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Abstract

Reliable sensory discrimination must arise from high-fidelity neural representations and accurate 

communication between brain areas. However, the coding and communication strategies used 

by neocortex to overcome the substantial variability of neuronal sensory responses remain 

undetermined1–6. To examine these components of perception, we imaged neuronal activity in 

8 neocortical areas concurrently and over 5 days in mice performing a visual discrimination 

task, yielding longitudinal recordings of >21,000 neurons. Our analyses revealed a sequence of 

events across neocortex starting from an initial resting state, to early stages of perception, and 

through formation of a task response. At rest, neocortex had one pattern of functional connections, 

identified via sets of brain areas that shared activity co-fluctuations7,8. Within ~200 ms after onset 

of a sensory stimulus, such connections rearranged, with different areas sharing co-fluctuations 

and task-related information. During this short-lived (~300 ms) state, inter-area transmission of 
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sensory data and the redundancy of sensory encoding both peaked, stemming from a transient 

increase in correlated fluctuations among task-related neurons. By ~0.5 s after stimulus onset, 

the visual representation reached a more stable form, whose statistical structure made it robust 

to the prominent, day-to-day variations in individual cells’ responses. About ~1 s into stimulus 

presentation, a global fluctuation mode arose that was orthogonal to modes carrying sensory 

data and that conveyed the mouse’s upcoming response to every cortical area examined. Overall, 

neocortex supports sensory performance via brief elevations in the redundancy of sensory coding 

near the start of perception, neural population codes that are robust to cellular variability, and 

widespread, inter-area fluctuation modes that transmit sensory data and task responses in non-

interfering channels.

Given a fixed sensory scene or object, sensory recognition is normally reliable. However, 

sensory cortical neurons have stochastic responses that vary over timescales from seconds 

to days1–4,6,9. These variations are often shared between cells and across cortical areas1–

6, raising basic questions about how neural populations encode and transfer information 

reliably despite activity fluctuations over multiple spatiotemporal scales9–11.

Many studies have argued neurons’ shared fluctuations constrain the signaling capacity 

of cortical coding3,12–14, while perhaps also facilitating the decoding of transmitted 

messages6,15,16. However, the relationships between shared fluctuations, the redundancy 

of large-scale neural coding, and the reliability of sensory cortical representations remain 

poorly understood. Neural populations can show greater long-term coding stability than 

single cells, but the mechanism for stability and its relationship to shared fluctuations merit 

further examination17–20.

Human neuroimaging studies usually interpret co-fluctuations across brain areas as 

denoting functional connections for information transmission8,21. Neuronal recordings have 

shown inter-area fluctuations can reflect arousal, neuromodulatory levels, or spontaneous 

movements11,22,23 and might also communicate functional information10. However, whether 

cortex uses inter-area fluctuations to encode task-related sensory data has not been tested 

empirically.

To uncover neural coding and inter-area dynamics promoting reliable sensory processing, we 

recorded neuronal activity across the entire visual cortex in mice performing a visual task. 

We analyzed thousands of cells, how their visual representations attain coding redundancy 

and long-term stability, and whether brain areas share information via co-fluctuations.

Imaging neuronal activity across cortex

To study visual processing, we trained head-fixed mice to perform a GO/NO-GO task 

(Fig. 1a,b; Methods). On each trial, mice viewed a moving grating stimulus (2-s-duration) 

oriented either horizontally or vertically (respectively termed ‘GO’ and ‘NO-GO’ stimuli). 

A half-second after the offset of a GO stimulus, the mouse could receive a reward by 

licking a spout. Incorrect licking after a NO-GO stimulus elicited an aversive air-puff. To 

minimize motor-related neural activity during stimulus presentation, we trained mice to 

withhold licking until the response-period (Fig. 1b). Near the end of training and before 
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brain-imaging began, we reduced the grating contrast so mice just surpassed 80% success on 

both trial-types.

As mice performed the task, we used a macroscope (16 mm2 field-of-view) to 

image somatic Ca2+ dynamics in neocortical layer 2/3 pyramidal neurons (Fig. 1c,d; 

Supplementary Video 1). To avoid conflating locomotor-evoked and visual neural signals, 

we only analyzed trials in which locomotion remained <1 cm·s−1. Each recording spanned 

nearly all of primary and higher-order visual cortical areas, plus parts of somatosensory, 

auditory, posterior parietal, motor and retrosplenial cortex. By identifying cells within 

concatenated datasets, we tracked 21,570 neurons [3597±1082 (±s.d.) in 6 mice that 

performed 2000±415 trials over 5–7 days; Figs. 1d,2a; Extended Data Figs. 1,2a–d], thereby 

attaining unprecedented, long-term and concurrent access to neuronal dynamics in multiple 

cortical areas.

Variability of cellular level coding

Across 8 cortical areas, many cells preferentially responded to one of the two stimuli, with 

variable time-dependencies across cells and areas (Extended Data Figs. 2e–h, 3a,b). To 

characterize cellular coding, we examined correctly performed trials and determined the 

statistical fidelity, d′, with which one could distinguish the two trial-types based on each 

cell’s dynamics during the stimulus, delay or response intervals. Notably, ( d′)2 relates to 

the Fisher information conveyed about trial-type12–14. In merged datasets across all days, 

most cells exhibited tuning to trial-type in at least one of the trial periods (16,682 cells 

with significant tuning; 10,329, 9204 and 11,958 in stimulus, delay and response periods, 

respectively; P<0.01; permutation test; 710–1,340 trials per mouse; Fig. 2b,c; Extended 

Data Fig. 2h). Fractions of cells tuned to trial-type were similar across visual areas, but the 

distributions of d′ varied, especially due to outlier cells with large d′ values (Fig. 2c,d).

Many cells had d′ values and coding properties that changed within individual sessions, 

even while their Ca2+-traces retained high signal-to-noise ratios and stable event rates 

(Extended Data Fig. 1i–k). Some cells increased their d′ values while others decreased theirs 

(Extended Data Fig. 2g,j). These bi-directional changes were balanced in magnitude, could 

not result from photobleaching, and were unlikely to reflect movement-induced effects, 

since movement nearly always increases pyramidal cell activity11,23,24.

To assess coding stability, we tested if cells concentrated their coding responses into sub-

portions of the ~1 h imaging sessions by computing d′ separately for the two halves of each 

session. We also analyzed shuffled datasets with random permutations of the trial order. 

If coding cells concentrate their responses into specific epochs, coding should vary more 

across half-sessions in real than trial-shuffled data, which indeed was so (Extended Data Fig. 

2e), indicative of intra-session coding fluctuations.

Many cells also had variable coding fidelity across days (Extended Data Fig. 2f,h,i). 

However, as in past work20, only a minority flipped their coding preference (1.7±0.9% 

of coding cells) and these cells had tiny d′ values (0.13±0.05, mean±s.d.; N=587 cells that 

flipped preference in 6 mice). Notably, fluctuations were correlated across time-scales; cells 
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with variable intra-day coding were ~4-fold more likely to have variable across-day coding 

(Extended Data Fig. 2l). The anatomic comingling of cells with greater and lesser stability 

(Extended Data Fig. 2i) and correlations between short- and long-term fluctuations make it 

hard to argue coding variability arose from imperceptible changes in image quality or focal 

plane drift.

Time-invariant decoding strategies

Given the non-stationarities in cellular coding, would an area receiving such variable signals 

need to continually adjust its readout strategy to optimally extract stimulus information? 

Ongoing plasticity might enable such adjustments, or, alternatively, neural ensembles might 

achieve reliability via redundant signaling across multiple cells, information encoded in the 

correlation structure of neural population activity, or combinations thereof 5,9,14,15,19,25.

To explore, for each brain area we trained optimal linear decoders to distinguish the two 

types of correctly performed trials based on neural ensemble activity in 100-ms time-bins 

(Methods). These ‘instantaneous decoders’ accurately determined the trial-type, and, as 

previously3, had a stable form over the latter 1.5 s of the 2-s stimulus presentation (Fig. 

3a,b; Extended Data Fig. 3c,f–h). Given this constancy, for the interval 0.5–2 s after 

stimulus onset we trained ‘consensus decoders’, whose performance matched or surpassed 

the instantaneous decoders in most time-bins (Extended Data Fig. 3g). Notably, the form 

of the consensus decoder was stable over days (Fig. 3c, inset), especially for visual areas 

(Extended Data Fig. 3i, insets).

This across-day stability led us to train one decoder for each area, plus a separate one for 

all areas grouped together, which we termed ‘common decoders’ and optimized for the 

0.5–2 s interval after stimulus onset using all correct trials from all sessions. Surprisingly, 

common decoders outperformed decoders optimized for single sessions; instead of yielding 

a suboptimal compromise between the best decoders for different days, common decoders 

benefited from training on multiple days’ data (Fig. 3c; Extended Data Fig. 3i). However, 

the existence of successful common decoders stemmed not just from greater training data, 

for when we trained them on equally sized datasets as single-day decoders, the two decoder-

types performed equivalently (Extended Data Fig. 3l). Although, in principle, common 

decoders could use stimulus- or choice-related neural activity to discriminate between trial-

types, in practice common decoders trained on stimulus-period data only used stimulus 

information (Extended Data Fig. 3j), implying their stability reflected that of stimulus 

representations.

To identify a basis for stability, we compared common and single-day decoders using trial-

shuffled datasets, in which each cell’s responses were randomly permuted across trials of 

the same type from the same day (Fig. 3d). Trial-shuffling leaves individual cells’ statistical 

properties unchanged but eradicates correlated fluctuations between cells. Unlike for real 

data, common decoders trained on trial-shuffled data performed equivalently or worse than 

decoders optimized for single days (Fig. 3d). Further, with real datasets, accounting for 

noise correlations was important for extracting information optimally, as decoders ignoring 

noise correlations did much poorer, especially for common decoders (Fig. 3e). Altogether, 
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accounting for correlated fluctuations was especially important for constructing decoders 

that were invariant across days (Extended Data Fig. 3i).

Why was accounting for noise correlations so beneficial to stable decoding performance? 

Strikingly, in real but not shuffled datasets, day-to-day changes in stimulus-evoked neural 

responses aligned to the principal eigenvectors of the noise covariance matrix describing 

trial-to-trial response fluctuations (Fig. 3f; Extended Data Fig. 4a). Mathematical modeling 

showed that this similarity between fluctuations on distinct time-scales allows common 

decoders to be naturally resistant to both forms of variability, instead of compromising 

between structures optimized for single days, and that this ‘dual robustness’ emerges even 

for simple feedforward networks in which activity fluctuations on different time-scales 

propagate through the same pathways (Appendix).

To examine how the mouse’s upcoming responses might have affected stimulus encoding, 

we trained ‘stimulus-only’ and ‘response-only’ consensus decoders that distinguished either 

the stimulus or the mouse’s upcoming response, with the other factor held fixed. For 

example, using trials on which mice withheld licking, we trained decoders to identify 

the stimulus-type. Cells making the largest contributions to stimulus- and response-only 

decoders were interspersed across cortex (Fig. 3g–j; Extended Data Fig. 4). Stimulus-only 

decoders attained high accuracy independently of the mouse’s upcoming response (P<0.7; 

signed-rank test; N=6 mice; Extended Data Figs. 3k,4), suggesting sensory cortex separably 

encodes stimulus- and choice-related signals. In accord, trial-type decoders for the stimulus 

period captured stimulus- not response-related information. Further, trial-to-trial variations 

in stimulus encoding were uncorrelated with the mouse’s responses (Extended Data Figs. 

3j,6d), suggesting incorrect responses were not directly related to the quality of visual 

coding and instead stemmed from other factors.

Notably, response-only decoders attained significant accuracy during stimulus presentation 

on GO but not NO-GO trials (Extended Data Figs. 3k, 4). Thus, cortex exhibits signals 

related to the mouse’s decision or lick preparation on GO trials that are absent on NO-GO 

trials. This may reflect differences in how the brain couples a GO cue to a correct response 

versus a failure to suppress licking after a NO-GO cue. Prior studies have reported similar 

asymmetries26,27.

