evaluation to transcripts and genes that satisfy theDRIMSeq filter based onmin-

imum count and abundance estimates, excluding transcripts/genes that do not meet the filter criteria from their set of true positives.

We applied the same filters on the input dataset of 203,027 transcripts, and redefined our set of true positives accordingly. We ran

each DTU tool on the DRIMSeq-filtered count matrix without applying any additional filters. Group 1 was arbitrarily defined as the

‘‘control’’ group in our evaluation.

Test set with real RNA-Seq reads: GTEx simulation
To simulate each of the 20 GTEx experiments the following steps were executed.

(1) Randomly divide the 235GTEx samples into two sets to create case and control groups, Icase and Icontrol, comprising of 117 and

118 samples, respectively.

(2) Apply the SPIT pre-filter outlined above assuming the randomly assigned Icase and Icontrol. Note that we skip step 6 of the pre-

filtering as it could create an unfair bias in the pre-filtered set of genes toward the DTU genes selected in the next step.

(3) We apply the criteria outlined in step 6 of the pre-filtering process to identify genes with consistently dominant isoforms within

the Icontrol group. Out of these genes with dominant isoforms, we randomly select 100 to compose our superset of DTU genes,

D = fd1;d2;.;d100g.
(4) For each spliceotype group (subgroup of samples that share the same DTU events) ps; s˛ f1;2;3;4;5g, we randomly select 30

DTU genes from setDwith replacement to formDps
. This results in a complex and structured partition within Icase, where some

DTU genes are shared between the five spliceotypes while others are unique to a specific spliceotype.

(5) For a DTU gene dk ˛Dps
, let ak be the dominant isoform of dk in Icontrol with IF = u, and bk be the least dominant isoform in

Icontrol with mean IF = v.

We switch the dominance status of ak and bk in Icase by allowing IFak ;i = v ± e and IFbk ;i = u± e for all i˛Dps
, where noise

parameter e = 0:05.

(1) Within all simulated DTU cases, the original transcript counts for ak and bk are updated by multiplying the gene counts by IFak ;i

and IFbk ;i, respectively. The gene counts are updated subsequently as the sum of all updated transcript counts, and IF values

are calculated once again with Equation 1 so that within each gene IF values add up to 1.

Addressing confounding variables
After completing the preliminary DTU analysis, the main output of the SPIT pipeline is a binary vector vj for each transcript indicating

the presence (1) or absence (0) of a DTU event in each sample in comparison to the control group. Note that vj carries a 0 for all sam-

ples of the control group.Moreover, notice that for the transcripts that SPIT reports as significant DTU events, the vj vector represents

a partitioning of all samples, case and control, into two groups with relatively high and low IFj values.

In the presence of a confounding effect, this partition of the high and low IFj values can also be achieved via the confounding var-

iable if included in the experimental design. Based on this assumption, SPIT filters out the DTU events with potential confounding

effects using a random-forest-based method.

Given a set of covariates X = fx1; x2; .; xk}, we define a matrix Xj for every candidate DTU transcript j such that

Xji = ½vj i; x1 i; x2 i;.; xk i� for any sample i in either group. We also define a vector yj based on the IFj values such that yj i = IFj i in

the same sample order as in Xj.

We then fit a random forest regressor72,73 4jðXjÞ/yj on each candidate DTU transcript. The same number of samples as in the

input matrix is bootstrapped for the construction of each tree with maximum tree depth 1, and we minimize the L1 loss on the

mean IFj in terminal nodes. Notice that with tree-depth 1, our goal is not to precisely predict IFj i for samples as much as it is to assess

which covariates might be contributing into observable variance in IFj values. We require at least nsmall number of samples to split the

root node. An illustrative case of detecting a confounding effect can be seen in the random forest depicted in Figure 1 g. Building on

the modeled demonstration in Figure 1, assume that a candidate DTU event was detected for the subgroup in Case-Complex sam-

ples. Supposing one covariate (age) was provided as input, the random forest attempts to regress IFj based on Xji = ½vj i;agei�. On the

upper panel, the first tree T1 finds the expected effectiveness of vector vj in separating low IFj values, as it was primarily inferred

based on IFj. A similar effective partition cannot be achieved with the provided covariate age in tree T2.

On the lower panel, however, a partition by age in T 0
2 demonstrates that age works as well as vj in T1, which implies that the iden-

tified DTU event cannot be confidently distinguished from a possible confounding effect of the covariate.

With the objective of estimating the importance of each covariate as well as vj in the partitioning of high vs. low IFj samples, we

conduct a permutation importance test73,74 on each random forest 4j. The permutation importance test is based on the coefficient

of determination R2
j of 4j, which is a score of how well IFj is predicted in tree leaf nodes.