Modulation of visual coding redundancy

Since classic studies of motion perception5,28, neuroscientists have appreciated that neural 

ensembles with correlated fluctuations encode information redundantly, allowing subsets of 

cells to convey most of the same information as the full ensemble3,5,12–14,25. However, past 

work has not directly measured how the redundancy of large-scale neural coding relates to 

shared fluctuations, especially across brain areas.

We examined 3 inter-related facets of redundancy: resilience to a hypothetical loss of one 

cell; the number of cells, N0.5, needed to convey 50% of the stimulus-identity information 

conveyed by all cells; and levels of correlated fluctuations between cell pairs (Fig. 3k–o; 

Extended Data Fig. 5). Unexpectedly, correlated fluctuations and visual coding redundancy 
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were time-varying throughout stimulus presentation. Both rose within 100 ms and crested 

~200 ms after stimulus onset, at which time N0.5 had its minimum value, stimulus coding 

was most redundant, and correlated fluctuations peaked (Fig. 3k–n). These conditions 

persisted only ~300 ms; subsequently, correlated fluctuations and redundancy declined and 

neurons acted more independently. On average across mice, just after stimulus onset N0.5 

was ~350 cells, but near stimulation offset N0.5 was ~800 cells (Fig. 3l). Within individual 

mice, the full range of redundancy (N0.5) variations was a factor of 3.5±0.5 (mean±s.e.m.; 

N=6 mice).

These changes arose from modulations in task-related neurons. Specifically, correlated 

fluctuations in similarly tuned stimulus-coding cells rose to a peak ~200 ms after stimulus 

onset (Fig. 3m). These correlation dynamics had greater amplitudes and distinct kinetics 

from those of single cell variability, arose within pairs of cells in the same or different 

areas, and could not be simply explained as due to changes in the activity rates of 

stimulus-coding cells (Extended Data Fig. 5e–k). Although some cells were modulated by 

the mouse’s upcoming response (11±3% of stimulus-coding cells; mean±s.e.m.; N=6 mice; 

P<0.01; permutation test), response-related modulations had slower kinetics than correlated 

fluctuations, and, at the neural ensemble level, were orthogonal to stimulus representations 

and did not affect stimulus-coding redundancy (N0.5) (Extended Data Fig. 6c,d). Throughout 

stimulus presentation, N0.5 varied inversely with correlated noise levels in similarly tuned 

cell pairs, with the same proportionality in all mice (r=0.9; P<1.4·10−25; Fig. 3o). Thus, 

the 3.5-fold variations in coding redundancy seen in individual mice reflected roughly 

comparable variations in correlated noise among task-related neurons. Since correlated 

fluctuations likely arise from cells’ shared inputs3,29, the invariant proportionality constant 

likely reflects invariant aspects of murine cortical connectivity. Overall, unlike in studies 

that assessed widespread noise correlations with lower time-resolution11, during passive 

viewing3,10,11, or without cellular resolution23, here noise correlations in task-related 

neurons rose in early phases of perception to more than triple the redundancy of sensory 

encoding.

We next examined how much of the information, ( d′)2, provided by our decoders was 

redundant across brain areas. Decoder outputs proved to be highly correlated between 

sensory areas; if on one trial stimulus encoding in one area was weaker or stronger 

than average, this was usually so in other areas (Fig. 4a–c; Extended Data Fig. 6). 

This interdependence and the resulting coding redundancy across areas had a similar time-

dependence as the noise correlations among task-related cells. Within ~200 ms of stimulus 

onset, decoder score correlations peaked, yielding a ~3-fold redundancy across the brain 

areas examined (Fig. 4d). This was not just from replication of information within V1, 

since the full set of cells conveyed almost twice the information as those in V1 (Extended 

Data Fig. 4b), suggesting higher-order areas receive additional information from outside 

V1. After attaining their peak values, coding redundancy and decoder score correlations 

declined for the remainder of visual stimulation. Near stimulus offset, visual representations 

in different areas were almost mutually independent, consistent with the vanishing correlated 

noise levels between cell pairs (Figs. 3m,4d). Overall, time-varying co-fluctuations among 

task-related cells greatly impacted visual processing, leading to several-fold increases in 
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coding resilience (Extended Data Fig. 5i), redundancy and inter-area correlations that peaked 

soon after stimulus onset.

Communication via inter-area fluctuations

Activity co-fluctuations of cell ensembles are thought to reflect shared connectivity, such 

as common inputs, or direct interconnections10,30,31. In the absence of sensory stimuli, 

such fluctuations can reflect an animal’s spontaneous behavior11. During sensory tasks, 

prior studies examined shared fluctuations across pairs of electrodes32–35 and decoder 

score correlations across a pair of brain areas36, but the anatomic distributions and time-

dependencies of neuronal co-fluctuations across multiple areas and how they relate to task 

performance remain unexplored10.

To identify co-fluctuating cell ensembles across pairs of areas, we applied canonical 

correlation analysis (CCA) to mean-subtracted neural activity traces, which represent trial-

by-trial activity fluctuations. CCA identifies dimensions of shared activity and paired sets of 

dynamical or communication modes10 (‘CCA modes’) ranked by their levels of co-varying 

activity (Extended Data Figs. 7–9; Methods). During visual stimulation the number of 

CCA modes with significant co-fluctuations varied across different pairs of areas but 

generally was <20 in our datasets (Extended Data Fig. 7). Inter-area, CCA fluctuation 

modes comprised ~60% of the total power of all cortical fluctuations, implying a majority of 

fluctuation power during visual stimulation propagates across cortical regions (Fig. 4e,f).

Given the time-dependence of task-related cells’ correlated fluctuations, we compared the 

CCA modes arising during visual stimulation to those present just beforehand. Strikingly, by 

~200 ms after stimulus onset, CCA modes present in inter-trial intervals had decayed and a 

new set of modes had activated (Fig. 4g; Extended Data Fig. 8). Thus, inter-area fluctuations 

in animals nominally at rest11,37 appear distinct from those during an active sensory task.

To characterize the spatial structure of inter-area fluctuations, for each choice of brain 

area as a source, we quantified the similarity of its CCA modes with each of the 7 other 

imaged areas. Strikingly, for every source area, the primary communication mode was nearly 

the same, irrespective of the target, implying there was a global mode of co-fluctuations 

(Fig. 5a,b). Secondary modes were more localized and shared across subsets of areas. For 

instance, V1 shared one secondary mode with areas A and S, and another with LV, MV and 

PPC (Fig. 5a–c). Thus, CCA revealed a hierarchical structure in which each area shared a 

global fluctuation mode with all other areas, and distinct secondary modes with different sets 

of areas.

We examined whether co-fluctuation modes carried signals relating to the discrimination 

task (Fig. 5d,e). About 0.5 s after stimulus onset, activity in the second and higher CCA 

modes accurately encoded stimulus identity. Up to ~80% of the total information encoded in 

cortex about stimuli identity was shared between areas in these modes, which conveyed 

almost nothing about the mouse’s upcoming response (Fig. 5e–f; Extended Data Fig. 

9a). Later, ~1 s into stimulus presentation, on GO trials the global co-fluctuation mode 

encoded the upcoming response but no stimulus information, consistent with our ability 
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to decode upcoming responses on GO but not NO-GO trials. Overall, neocortex uses 

non-interfering communication channels, viz. orthogonal co-fluctuation modes, to convey 

stimulus- and response-related signals to distinct sets of areas, in a targeted and global 

manner, respectively.

Discussion

By tracking neurons across all visual cortical areas, our study reveals information processing 

mechanisms that likely underlie reliable sensory performance. Historically, neuroscientists 

viewed correlated neuronal fluctuations as imposing limits on coding accuracy5,12–14, which 

our study supports. However, our data also show that accounting for correlated fluctuations 

facilitates the long-term reliability of neural population activity decoders, because day-to-

day variations in population coding strongly correlate with the faster coding variations 

occurring within individual days. This similarity across time-scales arises even in simple 

network models and enables decoding strategies that are intrinsically robust to both forms 

of variability (Appendix). Decoders that neglect correlated fluctuations lack this dual 

robustness.

Beginning <100 ms and reaching an apex ~200 ms after stimulus onset, task-related neurons 

across cortex momentarily increase their correlated fluctuations for ~300 ms. Importantly, 

these rapid dynamics in no way conflict with reports that variability in individual cells’ 

activity declines after stimulus onset38, a pattern that our data confirm (Extended Data 

Fig. 5e–g). Moreover, the modulation of shared fluctuations seen here in mice performing 

a visual task contrasts with findings in untrained mice passively viewing stimuli, during 

which modulations of shared fluctuations were unapparent in V13. Thus, task performance, 

long-term training, or both might alter the dynamics of correlated fluctuations19,39.

The stimulus-evoked increase in shared fluctuations among task-related cells boosts the 

redundancy of cortical representations several-fold within a ~300-ms-interval. The transient, 

shared fluctuation modes convey a majority (~80%) of sensory information across cortical 

areas within signaling streams orthogonal to that conveying the animal’s response. Here, 

information about the mouse’s upcoming response arose in a unique, global mode of 

fluctuations starting ~0.6 s and peaking ~1 s after stimulus onset. In visual tasks without 

a delay period, choice-related fluctuations arose sooner after stimulus onset40,41.

In our experiments, the time-interval following the redundancy peak, namely ~0.5–2 s 

after stimulus onset, was when our stimulus decoders attained a stable form (Fig. 3b). Our 

analyses of long-term decoder stability used data from this 0.5–2 s interval and showed that 

common decoders can succeed across days without need for daily adjustments. However, 

these results carry no implications regarding the long-term stability of stimulus decoders 

trained on time bins within the 0–0.5 s interval, during which decoder forms were changing 

too rapidly for us to draw conclusions about long-term stability.

The rise and decay of shared fluctuations seen here after stimulus onset may reflect 

successive feedforward and feedback phases of information flow across sensory cortical 

areas42–44. In this view, early sensory cortex uses redundant, inbound sensory data to 
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represent a stimulus’s basic features within the first few hundred milliseconds of its 

appearance; during later sensory processing, likely involving feedback from higher-order 

areas, the representations become less redundant and more efficient. This transition, 

which likely occurs more quickly in primates than mice, may reflect a shift in spiking 

patterns from those driven initially mainly by incoming sensory signals, arriving via 

overlapping connections, to those reflecting a rising influence of top-down or recurrent 

signals propagating through distinct circuitry. This processing shift may help relate local 

visual features to their global context or task demands42–44.

The time-varying, anatomic patterns of shared fluctuations likely support inter-area 

communication within distinct sub-networks. Human neuroimaging studies describe a 

‘default-mode’ network of areas, whose co-fluctuations typify the brain’s resting state7, 

and other sets of functionally connected areas that co-fluctuate during performance of 

specific tasks21. Here, inter-area co-fluctuations during a visual task differed from those 

during inter-trial intervals, providing cellular-level evidence of task-dependent changes in 

the brain’s functional connectivity. Bolstering the idea that shared fluctuations sub-serve 

specific components of animal behavior, information about sensory stimuli and upcoming 

responses were communicated to distinct groups of areas, in orthogonal fluctuation modes, 

and with distinct timing. Future work should quantify the extent to which fluctuation modes 

are task-specific or generalize across tasks with similar components.

It is striking that response-related data was transmitted within a global fluctuation mode 

that engaged every area examined. Past observations of widespread fluctuations came from 

animals with no active task to perform10,11 or in which fluctuations reflected spontaneous 

movements or arousal23. Notably, widespread dissemination of perceptual decisions across 

brain areas distinguishes some models of conscious perception45, and, when related to 

reward expectation, is a key element in some models of reinforcement learning46. As 

past reports suggest brain connectivity might resemble ‘small-world’ networks47,48, we 

simulated small-world networks with varying connectivity and linear dynamical fluctuations, 

but they all lacked a global fluctuation mode; however, networks in which a single source 

broadcasted common signals to multiple areas did exhibit a global mode (Extended Data 

Fig. 9). Future work should determine whether such a broadcast exists in the mammalian 

brain, and, if so, in which area or areas it originates.