Let 4j have L leaf nodes l1;.; ll;.; lL with IFj means IFjll
. Then,

R2
j = 1 � uj

�
vj
, where
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uj =
PL

l = 1

P
ci˛ ll

ðIFj i � IFjll
Þ2, and

vj =
P
I

ðIFj i � IFjÞ2.
Once theR2

j of 4j is calculated on 4jðXjÞ/yj, one of the covariate columns of the Xj matrix is randomly permuted to form X
zk;r
j , where

zk;r denotes a random permutation r˛P of the covariate xk column. R2
j

zxk ;r is then calculated on 4jðX
zxk ;r

j Þ/yj. The importance of co-

variate xk is then defined as the decrease in score:74

gxk
= R2

j � R2
j

zxk ;r : (Equation 4)

Although the significance criteria can be changed by the user, in the default settings of SPIT a candidate transcript is only labeled as

DTU with the following condition:

Q1

[
P
gvj ;r

> max
[

X
Q3

[
P
gxk ;r

; (Equation 5)

whereQ1 andQ3 refer to the 1st and 3rd quartiles of the permutation importance scores, respectively. The number of permutations for

the permutation importance test is a user-set parameter and defaults to 50.

As this confounding-control process is applied subsequent to SPIT-Test on candidate DTU transcripts, strong confounding

factors that are disproportionally observed in the control group might still affect the final results. SPIT-Test sets a significance

threshold based on the individual differences observed in the control group, and if strong confounding factors are present in

the control group and absent in the cases, the SPIT-Test might yield an overly stringent threshold, potentially diminishing

sensitivity levels.

Parameter-fitting
SPIT has two main hyperparameters that affect its behavior: bandwidth (h) for KDE-fitting, and k for p-value thresholding. The

choice of bandwidth (h) directly determines the level of smoothing in the KDE function, with larger values of h leading to over-

smoothed and smaller values leading to undersmoothed IF distributions.75 In contrast to the conventional interpretation of an

optimal bandwidth, selecting an optimal bandwidth for SPIT does not require achieving the highest possible accuracy in rep-

resenting the underlying IF histograms. This is due to the fact that overdispersion in RNA-Seq data can lead to overly erratic

histograms, which may be identified as multimodal by traditional approaches. Rather, selecting high values of h allows us to

reduce the risk of false discoveries by ‘‘oversmoothing’’ the input IF distributions and only detecting only the most significant

partitions in the data.

Similar to the choice of bandwidth, the optimal k value also depends on the level of dispersion present in the input dataset.

Smaller values of k lead to more stringent behavior by setting smaller p-value thresholds for detecting DTU events. To esti-

mate the optimal values of h and k for each dataset, SPIT implements a parameter-fitting process similar to cross-validation.

This involves creating a set of experiments by introducing simulated DTU events into the input control group, following the

same approach as used in the GTEx test experiments. Then, different combinations of h and k values are evaluated based

on their accuracy.

Given the set of case samples Icase and the set of control samples Icontrol, we define a number (ne) of experiments, T = ft1;t2;.;

tneg. To simulate each of the parameter-fitting experiments:

(1) Randomly divide Icontrol into two sets of equal size to create the simulation case and control groups, IScase and IScontrol, respec-

tively.

(2) Apply the SPIT pre-filter outlined above assuming the randomly assigned IScase and IScontrol. As with the GTEx test experiments,

we skip step 6 of the pre-filtering process.

(3) We repeat the steps 3–5 of the GTEx test experiment simulation on IScase and IScontrol, where the number of spliceotypes intro-

duced into IScase is a user-set parameter (ng;defaults to 5). For simple genetic disorders and experiments with small sample

sizes, ng can be set to 1 as a complex partition within the case group is either not expected or cannot be detected. The noise

parameter e can also be set by the user, and defaults to 0:05 as in the GTEx simulation.

In order to estimate the optimal values of h and k (i.e., h� and k�) out of all combinations within search ranges 0:02% h%0:20 and

k˛ f0:1;0:2;.; 1g, we employ a leave-one-out cross-validation (LOOCV) approach on the simulated set of experiments, T. For each

step s in ne number of iterations:

(1) Let TðsÞ = T \ ts. We run SPIT on TðsÞ with all ðhi; kjÞ
�� hi ˛ f0:02; 0:03;.; 0:20g; kj ˛ f0:1;0:2;.; 1g to yield estimated

F-scores, j.Fhi ;k

(2) Select ðh�s; k�sÞ such that jFh�s ;k�s = max
S

I;J Fhi ;k.