Methods

Mice

The Stanford University Administrative Panel on Laboratory Animal Care approved all 

procedures using animals. For imaging studies of layer 2/3 neocortical pyramidal neurons in 

live mice, we used 4 male and 2 female triple transgenic GCaMP6f-tTA-dCre (Rasgrf2-2A-
dCre; Camk2a-tTA; Ai93) developed by the Allen Institute. Mice were 10–16 weeks old at 

the time of surgery.
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Surgical procedures

To prepare mice for in vivo imaging sessions, we performed surgeries while mice were 

mounted in a stereotaxic frame under isoflurane anesthesia (1.5–2% isoflurane in O2). 

To reduce post-operative inflammation and pain, we administered a preoperative dose 

of carprofen (5 mg/kg; subcutaneous injection into the mouse’s lower back), which we 

repeated once a day for 3 days following the surgery. We created a cranial window by 

removing a 5-mm-diameter skull flap (centered at AP −2.5, ML 2.7) over the right cortical 

area V1 and surrounding cortical tissue. We covered the exposed cortical surface with a 

5-mm-diameter glass coverslip (#1 thickness, 64–0700, CS-5R, Warner Instruments) that 

was attached within a circular steel annulus (1 mm thick, 5 mm outer diameter, 4.5 mm inner 

diameter, 50415K22, McMaster) and secured to the cranium using ultraviolet-light curable 

cyanoacrylate glue (Loctite 4305). Using dental acrylic, we cemented a metal head plate to 

the skull for head-fixation during imaging. In vivo brain imaging studies commenced at least 

7 days after surgery.

Retinotopic Mapping

To locate the boundaries of the visual cortical areas, we performed retinotopic mapping 

of the visual cortex in awake mice using wide-field Ca2+ imaging by adopting a protocol 

that was used previously for retinotopic mapping by intrinsic signal imaging49–52. As in all 

subsequent imaging experiments, we held mice atop a 11.4-mm-diameter Styrofoam ball 

(Plasteel Corp.) using a two-point head holder positioned under the objective lens of our 

custom-built epi-fluorescence macroscope (see below, Fluorescence Macroscope; Fig. 1a). 

The styrofoam ball floated on a thin layer of water within a plastic bowl of nearly identical 

diameter (Critter-Cages), as previously described53.

Mice viewed a visual stimulus comprising a drifting bar (10 deg wide) displayed on a video 

monitor positioned 13 cm from the left eye. The bar swept across the entire monitor in 14 s 

at a speed of 7 deg · s−1 and was filled internally with a contrast-reversing checkerboard 

pattern (0.035 deg−1 spatial frequency; 1.25 Hz temporal frequency of checkerboard 

reversal). The bar drifted either left, right, up or down on the monitor; each mouse viewed 

100 repetitions of this stimulus for each direction of motion. The monitor remained gray 

for a 2-s-interval between successive stimulus repetitions49,51. Throughout the mapping 

session, we imaged baseline and evoked neocortical Ca2+ activity using the fluorescence 

macroscope.

The visual stimulus used for mapping generally evoked retinotopic neural Ca2+ activity 

across the visual cortex, followed by a strong decline in Ca2+ activity below baseline levels. 

For each direction of stimulus motion, we computed the trial-averaged video of evoked Ca2+ 

activity, M (a three-dimensional matrix with spatial indices i and j, and a temporal index 

t), across all 100 stimulus repetitions, temporally aligned to the moment of stimulus onset. 

To map positions of the moving bar within the visual field to the corresponding anatomic 

coordinates within the visual cortical retinotopic maps, we calculated the phase of Ca2+ 

excitation within the i, jth pixel at each time t by approximating M with a factorized model 

of a moving wave for each stimulus direction, so as to minimize the reconstruction error:
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MinimizeA, f, p∑i, j, t Mijt − Aijf t − pij
2 .

Through this factorization we approximated the average movie M using a single waveform, 

f, with amplitude, Aij, and phase, pij , at the i, j th pixel. We determined the values for 

the matrices, A and p, and the function, f , by using gradient descent to minimize the 

squared reconstruction error, summed over all pixels and time bins. We spatially smoothed 

the resulting phase maps using a Gaussian low pass filter σ = 40 μm  (Extended Data Fig. 1).

Based on the smoothed phase maps determined for the vertical and horizontal directions of 

stimulus motion, we located the boundaries between V1 and the secondary visual areas (the 

medial visual (MV) and lateral visual (LV) cortical areas)49. We inferred the locations of 

other cortical areas by aligning the Allen Brain Atlas cortical map54 to the V1 boundaries 

determined in each mouse. Throughout the paper, for simplicity we refer to the union of the 

Lateromedial (LM) and Anterolateral (AL) cortical areas as the Lateral Visual (LV), to the 

union of the Anteromedial (AM) and Posteromedial (PM) areas as the Medial Visual (MV) 

areas, and to the union of the Rostrolateral (RL) and Anterior (A) areas as Posterior Parietal 

Cortex (PPC). This grouping of the smaller secondary visual areas reduced to 8 the number 

of areas used in our subsequent analyses.

Training Procedure and behavior

We trained mice to perform the GO/NO-GO task through successive stages of training 

(detailed below) that allowed us to gradually increase the complexity of the task performed 

by the mice while also ensuring that the association between visual stimuli and rewards 

remained stable. All mice in this study associated a GO stimulus with a horizontal grating 

orientation. To prevent light from the visual stimuli from entering the fluorescence collection 

pathway of the microscope, the stimuli used only the blue component of the RGB color 

model, which was blocked by the fluorescence emission filter. We also placed a color filter 

(Rosco, 382 Congo Blue) on the monitor screen. The mean luminance from the stimulus at 

the mouse eye was approximately 5 × 1010 photons mm−2 · s−1, which is more than two 

orders of magnitude higher than the transition threshold to photopic vision in mice.

In the first stage, we trained water-deprived mice (target weight: 80% of initial body weight) 

to respond to a 100% contrast single drifting grating stimulus (2 s in duration; 2 Hz temporal 

frequency; 0.04 deg−1 spatial frequency; located within a 40-deg-wide circle at the center 

of a video monitor positioned 13 cm from the eye throughout all stages). In the first stage, 

mice learned that by licking a spout during presentation of the GO stimulus they would 

immediately receive a drop of 5% sucrose in water (~5 μL per drop). After a few days of 

training, mice that consistently licked only during GO trials progressed to the next stage of 

training.

In the second training stage, in addition to the GO stimulus, mice also viewed an orthogonal 

drifting grating stimulus or NO-GO stimulus. Similarly to the first stage, mice were trained 

to respond during the grating presentation, but we also included a grace period (1 s) at 

the onset of the grating stimuli that did not count towards a response. This allowed for 

Ebrahimi et al. Page 11

Nature. Author manuscript; available in PMC 2024 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



some level of compulsive licking. After the grace period, if mice responded during NO-GO 

stimuli, they received two aversive stimuli: (1) a small air puff (100 ms long) delivered 

to one eye of the mouse (contralateral eye to the stimulus); (2) simultaneously with the 

delivery of the air puff, the trial aborted and an 8-s-timeout period occurred, during which 

the video monitor was held entirely gray at its mean luminance value. During this timeout, 

any additional lick(s) by the mouse resulted in the delivery of additional air puff(s). Once 

mice learned to perform the visual discrimination correctly on >75% of trials by licking in 

response to the GO stimulus and not licking in response to the NO-GO stimulus, training 

progressed to its next stage.

In the third training stage, we sought to create a separate response window so that rewards 

would not be provided at the same time as presentation of the visual stimuli. In this stage, 

mice learned to withhold their licks during stimulus presentation and to wait for a response 

period that was cued by an auditory tone (3.4 kHz; 100 ms duration). As in the second 

training stage, if mice licked during the visual stimulus they automatically received an air 

puff and a timeout (timeout duration was 3 s in the third training stage). Because this 

training stage was the most challenging for the mice, we gradually increased the duration of 

the delay period either from session to session, or in 3 sub-blocks within one session, such 

that each mouse eventually performed the task with a delay of 0.5 s between the stimulus 

period (2 s duration) and the response period (3 s duration).

On a final day of training, we decreased the contrast of the moving gratings on both the GO 

and NO-GO trials to between 50 and 12% to increase the proportion of error trials. Mice 

received only a single day of training on which the visual discrimination task was presented 

with this reduced level of visual contrast. By the end of training, all mice used for neural 

Ca2+ imaging studies performed the task with an accuracy of >75% with the low-contrast 

stimuli, for both GO and NO-GO trials (Extended Data Fig. 1g,h; 83 ± 3% correct trials; 

mean ± s.e.m.; N = 6 mice). Mice took 21–29 days of training (mean: 25 days; N = 6 mice) 

to reach the end of the training protocol.

Fluorescence Macroscope

To image neural Ca2+ activity across 11 mouse cortical areas, we designed and built a 

custom wide-field fluorescence macroscope with a field-of-view spanning 4 mm in diameter 

(Fig. 1a). For epi-fluorescence illumination we used a light-emitting diode (LED) (Thorlabs 

M470L2) with an emission spectrum centered in the 440–480 nm range. The imaging 

pathway comprised an objective lens (Leica, 5.0× Planapo 0.5 NA; 19 mm working distance; 

anti-reflection coated for 400–1000 nm light; transmission >90% at 520 nm), a tube lens (75 

mm focal length; Thorlabs AC508–075-A-ML), a custom fluorescence filter cube (excitation 

filter: Semrock FF01–466/40–25; dichroic mirror: Semrock FF495-Di03, custom-sized to 35 

mm × 50 mm; emission filter: Semrock FF02–525/40, custom-sized to 30 mm × 30 mm), 

and a scientific-grade CMOS camera (Hamamatsu ORCA-Flash4.0 V2 sCMOS). To control 

image acquisition, we used HCImage software (Hamamatsu), which communicated with the 

camera via an Active Silicon Firebird Camera Link Board.

To collect light from the LED, we used a 75-mm-focal length focusing lens (Thorlabs 

LA1680, Thorlabs) to project convergent rays of excitation light at the back aperture of 
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the microscope objective. We aligned the focusing lens to provide approximately uniform 

illumination across the field-of-view (5 mm diameter), i.e. close to the regime of Kohler 

illumination, while also ensuring that the illumination rays were divergent as they entered 

the brain. The purpose of this illumination strategy was to create more intense illumination 

within neocortical layer 2/3 and to reduce fluorescence excitation within out-of-focus, 

deeper cortical layers. To improve the optical resolution at the periphery of the field-of-view, 

beyond the nominal ~2-mm-diameter field-of-view of the objective lens, we reduced the 

effective numerical aperture (NA) by placing a 10-mm-diameter iris at the back aperture of 

the objective lens.

We built the opto-mechanical assembly using a combination of commercially available 

components (Thorlabs) and custom-designed mechanical parts machined in high-strength 

7075 aluminum. The entire macroscope was mounted on a manual vertical translation stage 

that allowed the user to conveniently adjust the image focus by moving the entire optical 

pathway of the macroscope while the specimen was held immobile on the vibration-isolation 

table upon which the macroscope was built.

Image acquisition and preprocessing

We acquired Ca2+ videos of neural activity (20 fps; 2048 × 2048 pixels) on the fluorescence 

macroscope using 40–160 μW/mm−2 illumination. Custom software written in Matlab 

(version 2013b) controlled the presentation of the visual stimuli to the mouse, ran the 

behavioral apparatus via a NI-USB 6008 card, and triggered the start of video capture on the 

fluorescence macroscope.

After video acquisition, we downsampled each video to 1024 × 1024 pixels and 10 fps. 

Next, we corrected videos for lateral movements of the brain by using the Turboreg 

software package for image alignment55. To remove scattered fluorescence and background 

fluorescence signals from neuropil or neural elements outside the focal plane, we applied 

a gaussian spatial high-pass filter (σ = 80 μm) and calculated the movie of relative 

fluorescence changes, ΔF t /F0 , for each imaging session, where F0 is the mean activity 

of each pixel over the entire session and ΔF t  is the mean subtracted activity of each pixel at 

time t.