(3) Run SPIT on ts with ðh�s; k�sÞ to get Fs.

After ne iterations, we obtain a set of optimal hyperparameters and their corresponding F-scores: fðh�1; k�1Þ; ðh�2; k�2Þ;.; ðh�ne ; k�ne Þg
and fF1;F2;.;Fneg. The F-scores are defined as:
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F =
2tp

2tp+tp+fn
; (Equation 6)

where tp is the number of true positives, fp is the number of false positives, and fn is the number of false negatives. We select the

hyperparameter values with the highest consensus among the iterations as our estimated optimal values ðh�; k�Þ. The average

F-score (F) across all iterations can be interpreted as the overall F-score of the SPIT pipeline on the provided dataset, which can

help determine if SPIT is an appropriate analysis tool for the dataset. In general, larger sample sizes of the control group (nR 16)

are expected to improve accuracy of SPIT test as the U-statistic is nearly normal with n = 8 vs: 8.76 Consequently, the param-

eter-fitting experiments are expected to reveal the best results with control group sizes R32.

For the parameter-fitting experiments in this work, we used the default search ranges with ne = 10 and ng = 5. ðh�; k�Þ were esti-

mated as ð0:09; 0:6Þ for the GTEx simulation experiments, and ð0:06; 0:6Þ for the Lieber brain samples. Final F across 10 experiments

were 0:911 and 0:942, respectively.

SPIT’s parameter-fitting process can be time-consuming and computationally intensive, and it is an optional step. For instance,

running 10 experiments (n e = 10) on the 208 control Lieber brain samples took 640 min (10 h 40 min) on a typical personal laptop.

However, multithreading is available through GNU parallel.77 GNU parallel shares the parameter-fitting experiments between a spec-

ified number of threads. As a result, the number of threads GNU parallel will use is limited to the number of experiments, but the time

improvement achieved this way is linear. In the case of Lieber brain samples, utilizing 10 threads for 10 experiments reduces this

computation time from 640 min to � 1 h. Without parameter-fitting, the default values of ðh; kÞ are set to the estimated optimal

ðh�; k�Þ based on the GTEx dataset ð0:09;0:6Þ.

Removing outlier effects and tie-correction
Assume that a global minimum was detected in the IF distribution of case samples in order to partition subgroups for an arbitrary

transcript, and the left and right tails of the case and control groups were determined as lcase, rcase, lcontrol, and rcontrol.

We define a parameter nsmall, which defines theminimum size for subgroups that can be confidently detected and interpreted in the

given dataset. If either or both of the sizes of lcontrol and rcontrol are smaller, they can be expanded to the right and to the left, respec-

tively, until each contains at least nsmall samples for comparison. Unlike the tails of the control group, lcase and rcase represent mean-

ingful stratifications within the case group that may have biological implications. Therefore, the group sizes of both lcase and rcase need

to be at least nsmall. Otherwise, the stratification is considered unreliable due to potential influence of outliers. In such cases a Mann-

Whitney U test is conducted between the entire groups of Icase and Icontrol.

Additionally, in order to reduce the impact of insignificant differences between IF values in the Mann-Whitney U test, SPIT rounds

all IF values to three decimal points. A random value between � 0:0005 and 0:0005 are added to the IF values to break ties. Normal

approximation for the U-statistic corrects any remaining ties in the dataset. Although SPIT works well with smaller sample sizes (nR

12) for simple genetic architectures, it requires nR24 samples for each group for the normal approximation to be reliable in SPIT-

Test module. Exact U-statistic p-values are computed for group sizes smaller than 8 when there are no ties.

Filtered-CPM threshold
It is worth noting that although IFi;j values are not measures of gene expression, theymay still be affected negatively by extremely low

gene expression values. For an arbitrary transcript j of gene g, let samples a and b both have gc = 10, and ta;j = 2, tb;j = 6, respec-

tively. As a result we get IFa;j = 0:2 and IFb;j = 0:6, which seem to indicate a significant DTU while in reality a difference of 4 in read

count is negligible. Therefore, in order to avoid disproportionally inflated differences in IFj values, SPIT has an optional Filtered-

Counts per million (CPM) threshold which, for a transcript j of gene g, only considers the samples with CPM R 10 for g in the

Mann-Whitney U test. CPM values for this threshold are calculated on the selected subset of genes that pass the pre-filtering steps

above, assigning the total count of these genes as the library size for each sample. This threshold is only used with the real RNA-Seq

datasets analyzed in this paper, excluding all simulated experiments and parameter-fitting processes.

Flagging DTU genes based on likelihood scores
The KDE-fitting step of SPIT estimates a smoothed distribution for the IF values of each transcript in the case and control groups,

which can be exploited to further evaluate candidate DTU events. For an arbitrary DTU event in transcript j between case group

Icase and control group Icontrol, let the estimated kernel densities for Icase and Icontrol IF s be K0
case and K0

control, respectively.

In addition to theMann-WhitneyU statistic between the IF distributions of Icase and Icontrol, we also calculate the likelihood scores of

all
S

i˛ Icase

IFi;j using density function K 0
control, denoted as Lj. This gives us a measure of the probability of observing the IF values of the

case group given the IF distribution of the control samples. Upon collecting the likelihood scores of all transcripts
S

JLj, we label

outlier transcripts using a median absolute deviation (MAD) test with the conventional threshold of 3:5.78 As with the U-statistic

p-values, presence of subgroups within the case samples results in two separate likelihood scores for a single transcript, in which

case the smallest likelihood score gets assigned to the transcript. We assign a significance flag to any candidate DTU gene that

has at least one identified outlier transcript.
Cell Reports Methods 4, 100736, March 25, 2024 e5
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Small samples sizes in SPIT-Test
The Mann-Whitney U statistic approaches a normal distribution for comparisons with sample sizes greater than or equal to 8 vs. 8.

With a small control group size (< 16), each SPIT-Test iteration will result in at least one random half of the control group with size < 8.

As the group sizes for comparison decrease, the variability in p-values diminishes, resulting in only the lowest possible p-values,

indicative of a full or nearly full separation of ranks between the two groups, being obtained at the end of iterations.

The reduced variability in p-values also introduces a greater dependence on sample size, leading to an imbalance between the

p-values obtained through the SPIT-Test and the final p-values derived from the comparison of the actual case and control samples.

To handle this, we address the random halves of the control groupwith a size < 8 by imputing random IF values and ensuring that they

are completed to match the sizes of the actual control and case groups. For instance, in a specific experiment with control and case

group sizes of 8 and 10, respectively, each iteration of the SPIT-Test initially splits the control groups randomly, resulting in groups of

4 vs. 4. Then, these groups are imputedwith random IF values to adjust their sizes to 8 vs. 10. The random splitting defined in step 2 of

the SPIT-Test iterations is skipped for these samples, conducting the Mann-Whitney U test directly on the imputed groups.

To increase p-value variability for small sample sizes while retaining control over the FDR rate, we also generate the null p-value

distribution bPS by randomly selecting a p-value from the 0:01 left tail at each iteration instead of the minimum p-value among all tran-

scripts. For instance, if there are 10;000 transcripts, this corresponds to a randomly selected p-value from the 100 lowest p-values in

each iteration.

Pseudo-inferential replicates for GTEx experiments
In order to run Swish and SPIT on the simulatedGTEx experiments with inferential replicates, theGTEx sampleswere quantified using

Salmon,70 generating 30 inferential replicates for each experiment. Each of these inferential replicates were then downscaled to the

set of prefiltered transcripts in each experiment, and count estimates were converted to abundance estimates. Finally, for the DTU

transcripts in each experiment, the abundance estimates in inferential replicates were replaced with the simulated IF values.

Sashimi plots and analysis on tissue-dependent DTU events
To obtain the necessary data, we aggregated the read alignments from all samples in each tissue using TieBrush79 and used its mod-

ule TieCov to extract base-pair and junction coverages.

To manually validate the presence of differentially expressed signals between transcripts at a locus, we constructed sashimi plots

for each gene in the evaluation.79,80 These plots, shown for each gene in Figure 3, depict the coverage from each tissue tested for that

specific locus. All coverage values obtained using TieCov were normalized using the following formula:0BBB@ CiPN
j = 0

Cj

1CCCA$106

where Ci represents the coverage at a given position being normalized, and N is the length of the locus.

To assess differences in the transcriptional landscapes between tissues at each locus, we calculated the change in coverage

compared to the average across all GTEx samples (D). In Figure 3, the D track represents the results obtained by subtracting the

normalized coverage values of each tissue from the normalized coverage of the entire GTEx dataset.

In order to run SPIT, all samples were quantified using Salmon70 with CHESS 341 as reference annotation. The ðh; kÞ parameters for

SPIT were set as ð1;0:6Þ: the bandwidth of 1 ensures that we do not search for subgroups when comparing two tissue types. The pd

parameter was set to 0:75 in prefiltering, and the filtered-CPM threshold defined below was employed.