To quantify the slight lateral spatial displacements of the field-of-view between different 

imaging sessions, we computed the maximum projection image of each session’s ΔF t /F0, 

movie over its entire duration (~1 h per session). We used the Matlab ‘imregtform’ function 

to find the optimal ‘similarity’ transformations (translation, rotation and scaling) between 

the maximum projection image determined for the first imaging session and each of the 

other individual sessions. We aligned all Ca2+ movies to the movie from the first session 

using this same set of transformations. Finally, we concatenated the aligned ΔF t /F0 videos 

from all sessions and proceeded to extract individual cells and their Ca2+ activity traces (see 

below; Extended Data Fig. 1).
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Cell sorting

We extracted the activity of individual neurons from the concatenated ΔF t /F0 movies via 

the successive application of principal and independent analyses (PCA/ICA)56. We divided 

the concatenated, preprocessed Ca2+ video from each mouse (about 1 TB in size) into 16 

tiles; each tile comprised 256 × 256 pixels collectively covering about 1 mm × 1 mm in 

the specimen plane. We ran PCA/ICA in parallel for all 16 tiles on 16 separate computing 

nodes (20 cores per node; 320 total cores; about 4 TB of RAM (random access memory) 

for each movie) and thereby identified Ca2+ activity traces and spatial filters for individual 

neurons. To isolate each cell soma, we thresholded each cell’s spatial filter at 4 s.d. of its 

noise fluctuations (determined by fitting a gaussian distribution to the negative values of 

each cell’s spatial filter) and replaced all filter weights below this threshold with zeros. To 

attain a final set of Ca2+ activity traces, we re-applied the truncated spatial filters to the 

ΔF t /F0 movie (Extended Data Fig. 1).

To separate the sources of Ca2+ activity that represented individual cells from those that 

did not, for each mouse we took 3 of the 16 image tiles and we manually identified 

individual neurons based on both their morphologies and the temporal waveforms of their 

Ca2+ transients. To identify cells located within the other 13 tiles, we trained 3 different 

types of binary classifiers (Support Vector Machine (SVM), Linear Generalized Model 

(LGM) and Neural Network) to perform the classification based on the set of manually 

identified cells as training data and a set of 12 pre-defined cellular features that characterized 

a candidate neuron’s morphology (spatial features: eccentricity; diameter; area; orientation; 

perimeter; and solidity) and Ca2+ activity trace (mean peak amplitude of Ca2+ transients; 

signal-to-noise ratio between Ca2+ transients and baseline fluctuations; number of Ca2+ 

transients peaks that were 3 s.d. above baseline fluctuations; number of Ca2+ transients 

peaks that were 1 s.d. above baseline fluctuations; the difference of the mean decay and 

mean rise times of the Ca2+ transients, normalized by the sum of these two values; and the 

FWHM of the average Ca2+ transient) to perform this classification. We used the trained 

classifiers to identify cells in the 13 remaining tiles based on a majority vote of the 3 

classifier outputs. We manually checked that every cell determined by this algorithm indeed 

met our visual inspection criteria to qualify as a neuron.

Event detection and definition of active cells

Using the fluorescence activity traces for the sources identified as neurons, we created 

binarized Ca2+ event traces for each cell (100 ms per time bin). To do this, we first 

subtracted the median level of fluorescence from each trace; we then calculated the s.d. of 

each cell’s fluorescence fluctuations about baseline by fitting the statistical distribution of 

the activity trace’s negative values to a gaussian function constrained to have zero mean. 

To identify individual Ca2+ events, we looked for individual Ca2+ transients with peak 

amplitudes >4 s.d. above baseline fluctuations. The resulting binarized event traces had 

entries of ‘1’ between the time at which the fluorescence amplitude of a Ca2+ transient 

surpassed 4 s.d. and the time at which the fluorescence amplitude started its decline back 

to baseline levels (Extended Data Fig. 1b). Entries were ‘0’ for all other time bins. To 

account for slight day-to-day variations in the illumination, optical focal plane, or amplitude 
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of fluorescence fluctuations, we performed these computations separately for each imaging 

session.

To determine if a cell was active during an individual imaging session, we counted the 

number of time bins in the session in which the cell’s fluorescence emission was >3 s.d. 

above baseline fluctuations. We considered the cell to be ‘active’ if this number was >2 

times greater than what would be predicted based on a null hypothesis that the fluorescence 

variations simply reflected gaussian-distributed noise (i.e., the prediction that 0.27% of the 

time bins per session should have trace values >3 s.d. above baseline fluctuations), (Fig. 2a; 

Extended Data Fig. 1d).

Assessments of spatial alignment quality

To evaluate the quality of spatial registration between datasets from different imaging 

sessions, we computed the spatial cross correlation functions between corresponding image 

patches, (256 μm × 256 μm in size) within the maximum projection images determined 

from the Ca2+ videos from the first imaging session and one of the subsequent sessions. We 

determined the slight day-to-day shifts in each patch’s location by finding for each session 

the displacement value corresponding to the peak amplitude in the cross-correlation function 

(Extended Data Fig. 2a). By sliding the location of the 256 μm × 256 μm patch used in this 

computation across the field-of-view, and computing the spatial cross-correlations for each 

location of the patch, we constructed maps of spatial displacement across the imaging field. 

These displacement maps revealed that our spatial alignments were almost perfect near the 

center of the field-of-view (mean displacements <1 pixel), and slightly deteriorated near the 

corners of the field-of-view (mean displacements ≈1 pixel).

To evaluate how these small imperfections in spatial registration might have affected 

alignments of cells and their identities across imaging sessions, we determined the 

displacement of each cell across sessions by examining 256 μm × 256 μm image patches 

centered on each cell on each day of the experiment and then computing spatial cross-

correlation functions as above. We determined each cell’s day-to-day displacements in 

the datasets by identifying the maxima of these cross-correlations. This analysis showed 

that 98.5% of cells exhibit ≤ 1 pixel displacement across days (Extended Data Fig. 2b). 

We calculated each cell’s mean displacement across all imaging sessions and plotted the 

cumulative distribution of cells’ displacements by pooling the data from all mice (Extended 

Data Fig. 2c). For each cell, we also measured the distance to the nearest neighboring 

cell and plotted the cumulative distribution of these values for all mice (Extended Data 

Fig. 2d). A comparison of these two cumulative distributions revealed only a small overlap 

(~2%) between them, indicating that slight imperfections in image alignment did not affect 

registrations of cells’ identities across days.

Analyses of single cell coding

To characterize the extent to which individual neurons responded differentially to the 

two visual stimuli, we calculated the fidelity, d′, with which the two stimuli could be 

distinguished based on a cell’s stimulus-evoked dynamics:
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d′ = MGO − MNO − GO

0.5(σGO
2 + σNO − GO

2 )
,

where MGO and MNO − GO are mean values and σ2
GO and σ2

NO − GO are variances of the cell’s 

evoked Ca2+ dynamics (based on the binarized Ca2+ event traces) in response to GO and 

NO-GO stimuli. We computed these quantities as trial-averages across either the stimulus, 

delay or response periods of the correctly performed trials, as specified in the figure 

captions. To allow evenhanded comparisons between single cell and neural population 

coding properties, for analyses of single cell stimulus-evoked responses we used the same 

time interval within the stimulus presentation period, [0.5 s, 2 s] after stimulus onset, that 

we used to train consensus decoders (see below). We also computed a distribution of d′
values for a set of trial-shuffled datasets, denoted d′shuffle . We created the set of trial-shuffled 

datasets by performing 1000 random permutations of the GO and NO-GO trial labels. We 

determined that an individual neuron coded significantly for stimulus identity during the 

stimulus, delay or response periods if the cell’s d′ value for that period was significantly 

greater than its d′shuffle values for the same interval (P < 0.01; permutation test; N = 710–1340 

trials). All analyses of single cell coding, as well as those of neural ensemble coding and 

CCA modes were done using only those trials on which the mouse’s locomotor speed 

remained <1 cm · s−1 throughout the trial.

Decoding neural population activity with optimal linear Fisher decoders

To quantify the information conveyed by neural ensemble dynamics about either the visual 

stimulus or the mouse’s response, we used partial least squares analysis (PLS) as a 

supervised method for performing a dimensionality reduction, followed by optimal linear 

decoding in the space of reduced dimensionality, to determine d′, the fidelity with which 

the two stimuli or two responses could be distinguished based on the activity patterns of 

the neural ensemble. The quantity ( d′)2 is a discrete analog of the Fisher information 

conveyed by the neural ensemble about the binary classification57. Recent theoretical and 

computational work has shown that this approach for determining ( d′)2 can yield accurate 

estimates even in the regime in which the number of experimental trials is far less than the 

number of neurons3.

For all decoding studies, we started by dividing all trials performed by each mouse into 

two distinct subsets, one used for decoder training and the other for decoder testing, and 

we represented the neural ensemble activity data in each subset using a three-dimensional 

tensor. The tensor elements, T ijk, denoted the binarized activity of cell i on trial j at time bin 

k (Extended Data Fig. 3c). To train decoders, we used two different ways to convert these 

tensors into two-dimensional matrices.

In the first approach, we fixed the value of k in the tensor and trained a separate decoder 

based on the two-dimensional data matrix, Xij, created for each time bin, k. We termed these 

decoders ‘instantaneous decoders’, because they allowed us to study the time-dependent 

dynamics of neural ensemble representations (Fig. 3a,b; Extended Data Fig. 3f,g). Notably, 

however, the instantaneous decoders of stimulus identity were largely stationary across 
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the interval [0.5 s, 2 s] after stimulus onset. Based on this finding, we also pursued a 

second decoding approach that involved what we termed a single ‘consensus decoder’, 

which was designed to capture the non-dynamical aspects of the neural ensemble stimulus 

representations across all time bins in the [0.5 s, 2 s] interval.

In this second approach involving the consensus decoder, we took all 15 time bins of 100 

ms each within the [0.5 s, 2 s] interval and concatenated the data from these time bins 

along the trial index dimension, yielding a two-dimensional data matrix, Xij . This matrix 

contained the data from the same number of cells as used for instantaneous decoding, but the 

effective number of trials was 15 times larger (Fig. 3c–j; Extended Data Fig. 3g). We used 

these matrices Xij to train the consensus decoders of either stimulus identity or the mouse’s 

response.

An important consideration when training optimal linear Fisher decoders of either the 

instantaneous or consensus type was the fact that Fisher decoders require an estimate of 

the inverse of the noise covariance matrix of the neural ensemble activity patterns. When 

the number of recorded neurons surpasses the number of experimental trials, one cannot 

accurately estimate the individual elements of the noise covariance matrix. However, the 

principal eigenmodes and eigenvalues of this matrix can be determined accurately with a 

much smaller number of trials than neurons, which in turn enables accurate decoding and 

estimation of ( d′)2 values3.

To achieve these estimates, as in our prior work we first used PLS analysis to perform 

a supervised linear dimensionality reduction3 by identifying dimensions of the neural 

population activity in which the amplitude is correlated with the outcome of the binary 

classification task58,59. The decoding strategy involved retaining a moderate number of these 

activity dimensions—while discarding the others—and then computing the optimal linear 

Fisher decoder and its associated d′ value in this space of reduced dimensionality.