To compare results for the 4 genes with tissue-dependent DTU, we additionally runDRIMSeq, satuRn, limma diffSplice, and edgeR

diffSplice on the each dataset filtered with the SPIT prefiltering process. All the DTU tools successfully identified the DTU genes being

searched for. Since the ground truth of all DTU events is not defined between these tissues, there is no way to compare the robust-

ness of results outside of the queried genes. However, the total number of candidate DTU genes detected by each tool (with target

FDR = 0:05, and k = 0:6) is different, and provided in Table S3 as a measure of sensitivity and stringency.

For the analysis of genes ANK3 and MEF2C, the empirical p-value correction of satuRn fails due to the high number of DTU tran-

scripts. Hence, the raw p-values are used with Benjamini-Hochberg correction81 in the results as recommended.

The number of detected DTU events are on the same scale between all tools with the exception of satuRn, which yields much

smaller sets of DTU genes in experiments with empirical correction. The total compute time of each tool for the experiment with

the largest sample sizes (SLC25A) is also included in Table S1 serving as a metric for scalability with large datasets.

Quantification of the GTEx heart (left ventricle) samples
Transcripts were quantified using Salmon, using the entire genome GRCh38.p14 as a decoy sequence and the reference annotation

RefSeq (release 110).82 TPM values computedwith Salmonwere scaled up to library size using the ‘‘dtuScaledTPM’’ conversion from

tximport.38 All downstream analyses used scaled read counts as the unit of expression measurement.
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Assessment and quantification of Lieber brain samples
The sequencing quality of all brain RNA-Seq samples were assessed with FastQC83 and MultiQC,84 and outlier samples were

excluded from the analysis. Samples with postmortem intervals of R60 hours were also excluded. Salmon70 was used to quantify

all transcripts in the reference annotation CHESS 341 using the entire GRCh38 genome as a decoy sequence. As with the GTEx sam-

ples, TPM values computed with Salmon were scaled up to library size using the ‘‘scaledTPM’’ conversion from tximport.38

As an extra quality control measure, we removed samples with a high proportion of genes exhibiting low expression. To do so, we

first calculated the number of genes within each sample with Filtered-CPM %10. We then applied the median absolute deviation

(MAD) test with a cutoff of 3:5 to remove samples with a significantly higher number of low count genes. The entire pipeline is

then rerun on the selected samples, including the pre-filtering steps.

In the SPIT prefiltering process, the pd parameter was set to 0:75, which only includes genes for which the control group predom-

inantly expresses one dominant isoform in the analysis. This is based on the biological plausibility that if a gene has a single dominant

isoform in a healthy population, an isoform switching event is more likely to be disruptive. We have also applied the filtered-CPM

threshold described above. These strict filtering criteria could result in reduced sensitivity.

QUANTIFICATION AND STATISTICAL ANALYSIS

This paper introduces a statistical test, with detailed information available in the preceding section labeled ’method details’.
Cell Reports Methods 4, 100736, March 25, 2024 e7


	Detecting differential transcript usage in complex diseases with SPIT
	Introduction
	Results
	A demonstration on simulated data
	Partitioning of subgroups and DTU detection
	Accounting for inferential uncertainty
	Estimating dispersion with SPIT-Test
	DTU simulation and evaluation
	Evaluation with simulated RNA-seq reads
	Evaluation with real RNA-seq reads
	Genotype-Tissue Expression (GTEx) simulations
	Null GTEx simulation
	satuRn GTEx simulations
	Detecting known tissue-dependent DTU events
	SLC25A3
	ANK3
	MEF2C
	MYO1C
	Schizophrenia application
	GAS8 (Growth Arrest Specific 8)
	NVL (Nuclear VCP Like)
	LARP4 (La Ribonucleoprotein 4)
	BDH2 (3-Hydroxybutyrate Dehydrogenase 2)
	TRIP4 (Thyroid Hormone Receptor Interactor 4)
	CLDND1 (Claudin Domain Containing 1)



	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Declaration of generative AI and AI-assisted technologies in the writing process
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	Pre-filtering
	Test set with simulated RNA-Seq reads: “Swimming Downstream”
	Test set with real RNA-Seq reads: GTEx simulation
	Addressing confounding variables
	Parameter-fitting
	Removing outlier effects and tie-correction
	Filtered-CPM threshold
	Flagging DTU genes based on likelihood scores
	Small samples sizes in SPIT-Test
	Pseudo-inferential replicates for GTEx experiments
	Sashimi plots and analysis on tissue-dependent DTU events
	Quantification of the GTEx heart (left ventricle) samples
	Assessment and quantification of Lieber brain samples

	Quantification and statistical analysis