To train the optimal linear Fisher decoder for one of the binary classifications (i.e. of either 

the stimulus identity or the mouse’s response) we split the two-dimensional data matrix, Xij, 

as determined above, into two subsets, XA and XB, corresponding to the pair of conditions 

to be decoded. Specifically, the conditions A and B referred either to the two different visual 

stimuli or the two different possible responses by the mouse. Each row of the matrices XA

and XB represented the neural activity data on a trial of type A or B, and each column 

represented the activity data from an individual neuron across all trials of this type. We 

randomly sub-sampled (with no replacement) the rows of XA and XB to create three distinct 

equally-sized smaller data matrices, denoted Xdr, Xtr and Xte, which we respectively used for 

dimensionality reduction, decoder training and decoder testing, such that all the data from 

any given trial was only used in one of these three matrices. Specifically, we used Xdr to find 

the set of PLS basis vectors, which comprised the columns of a coordinate transformation 

matrix, U. We transformed the training and testing datasets into the coordinate system 

defined by these PLS basis vectors:
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X̂tr = Xtr ⋅ U

X̂te = Xte ⋅ U ,

We systematically varied from 1–50 the number of PLS dimensions retained for the 

decoding analysis; the .  symbol indicates the vector space of reduced dimensionality. To 

determine the number of retained dimensions that yielded the highest decoding performance, 

we evaluated and optimized decoder performances through a cross-validation procedure 

(Extended Data Fig. 3c). Specifically, in the space of reduced dimensionality, we computed 

the optimal linear Fisher decoder, wopt , from the training datasets, using the formula

wopt = Σ̂−1 ⋅ Δμ,̂

(1)

where Σ = 1/2 ΣA + 1/2 ΣB is the average noise covariance matrix and Δμ = μA − μB is the 

vector difference between the trial-averaged responses under conditions A and B . Δμ is also 

termed the ‘diagonal decoder’, namely a linear decoder that accounts for the mean responses 

under conditions A and B but not the covariances in these responses. We determined the 

binary decision boundary for the optimal linear decoder as the hyperplane normal to ωopt  that 

bisected Δμ. To attain a decoder output or ‘score’ for an individual trial in the experiment, 

we projected the neural population dynamics from that trial onto wopt and then subtracted 

1/2μavg ⋅ wopt,  where μavg  is the mean of μA and μB, so the decoder score would have zero 

mean when averaged across a set of trials with equal numbers of A and B trials. We 

determined the binary classification using the sign of the score. Using the testing dataset, we 

estimated the discriminability of the two trial types, d′opt
2:

d′opt
2 = wopt′Δμte

2

wopt′Σ̂tewopt
.

(2)

We repeated this process 100 times using 100 different random sub-samplings of the trials 

for the construction of the dimensionality reduction dataset, the training dataset and the 

testing dataset.

To examine the extent to which visual stimulus encoding remained stationary over the 

course of the experiment, we trained an optimal ‘common decoder’ on the data recorded 

across all imaging sessions. To create the common decoder, we pooled all the data from each 

mouse and divided this aggregate set of data as described above into three subsets, to be 

used for dimensionality reduction, decoder training and decoder testing. Given this division 

and using the procedures described above, we trained a consensus decoder for the interval 

[0.5 s, 2 s] after stimulus onset, yielding an across-day common decoder. We additionally 
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assessed the values of ( d′)2 for this common decoder on the testing datasets from the 

individual imaging sessions. This analysis revealed that the performance of the common 

decoder generally slightly surpassed that of decoders trained and tested on data exclusively 

from one imaging session (Fig. 3c; Extended Data Fig. 3i).

Analysis of error trials to distinguish neural coding of visual stimuli and mouse responses.

On trials on which mice performed the GO/NO-GO task correctly, the visual stimulus 

and the mouse’s response are perfectly correlated, precluding determinations of whether 

neural activity during the stimulus presentation is primarily evoked by the stimulus or also 

influenced by the mouse’s visual decision or information processing related to its upcoming 

response. To address this issue, we analyzed error trials and trained decoders of neural 

ensemble activity that were sensitive to only the stimulus or only the animal’s decision, 

while keeping the other factor fixed.

For example, on GO trials the mouse could either lick (Hit) or not lick (Miss) (Fig. 

1b). By training a ‘response decoder’ to discriminate between Hit and Miss trials based 

on the neural activity during the stimulus presentation period, we estimated the encoded 

information about the mouse’s upcoming response while it observed the GO stimulus. 

Because Hit trials were far more common than Miss trials, we randomly subsampled the 

set of Hit trials to construct unbiased datasets with equal numbers of Miss and Hit trials. 

Using these datasets, we trained consensus common decoders of neural population activity 

following the procedures discussed in the prior section above, as there were insufficient 

numbers of incorrectly performed trials to accurately train instantaneous decoders. Analyses 

of the visual stimulus period were based on the same interval, [0.5 s, 2 s] after stimulus 

onset, as that used to construct trial-type decoders. Because the timing of the mouse’s 

responses differed from trial-to-trial and across trial-types, we sought to retain sensitivity 

to the time-dependence of coding by evaluating the response decoders’ ( d′)2 values across 

the individual time bins of the trial structure. To construct the plots of Extended Data Fig. 

3k,4b–g, we identified the time bin of each trial with the maximum ( d′)2 value and used that 

( d′)2 value when tabulating the results across trials and mice. Our decoding results revealed 

distinct patterns of neural activity during GO stimulus presentations that were predictive 

of the mouse’s upcoming response. We also executed an identical decoding analysis using 

equally sized datasets constructed from the neural activity recorded on NO-GO trials (i.e., 
Correct Rejection and False Alarm trials). However, in this case we did not find neural 

activity patterns during stimulus presentation that predicted the mouse’s response (Extended 

Data Fig. 3k, 4e). Because the response decoders trained on GO and NO-GO trials were 

constructed using equally sized datasets, the differences in their performances cannot be 

readily explained as due to a discrepancy in statistical power.

To determine if visual stimulus coding during stimulus presentation might have been 

affected by the mouse’s upcoming response, we trained and evaluated separate common 

consensus stimulus decoders for Lick trials (False Alarm and Hit) and No-Lick trials 

(Correct Rejection and Miss), using the same methods as for response decoders and with 

equally sized datasets that were constructed via sub-sampling. This analysis yielded no 
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evidence that the quality of stimulus representations was impacted by the mouse’s upcoming 

response (Extended Data Figs. 3k,4b).

Calculations of information redundancy across cortical areas

To assess the extent to which Fisher information about the stimulus was represented 

independently across different cortical areas, we examined inter-area correlations in the 

output scores of the instantaneous neural activity decoders (see above). We quantified these 

correlations separately for the two types of correctly performed trials and then averaged the 

resulting correlation coefficients.

The results revealed that fluctuations in neural ensemble activity along the stimulus coding 

direction were strongly correlated between the different sensory areas just after stimulus 

onset and then progressively decayed (Fig. 4a–c; Extended Data Fig. 6). If information 

were represented independently in the different cortical areas, the sum of the information 

encoded in each of the individual brain areas would equal that encoded in the aggregate of 

all the brain areas25. Positive correlations in the decoder scores from different brain areas 

can reflect redundancy (Fig. 4d) such that this equality is not met and there are shared copies 

of the same information25:

Redundancy = ∑areas (d′)area
2

(d′)all areas
2 .

(3)

Determination of noise correlations among neuron pairs

To measure noise correlations between pairs of similarly tuned neurons, we trained 

instantaneous population decoders of the stimulus based on the neural activity recorded in 

each mouse on all trials performed correctly (see above). We selected cells that significantly 

contributed to each decoder by identifying those cells with decoder weights that deviated >2 

s.d. from the mean value across the entire set of cells considered (Fig. 3g–j). We divided the 

resulting set of cells into 2 groups, based on the sign of the individual cells’ mean-subtracted 

decoder weights as an indicator of similarity in the cells’ tuning to the visual stimulus. We 

then computed the noise correlation coefficients characterizing the joint activity fluctuations 

of pairs of cells around their mean responses. We averaged the values of these coefficients 

over the two types of correctly performed trials. The time dependence of these correlations 

closely resembled that of the noise correlations in decoder scores across brain areas (see 

above).

In our analysis, we did not find substantial noise correlations between cells with dissimilar 

stimulus tuning or between cells without stimulus tuning. This is in accord with our past 

findings in untrained mice viewing moving grating stimuli that differed by 60 deg in 

orientation3, but here, with trained mice actively performing a task involving an orthogonal 

pair of moving grating stimuli, the differences between the distributions of noise correlation 

coefficients between cell pairs with similar and dissimilar stimulus tuning were more 

substantial (Fig. 3m)43,60.
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To estimate the time-dependent mean variability, σ2 t , of individual neuronal responses in 

each mouse, we computed the variance in the activity level of each cell at time, t, relative to 

stimulus onset, across the set of all correctly performed GO and NO-GO trials. We averaged 

the results across all cells and both trial types. To compute the time-dependent Fano factor 

across the set of all neurons (Extended Data Fig. 5e), we divided σ2 t  by μ t , the cells’ 

mean response at time t , averaged over all cells and correctly performed trials. Both σ2 t
and the Fano factor declined after stimulus onset, consistent with previous studies (Extended 

Data Fig. 5e)38.

Determinations of information saturation in large neural ensembles

Prior theoretical and recent experimental work has shown that the Fisher information 

encoded in the dynamics of a cortical neural ensemble saturates at large ensemble sizes, due 

to the existence of eigenvectors of the noise covariance matrix with eigenvalues that grow 

linearly in the limit of large ensemble size (Extended Data Fig. 5a)3,5,14,25. To characterize 

this information saturation at each time bin after stimulus onset, we trained instantaneous 

decoders of the visual stimulus based on the activity of a subset of the neurons recorded in 

each brain area. We systematically varied the size of this subset and measured the encoded 

information using the decoder ( d′)2 values for each ensemble size, as averaged over 100 

random selections of neurons for each time bin during which the entire cell population 

significantly encoded information about the stimulus (P < 0.01; permutation test; N = 710–

1340 trials). We normalized the ( d′)2 values from each time bin to the total information 

encoded by all neurons during this same time bin.

In accord with recent studies of V13,25, in all the cortical areas examined here the 

information encoded by a cell ensemble saturated at large ensemble sizes (Extended Data 

Fig. 5a). Further, just after stimulus onset this saturation occurred at much smaller neural 

ensembles as compared to later on in the trial. As stimulus presentation proceeded, the 

functional dependence of ( d′)2 on ensemble size became more similar to the form observed 

in trial-shuffled datasets (Fig. 3k; Extended Data Fig. 5b,c).

To estimate the sensitivity of the ensemble neural code to the hypothetical loss of one 

neuron, we determined the number of neurons whose loss would result in a 10% decrement 

in the total information encoded by the cell population. We re-scaled the result to express the 

information loss per cell removed (Extended Data Fig 5h).

Determinations of the similarity between pairs of vector subspaces

To assess the similarity between two K-dimensional subspaces (Extended Data Figs. 3e, 5j), 

we first calculated the K × K matrix S = UTV , where U and V  are N × K matrices whose 

K orthonormal columns form a basis for each subspace. We then performed a singular 

value decomposition of S and determined the subspace similarity as the mean of the K
singular values. This calculation yields zero for orthogonal subspaces and one for identical 

subspaces. Since each singular value is the cosine of a canonical angle between the two 

subspaces, this measure is equivalent to the mean of the cosines of the K canonical angles.
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Assessments of how day-to-day drifts in neural encoding relate to trial-to-trial activity 
fluctuations.

To assess how the day-to-day variations in stimulus-evoked neural responses related to 

the trial-to-trial variations in these responses within individual imaging sessions, we first 

rescaled each neuron’s activity trace to have zero mean and unit variance on each day 

of the experiment. Using these traces, we calculated the noise covariance matrix of the 

stimulus-evoked neural responses on each day, and we averaged these matrices across the 

two trial-types. To identify the principle directions of the trial-to-trial activity fluctuations on 

each day, we performed an eigenvector decomposition of each of the averaged covariance 

matrices.

To examine how the day-to-day variations in the neural representations related to the 

trial-to-trial activity fluctuations, we projected the changes between successive days in 

the mean neural ensemble response on each trial-type onto the eigenvectors of the noise 

covariance matrix for the first day in each pair of consecutive days. (We obtained similar 

results if we alternatively chose the eigenvectors from the second day of each pair). We 

averaged the results over both stimuli and all pairs of consecutive days. As control, we 

performed the same analysis with trial-shuffled datasets, in which the noise covariance 

matrix was rendered isotropic by permuting the activity traces of each cell across trials of 

the same stimulus-type. The results showed that day-to-day drifts in the neural ensemble 

representations of the stimuli were significantly aligned with the principal directions of 

the trial-to-trial variations within individual days (Fig. 3f, Extended Data Fig. 4a). We 

obtained similar results when we projected the day-to-day changes in the visual stimulus 

tuning curve onto the eigenvectors of the within-day, noise covariance matrix. Please see 

the Mathematical appendix for a theoretical explanation for how this observation can enable 

optimal decoders to be robust across days, and also for an explanation of how this alignment 

between within-day fluctuations and across-day changes in mean neural ensemble responses 

can arise mechanistically in a simple network model without any fine-tuning.

Effects of correlated noise in a two-layer feedforward network model of visual cortex

To examine how redundant information coding across different neural ensembles is related 

to correlated fluctuations in activity that reflect neuronal connectivity patterns, we analyzed 

a two-layer feedforward network model, also discussed in Ref. (3). This network comprises 

an input layer of ‘sensory neurons’ and an output layer of ‘cortical neurons’, whose activity 

levels are respectively denoted by the vectors r and s and related by the expression

r = F W ⋅ s + ξin + ξout .

Here ξin and ξout are zero-mean gaussian-distributed additive noise vectors that represent 

the stochastic components of the input and output activity levels, W  denotes the connection 

matrix between the two layers, and F  is a non-linear transfer function relating the net input 

and output levels of activity. We approximate the response to a specific stimulus A via a 

Taylor expansion:
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rA = F W ⋅ sA + F ′ W ⋅ sA ξin + ξout

where the prime symbol denotes the first-derivative. Since both ξin  and ξout have zero 

means, the mean output response to this specific stimulus is μA = F W ⋅ sA  where sA is the 

mean activity evoked in the sensory layer by stimulus A. Under these assumptions, the noise 

covariance matrix between neurons in the cortical layer is:

ΣA = GAW Σin W TGA + Σout ,

where GA is a diagonal matrix whose elements denote the linear gain of each neuron around 

stimulus A, as determined from the function F ′. If all neurons operate at similar gains 

(assumed to be 1 here for simplicity), and if the noise terms ξin  and ξout  are uncorrelated 

between neurons, independent of the stimulus, and have variances, σ2
in and σ2

out, that are 

uniform for all cells in each layer, then:

Σ = σin
2 W ⋅ W T + σout

2 I ,

(4)

where I is the identity matrix. To compute the d′ 2 value for distinguishing between two 

distinct stimuli using an optimal linear decoder of activity in the output layer, the application 

of equation (1) above leads to:

d′ 2 = ΔμTΣ−1Δμ = ΔsTW T σin
2 W . W T + σout

2 I −1W Δs .

(5)

Our prior analysis of this model3 shows that if we replace W  in equation (5) by its singular 

value decomposition (SVD), the minimum number of neurons, N0.5
α , needed on average 

to extract > 50% of the encoded information along each left-singular vector, uα, of W  is 

determined by:

N0.5
α = 1

d‾α
2

σout
2

σin
2 ,

(6)

where d‾α
2 is the square of the α′ th largest singular value of W , divided by the total number 

of cortical neurons. From (4) we can also estimate the average value of the diagonal (Σɩɩ
− ) and 

non-diagonal (Σɩ ȷ
− ) elements of the noise covariance matrix:

Σɩɩ
− = σin

2 < wi, wi > + σout
2

(7)
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Σı ȷ
− = σin

2 < wi, wj >

(8)

where < wi, wi > = 1
N ∑i = 1

N wi
T ⋅ wi is a mean amplification factor, averaged over the N

singular vectors of W  (where N is the number of cells in the output layer) and < wi, wj > =
1

N N − 1 ∑i ≠ j wi
T ⋅ wj is the mean similarity between the receptive fields of cells in the output 

layer. Dividing (7) by (8) yields:

σout
2

σin
2 = < wi, wj > Σɩɩ

−

Σɩj
− − < wi, wi > .

(9)

Finally, substituting (9) into (6) yields:

N0.5
α = wi, wj

d‾α
2

Σɩɩ
−

Σɩj
− − wi, wi

d‾α
2 .

(10)

Equation (10) shows how the number of cells in the output layer needed to extract half-

maximal information is related to the basic structure of the connectivity matrix, W .

Empirical analyses of redundancy and noise covariance in cortical ensembles

To study whether equation (10) held empirically in our datasets, we computed the ratio, 

Σɩɩ
− /Σɩ ȷ

− , from our recordings of cortical neurons and studied its relationship to N0.5. In equation 

(10), N0.5
α  is related to an individual eigenvector of the connectivity matrix, W . The value of 

N0.5 for an entire neural ensemble will be primarily determined by those eigenvectors of the 

connectivity matrix that make significant contributions to stimulus coding. Since we do not 

have direct access to W , the connectivity matrix of the mammalian brain, to test equation 

(10) we estimated the noise properties of neurons that contributed significantly to stimulus 

coding.

To estimate Σ we computed the noise covariance for each stimulus separately and then 

averaged the results for both stimuli (GO and NO-GO). We estimated N0.5 during the 

stimulus interval separately for each time bin (Fig. 3l; see above for detailed methods). In 

our experiment, the N0.5 values and noise correlation coefficients varied over time during the 

stimulus presentation period. Equation (10) suggests that this time-dependence should be 

constrained such that there is a linear relationship between N0.5 and ( ∑ɩɩ

− / ∑ɩ ȷ
− ) at all time 

points. To test this, for each time bin we plotted the empirically determined values of N0.5

(Fig. 3l) against the ratio, ∑ɩɩ

− / ∑ɩ ȷ
−

, computed across the set of all cells that significantly 

encoded the stimulus type (see above for how we identified these neurons). The results 

were strikingly consistent with the linear relationship predicted by equation (10) (Fig. 3o). 
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The slope of the linear relationship was similar for all mice in the experiment, which 

presumably reflects conserved properties of the anatomical neural connectivity within the 

murine visual pathways, such as the degree of overlap in nearby cells’ receptive fields and 

the amplification factors across different stages of visual processing.

Analysis of canonical noise correlations

To examine the structure of correlated activity fluctuations across different cortical areas 

and their relationships to the representation of information, we used canonical correlation 

analysis (CCA)61 to study the co-variations of activity fluctuations within pairs of brain 

areas. For each trial type, we computed the trial-by-trial fluctuations in stimulus-evoked 

activity by subtracting from each fluorescence Ca2+ trace the mean Ca2+ activity trace, 

averaged over all trials. We concatenated the traces representing these fluctuations across 

trials that the mouse performed correctly. For a given pair of brain areas, we represented the 

dynamics in the two areas with matrices, X and Y . These matrices were Nt × N1 and Nt × N2

in size, where Nt was the total number of time points after the concatenation, and N1 and 

N2 were the numbers of cells detected in each brain area. We standardized these zero-mean 

matrices of fluctuations X and Y  by scaling each matrix column to have unit variance.

Following the standard approach in CCA, we identified two sets of loading vectors, wi

and vi , termed here as CCA modes, each of which was an activity mode within one 

of the two neural ensembles (i.e. with N1 and N2 elements, respectively). The index 

i ∈ 1,2, 3, … minimum N1, N2  denoted the individual modes, which we determined such that 

the projections of the neural activity fluctuations, X and Y , onto wi and vi, were maximally 

correlated between the two ensembles,

Maximizewi, vi Xwi
T ⋅ Y vi ,

(11)

subject to the normalization constraint, wi
TXTXwi = vi

TY TY vi = 1. Given this normalization 

condition, the quantity Xwi
T ⋅ Y vi  equals the correlation coefficient of the activity modes, 

Y vi and Xwi, in the two different brain areas. After finding the first CCA mode i = 1 , we 

identified successive modes in an iterative manner. Specifically, for all previously identified 

CCA modes we removed the CCA fluctuations, Y vi and Xwi, respectively, from X and 

Y . We applied equation (11) to the residuals and thereby identified a set of orthonormal 

fluctuation modes with correlation coefficient values that progressively declined with the 

index, i. To identify the maxima specified by (11), we first randomly initialized the vectors 

wi and vi while constraining them to have unity length. We then found values of wi and vi

that maximized the objective function in (11) by performing an alternating optimization62.

To create training and validation datasets, we randomly divided the full datasets into two 

subsets with equal numbers of trials, with all the data from each trial used only in one of 

the two subsets. We used the first subset to find the top 20 CCA modes for all pairs of 

cortical areas. We used the second subset of trials to determine the inter-area correlation 

coefficients of the fluctuations in each of the CCA modes; this revealed significant 
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correlated fluctuations in the test dataset with no signs of overfitting (Extended Data Fig. 

7d). We also performed a CCA of trialshuffled datasets. By comparing the correlation 

coefficients for CCA fluctuations in the real data with those observed across 100 different 

trial-shuffled datasets, we determined that the correlation coefficients in the real data were 

significantly larger than expected by chance (P < 0.01; permutation test; N = 710–1340 

trials; 525 cells per brain area on average, range: 31–2297 cells; Extended Data Fig. 7a).

We also measured the amplitude of canonical correlations separately for GO and NO-GO 

trials and found out that, on average, the correlation coefficients had similar values for the 

two stimulus types (Extended Data Fig. 7d). Thus, for most of our analysis, to simplify 

visualization of the data we combined the sets of mean-subtracted activity traces for the 

two stimuli and identified a single set of CCA modes between each pair of brain areas, 

independent of the stimulus type.

As a control analysis to ensure that the inter-area activity fluctuations we had identified had 

not artifactually arisen from slight errors in determining the boundaries between brain areas, 

we performed CCA analysis on a control dataset in which we excluded all cells located <60 

μm to the other brain area under consideration. These exclusions did not notably modify the 

amplitudes of correlated fluctuations or other aspects of our findings (Extended Data Fig. 

7e).

To assess how the CCA correlation coefficients varied as a function of time relative to 

stimulus onset, for each pair of brain areas we projected the neural activity at different time 

bins onto the CCA modes and computed the correlation coefficient using the validation 

dataset; this yielded different values of the correlation coefficients for each time bin 

(Extended Data Fig. 8a). Across most of the visual stimulation period, the CCA fluctuations 

exhibited significantly greater correlation coefficients in the real than in trial-shuffled 

datasets (P <0.01, permutation test, N = 710–1340 trials 525 cells per brain area on average, 

range: 31–2297 cells).

To examine how the brain’s fluctuations modes might change at the onset of visual 

stimulation, we first used CCA to identify a distinct set of CCA modes of the neural 

ensemble dynamics during inter-trial intervals (ITI), within the period [−2 s, 0 s] relative 

to stimulus onset. We then compared these CCA modes to those found within the visual 

stimulus period, [0 s, 2 s]. To do this, once we had identified CCA modes during visual 

stimulus presentation using training datasets, we extended the temporal range of the 

validation datasets to include the [−0.5 s, 0 s] interval. Conversely, once we had identified 

CCA modes during the ITIs, we extended the temporal range of the validation datasets to 

include the [0 s, 0.5 s] interval. We found that the correlation coefficient values of the ITI 

CCA modes declined upon stimulus presentation, whereas those for the stimulus period 

CCA modes sharply increased shortly after stimulus onset (Extended Data Fig. 8a). For each 

CCA mode index, i, we also compared the directions of the mode vectors within the neural 

population activity vector space for the two different sets of CCA results, by determining 

the cosines of the angles between the i’th CCA mode vectors from before versus after visual 

stimulus onset (Extended Data Fig. 8b).
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For comparison, we trained CCA modes using the data from the entire [−2 s, 2 s] interval, 

subsampled so that the training datasets were equally sized to those used to train the ITI and 

stimulus CCA modes from the [−2 s, 0 s] and [0 s, 2 s] intervals, respectively. At stimulus 

onset, many of these CCA modes exhibited either a rise or a decline in their canonical 

correlation coefficients, consistent with the results obtained when we trained CCA modes 

separately for the [−2 s, 0 s] and [0 s, 2 s] intervals. However, the values of the canonical 

correlation coefficients for the modes trained for the [−2 s, 2 s] interval were generally 

less than those of the CCA modes trained separately for the stimulus presentation and ITI 

presentations, suggesting that the implicit assumption in CCA of statistical stationarity does 

not hold at stimulus onset and that there is a bona fide transition in the noise correlation 

structure of cortical activity at stimulus onset.

Simulations of multi-area neural fluctuations

To study how neural connectivity can give rise to CCA modes that share information 

between brain areas, we modeled the linear network schematized in Extended Data Fig. 9f 

with Nc = 500 cells in each of one ‘early visual area’ and three ‘cortical areas’ (termed A, B
and C). Neural activity in the early visual area, E, were set by

E = vS + W DE uM + ξE ,

where S and M were 500-dimensional unit vectors (with fixed values in each simulation) 

representing input patterns of neural ensemble activity encoding the stimulus and the 

mouse’s response, respectively, and v and u were binary variables with values of either −1 

or 1 that represented the two stimulus and response conditions. W DE was a linear low-rank 

projection matrix from the space of the decision variable to that of the neural activity levels; 

we systematically varied the rank, k, of this matrix from 1–10 across multiple runs of 

the simulation. Specifically, W DE was the outer product of two Nc × k matrices in which 

all the elements were randomly and independently chosen from a zero-mean unit variance 

gaussian distribution, and each column of these two matrices was normalized to have an 

L2-norm of 1. ξE was an additive noise vector in which the individual elements were 

independently drawn from identical zero-mean gaussian distributions with variance = 1/Nc. 

The neural dynamics in areas A, B and C differed in that, instead of directly receiving 

stimulus information, they received it indirectly via a low-rank linear projection from area E. 

For example, activity levels in area A were set by

A = W EAE + W DA uM + ξA ,

where W EA and W DA are linear low-rank projection matrices; analogous equations governed 

the dynamics for areas B and C. As with ξE, the elements of the additive noise 

terms, ξA, ξB and ξC were independently drawn from identical zero-mean gaussian 

distributions with variance = 1/Nc. We systematically varied the ranks of the matrices 

W DE, W EA, W DA, W EB, W DB, W EC and W DC to have values between 1 − 10; for each of the 

10 different values of k, we repeated the simulations 25 times with different sets of 
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randomly chosen matrix elements and different randomly chosen values for S and M. We 

simulated each of the 250 models for 20,000 trials; on each trial, we chose the stimulus and 

decision variables, u and v, randomly and independently of each other. We used the methods 

described above to find the CCA modes of each model (Extended Data Fig. 9g–i).

Simulations of small-world networks

As shown in Extended Data Fig. 9f,g, global transmission of a common decision signal to 

multiple cortical areas can produce a global CCA mode that is shared among all pairs of 

cortical areas, similar to what we found in the real neural recordings. To explore whether 

a global CCA mode can also arise in the absence of a globally transmitted signal, we 

modeled networks with 11 brain areas that were interconnected according to a small-world 

connectivity rule63, with unidirectional connections30,64,65 (Extended Data Fig. 9b).

We simulated 30 different networks with varying degrees of interconnectivity and varying 

levels of randomness and regularity in the pattern of connections. For each network, we 

set the graph of connections by arranging the 11 brain areas in a ring formation. We then 

created unidirectional projections to each brain area from its K nearest neighbors on the ring 

(i.e., from K /2 neighboring areas on both sides of each brain area). To introduce randomness 

into the connectivity pattern, the brain areas sending each of these unidirectional projections 

were then randomly re-assigned with probability, P , to a different brain area that was 

randomly selected with uniform probability 1/ 11 − K  from among those areas that had 

originally lacked such a projection.

Within each area there were 500 neurons, whose activity levels were a linear function of the 

neural activity in the brain areas from which they received inputs:

Xn(t) = αξn(t) + β
K ∑m

Narea am, nW m, nXm(t − 1) .

Here Xn t  is a vector of 500 elements that represent the activity of the 500 cells in the 

n ‘th brain area at time t . ξn t  is an additive noise term for the n′ th area, in which the 

individual elements at time t were independently drawn from identical zero-mean gaussian 

distributions with a variance of 4 × 10−4 . W m, n is a 500 -rank projection matrix from area 

m to area n, in which all the elements were chosen randomly and independently from a 

zero-mean unit variance gaussian distribution; all the columns of W m, n were normalized to 

have an L2 norm of 1 . am, n = 1 if and only if there was an edge from node m to node n in 

the small-world graph; otherwise am, n = 0. The parameters α and β were gain factors; their 

relative amplitudes determined the degree of coupling between areas.

In general, β < 1, because increasing the value of β too close to 1 can cause the whole 

network to enter a global oscillation mode with a period of 2 cycles. With further 

increases of β 1, the network becomes unstable. Therefore, we selected β so as to 

provide strong coupling between brain areas while avoiding the fast global oscillatory 

mode. We simulated this linear system for all possible combinations of K ∈ 2,4, 6,8, 10

Ebrahimi et al. Page 28

Nature. Author manuscript; available in PMC 2024 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and P ∈ 0,0.2,0.4,0.6,0.8,1 . To reproduce CCA modes with similar correlation coefficients 

to those we had observed in the real cortical recordings, we set α = 0.01 and β = 0.9. For 

each set of K and P  values, we initialized the neural activity levels, Xn t , in the model with 

zero-mean gaussian noise with variance = 4 × 10−8 and ran the simulation for 50,000 time 

points. To avoid effects arising from initial transients, we omitted from all analyses the data 

from the first 500 time steps.

Data and statistical analyses

We performed all data and statistical analyses using MATLAB (version R2019a; 

Mathworks). All statistical tests were two-sided, except for permutation tests, which were 

one-sided. All signed-rank tests were Wilcoxon signed-rank tests.

Computational simulations

We performed all simulations using MATLAB (version R2019a; Mathworks).
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Extended Data

Extended Data Fig. 1. Long-term imaging and computational analysis of neural Ca2+ dynamics 
across multiple cortical areas during a visual discrimination task.
(a) Schematic of the algorithmic pipeline used for video preprocessing and cell extraction, as 

implemented using cluster computing.

Pre-processing (steps shown in green): For each movie of Ca2+ activity, we performed 

an image registration across all frames of the movie to correct for small displacements of 

the brain. We removed background noise and neuropil Ca2+ activity by applying a spatial 
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Gaussian high-pass filter σ = 80μm , and computed a movie of the relative changes in 

fluorescence ΔF t /F0 . We then aligned and concatenated all the ΔF t /F0) movies for each 

individual mouse, across all imaging sessions.

Cell extraction (steps shown in yellow): We divided each concatenated movie into 16 spatial 

tiles and then extracted individual cells within each tile by successively applying principal 

components and independent components analyses (PCA/ICA algorithm) to all tiles in 

parallel using the Stanford Sherlock computing cluster (using up to 320 cores and ~2 TB of 

memory for each concatenated movie).

Ca2+ event detection (steps shown in cyan): We converted the ΔF t /F0) traces for each 

neuron to traces expressing the time-dependent fluorescence changes as a z-score, z t , 

relative to the s.d. of the baseline fluctuations in each cell’s fluorescence trace (computed 

separately for each imaging session). We detected Ca2+ events by identifying Ca2+ transients 

that attained a peak fluorescence value of z t ≥ 4 s.d., and we assigned the cell as being 

‘active’ within the interval between the initial threshold crossing and the time at which the 

Ca2+ event attained its peak fluorescence (Methods).

(b) Left: A maximum projection image over an entire concatenated set of Ca2+ movies from 

an example mouse. Red lines mark the 4 × 4 set of tiles that we processed in parallel during 

cell extraction. Scale bar: 1 mm. Middle: Magnified view of the area enclosed in orange 

in the left panel. Scale bar: 0.1 mm. Right: Z-scored traces (colored traces) of fluorescence 

Ca2+ activity for 10 example neurons in the middle panel marked with color-corresponding 

boundaries. Raster traces show the binarized patterns of activity for each cell.

(c) Most detected cells were active in all recording sessions, as illustrated via a map, 

computed for one example mouse, in which each detected cell is marked with a color-code 

indicating the number of days in which it was detected as active (Methods).

(d) Histograms of the number of days that each cell was detected as active for 6 different 

mice. Error bars are s.d. estimated as counting errors.

(e) Vertical and horizontal retinotopic maps of visual cortex in an example mouse 

(Methods). After identifying borders of area V1 determined by retinotopic mapping studies 

in each mouse, we aligned these borders with those in the Allen Brain Observatory map of 

the mouse cortex and thereby inferred the locations of other brain areas.

(f) Histogram of the mean Ca2+ event rate for each of 21,570 cortical neurons (N = 6 mice). 

Error bars are s.d. estimated as counting errors.

(g) Mean probability of licking over the time course of a trial, averaged over all trials and 

trained mice, for Go (green) and No-Go (red) trials. Shaded areas denote s.e.m. over N = 6 

mice. After mice learned to discriminate between Go and No-Go visual stimuli, we trained 

them to withhold licking behavior during the stimulus presentation, [0 s, 2 s], and delay, [2 

s, 2.5 s], intervals and to respond only during the response interval, [2.5 s, 5.5 s] (Fig. 1; 

Methods). Trained mice occasionally licked before the response interval; we discarded these 

trials from our analyses to allow inferences regarding stimulus encoding, decision-making, 

and motor preparation in the absence of overt licking responses.

(h) The mean behavioral performance of all mice on Go (cyan) and No-Go (gray) trials 

in which the mouse did (right) or did not exhibit locomotor behavior (left) (Methods). 

Individual data points denote values from individual mice.

(i, j) For every individual cell (blue data points), the plots show the mean signal-to-noise 

ratio (SNR) of Ca2+ activity, i, or the mean rate of Ca2+ transient events, j, in the first half 
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of each imaging session versus that in the second half of the same session. From linear 

regression, the mean SNR and Ca2+ event rate in the second half of each session were 96 ± 2 

% (N = 6 mice) and 99 ± 3 % (N = 6 mice), respectively, of their values in the first half.

(k) A box and whisker plot of the Ca2+ event rate across all cells imaged for 5 days in 

each mouse (N = 2236–5292 cells). Horizontal lines indicate median values, boxes cover the 

second and third quartiles, and whiskers extend to 1.5 times the interquartile distance. Dots 

show median values for individual mice.
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Extended Data Fig. 2. Individual cortical neurons exhibit variable coding properties across 
time-scales from minutes to days.
(a) Maps for each of two example mice, showing how the mean lateral displacement in 

individual cells’ centroid positions across multiple imaging sessions depended on the cells’ 

locations in the field-of-view. Across most of the field-of-view, this mean displacement was 

<1 pixel, corresponding to < 4 μm. To determine these displacements, we first computed 

the maximum projection image (MPI) of the Ca2+ video acquired in each imaging session. 

Using the MPI from the first imaging session as a reference, we computationally aligned it 

to the MPI from each of the other sessions. We then computed the spatial cross-correlation 

function between patches of the MPI containing ≥10 cells from the first session (patch size: 

256 μm × 256 μm) and MPIs from each of the other sessions. For each session other than 

the first, we determined the displacement of an image patch to be the argument of the 

spatial cross-correlation function that yielded its maximum value. We then averaged these 

displacements across all imaging sessions subsequent to the first session. By examining all 

possible MPI patches (spaced 64 μm apart) in this way, we created the map shown. Scale 

bars: 1 mm.

(b) Two-dimensional probability distribution of cells’ daily lateral displacements from their 

mean position, averaged across all days of imaging and all imaged neurons (21,570 cells) 

from N = 6 mice (Methods). About 50% of the time, cells had a displacement of zero pixels 

from their mean position, and 98.5% of the time these displacements were ≤1 pixel (4 μm).

(c) Cumulative distribution of cells’ mean displacements (averaged over all days of imaging) 

from their mean positions as determined across the experiment. Red dashed line indicates 

that 95.4% of cells had a mean displacement of ≤5 μm.

(d) Cumulative distribution of the lateral separations between nearest neighbor pairs of cells. 

Red dashed line indicates that only 2% of nearest neighbor cell pairs were within 5 μm of 

each other.

(e) Among 18,528 cells with significant d′ values on one or more sessions for encoding the 

trial-type in the stimulus period (P < 0.01; permutation test; N = 94–354 trials), 41% of 

these cells had significant d′ values in only one half-session, split nearly evenly between 

the first (21%) and second (20%) half-sessions. Whereas in trial-shuffled data, only 10% 

of the cells had this variable coding, a highly significant difference from the real data (P 
< 0.001) indicating that trial-shuffling diluted the temporal concentration of trials in which 

cells had coding responses. Consistent with this, in the real data 91% of the 18,528 cells 

retained significant coding in one or both halves of the full sessions in which they displayed 

significant coding (P < 0.01; permutation test; 40–175 trials). But in trial-shuffled data, 

only 51% of the cells retained this coding in one or both half-sessions, a highly significant 

difference from real data (***P < 0.001; permutation test; 94–354 trials), again showing 

that in real data the cells had temporally concentrated coding epochs far more than expected 

by chance. These results are indicative of bona fide intra-session coding fluctuations. All 

s.d. values on the above percentages of cells were estimated as counting errors and were 

0.1–0.4%.

(f) Some cortical neurons had visual coding properties that varied across days. Shown are 

data from 4 example cells, for which the plot shows traces of the neuron’s fluorescence 

intensity (z-scored values of ΔF /F0) as a function of time across 5 imaging sessions. Vertical 

dashed lines mark transitions between successive imaging sessions. Insets show maximum 

Ebrahimi et al. Page 33

Nature. Author manuscript; available in PMC 2024 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



projection images of the example neurons, as determined over each individual imaging 

session. Values of d′ denote the fidelity with which one can distinguish the two visual 

stimuli based on the binarized event train of the cell’s Ca2+ activity (Methods). In panels f 
and g, values of d′ colored red are those for which the two stimuli cannot be significantly 

distinguished, as determined using a permutation test over the set of stimulus trials and 

requiring P < 0.01 for significance. The four example cells in this panel are from cortical 

areas PPC, MV, V1 and PPC, as arranged from top to bottom.

(g) Some cortical cells had visual coding properties that varied within the 1-h recording 

sessions. Shown are fluorescence intensity traces for 4 example cells (z-scored values of 

ΔF /F0) as a function of time across an individual imaging session. We measured d’ values of 

single neurons for the two different visual stimuli (gratings) separately during the first and 

second halves of each session based on their binary event traces computed from their Ca2+ 

activity. Cortical neurons that actively fired across the session exhibited variability in their 

visual coding, as well as cells that were not active throughout the session. The four example 

cells are from cortical areas LV, V1, MV and LV, as arranged from top to bottom. Insets: 

Example Ca2+ event images show that the same cells were imaged in the first and second 

halves of each session.

(h) Histograms of the number of days that neurons from each cortical area significantly 

encoded the visual stimulus type (permutation test over the set of stimulus trials; requiring 

P < 0.01 for significance), for all cells that did so in at least one session (solid bars) and for 

the subset of these cells with statistically significant levels of Ca2+ activity in every imaging 

session (hashed bars).

(i) A map of neurons from an example mouse, with the color of each cell denoting the 

number of days that the cell significantly encoded the visual stimulus type. Cells with 

different day-to-day reliabilities of stimulus-encoding were interspersed across the field-of-

view. Scale bar: 1 mm.

(j) A scatter plot in which, for every individual cell (blue data points), the d’ value for 

stimulus discrimination during the first half of each imaging session is plotted against the d’ 
value determined for the second half of the same session.

(k) A scatter plot in which, for every individual cell (blue data points), the mean d’ value for 

stimulus discrimination (averaged over all imaging sessions) is plotted against the range of 

d’ values determined for the same cell across all imaging sessions.

(l) A scatter plot in which, for every individual cell (blue data points), the mean difference 

between the d’ values for stimulus discrimination determined for the first and second halves 

of each imaging session is plotted against the s.d. of the d’ values determined for the 

same cell across all imaging sessions. Variability in d’ values within a session was highly 

correlated (r = 0.81) with variability across sessions, suggesting that some neurons have 

greater intrinsic variability in the fidelity of stimulus encoding than others.
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Extended Data Fig. 3. Neural ensemble representations of the visual stimuli were invariant over 
most of the stimulation period.
(a) Mean time-dependent rates of task-evoked Ca2+ events for 24 example neurons, 3 in 

each of 8 different cortical areas, as averaged across 5 days of imaging sessions in one 

example mouse on Go (blue traces) and No-Go (black traces) trials. Shading: s.d. across 415 

trials of each type.

(b) For the subset of cells that responded significantly to one of the two visual stimuli (see 

Fig. 2c), the plot shows the mean percentages of coding cells that responded to the Go 
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stimulus in each of 8 different brain areas. The remainder of the coding cells responded to 

the No-Go stimulus. Error bars: s.d. across N = 6 mice.

(c) Schematic of the computational pipeline used to train cross-validated instantaneous 

or consensus linear Fisher decoders. After constructing an unbiased dataset with equal 

numbers of Go and No-Go trials, we divided the set of trials into 3 equal portions, one used 

for dimensionality reduction, another used for decoder training, and the third for decoder 

testing. Using the first subset of trials, we applied a partial least squares (PLS) analysis 

to identify a low-dimensional subspace of the population neural activity with informative 

information for discriminating the two visual stimuli. Within this low-dimensional subspace, 

we used the second subset of trials to train a Fisher linear decoder (indicated by the vector 

Wdecoder) to discriminate the two stimuli. We used the third subset of trials to test the 

decoder’s performance. For both the training and testing datasets, we computed the fidelity, 

dʹ, with which the stimuli could be distinguished based on the evoked neural population 

activity. Similarly, to train decoders intended to identify the mouse’s decision from the 

neural activity, we followed the same computational procedures as for stimulus decoders, 

except we started with equal numbers of correctly and incorrectly performed trials with a 

given stimulus.

(d) Only a few of the dimensions identified by PLS analysis were required for optimal 

linear discrimination of the two stimuli. We trained consensus decoders based on the neural 

activity arising during the stimulus presentation, delay, and response intervals of the trials 

in which each mouse performed correctly. Plots show mean values of (dʹ)2 determined for 

decoder training (blue) and testing (red) datasets, versus the number of PLS dimensions 

used. When constructing each individual decoder, we used the number of PLS dimensions 

that maximized (dʹ)2 values for the testing datasets. All plotted values of (dʹ)2 are separately 

normalized for each mouse to the maximum (dʹ)2 value determined using the testing data. 

On average, with >5 PLS dimensions the decoders overfit the training data, as evidenced 

by (dʹ)2 values greater than those attained from the testing data. For shuffled datasets, the 

maximal (dʹ)2 values were achieved with 1 or 2 PLS dimensions (data not shown). Shading: 

s.d. across N = 6 mice.

(e) To assess the similarity between the PLS dimensions as computed for the data from 

different days, we computed the similarity of the subspaces defined by the top 3 PLS 

dimensions found for each mouse on different individual days (1–5) or for its across-day, 

common decoder (C) (Methods). We used the top 3 PLS dimensions, since these contain 

most of the information (panel d). The two matrices show the mean similarity values for 

all pairs of these subspaces, averaged over N = 6 mice, for real (left) and shuffled (right) 
datasets. Notably, for the real datasets the PLS dimensions for the common decoders were 

highly similar to those for the single-day decoders.

(f) Optimal linear decoders of stimulus type retained a constant form across the period 

of visual stimulus presentation. The 6 plots show the Pearson correlation coefficients, r, 
between all possible pairs of instantaneous decoders (constructed using all imaged neurons 

in each of 6 different mice), as computed for each time bin within the stimulus, delay or 

response intervals.

(g) Due to the stationarity of the optimal linear decoders across the period of stimulus 

presentation, f, consensus and instantaneous decoders of stimulus type performed nearly 

equivalently. To illustrate, the plots show mean values of (dʹ)2 for consensus decoders 
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of stimulus type versus those for instantaneous decoders, for trials in which the mouse 

performed correctly. Each data point shows the testing results attained by applying the two 

types of decoders to the data from an individual time bin within the stimulus presentation 

interval. In some mice, e.g. Mice 5 and 6, the consensus decoder achieved slightly superior 

decoding performance, presumably due to the larger set of training data used to construct 

consensus decoders.

(h) Similar results to those of panel f, computed separately for different cortical areas and 

averaged over 6 mice.

(i) Similar results to those of Fig. 3c, computed separately for different cortical areas.

(j) To measure the extent to which the trial-type decoders captured information relating to 

the stimulus (S) or the mouse’s response (R) in the stimulus (left plot), delay (middle) or 

response (right) periods, we projected the neural ensemble activity on all 4 types of trials 

(Hit, Miss, Correct Rejection, and False Alarm) onto the common trial-type decoders that 

we had trained for each period using only the correctly performed trials (Methods). We then 

computed the (dʹ)2 values plotted using sets of trials in which either the stimulus or the 

response was held constant but the other factor varied. Information (dʹ)2 about the stimulus 

did not vary significantly between Lick and No-Lick trials, so we averaged the (dʹ)2 values 

for the two types of stimuli in the left columns of each plot. However, response coding 

was much stronger on Go than No-Go trials (see panel k), so the right columns only show 

the (dʹ)2 values from Go trials. Each blue point shows data from one mouse (mean ± s.d. , 

N =100 different subsets of trials, each with equal numbers of trials of the two types). 

Red points denote averages across all mice (mean ± s.e.m. , N = 6). These results show 

that during the stimulus period the common decoders nearly exclusively captured stimulus 

information, which was 691 ± 315 times greater (mean ± s.e.m.; N = 6 mice) than the 

information captured about the mouse’s response. In the delay period, the relative proportion 

of response information rose, and during the response period the common decoders captured 

response information that was comparable or greater to the levels of information about the 

stimulus.

(k) The mean Fisher information encoded by the neural ensemble activity about the stimulus 

type is independent of the mouse’s upcoming response (top), as shown by comparing the 

( d′)2 values computed for consensus common stimulus decoders trained and tested on 

‘No-Lick’ trials to those for ‘Lick’ trials (P <0.7; Wilcoxon signed-rank test; N = 6 mice). 

However, on ‘Go’ but not ‘No-Go’ trials, the mouse’s response can be predicted (P < 0.01; 

permutation test; N = 40–754 trials) from the neural activity during the stimulus presentation 

period (bottom), as shown by comparing decoders trained and tested on No-Go trials to 

those for Go trials (P <0.03; Wilcoxon signed-rank test; N = 6 mice). For each comparison, 

we constructed training datasets for the two decoders to have equal numbers of trials, 50% 

of each type. Blue-shaded points are from individual mice; error bars are s.d. (N = 100 

different randomly chosen sets of trials. Red points are means; error bars are s.d. (N = 6 

mice).

(l) A control analysis to accompany Fig. 3c, showing that across-day common consensus 

decoders performed equivalently to single-day consensus decoders, even when the two 

decoder-types were trained with datasets of equal size. Here we trained common decoders 

by sub-sampling trials from the datasets acquired in each session such that the training 
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dataset had the same of number of trials as that of the day with the smallest number of trials. 

We also trained the single-day decoders using this same number of trials.

Extended Data Fig. 4. Neural ensemble representations of both the visual stimuli and the 
mouse’s response were widespread across multiple neocortical areas.
(a) Plots analogous to those of Fig. 3f, except that the data are from individual mice. In all 

6 mice, the day-to-day changes in coding were significantly correlated with the within-day, 

trial-to-trial fluctuations (r = 0.85, 0.66, 0.79, 0.76, 0.83, 0.76 and P was between 5·10−14 
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– 5·10−29 for mice 1–6 for the real datasets, but 0.1 ≤ r ≤ 0.15 and 0.12 ≤ P ≤ 0.92 for 

trial-shuffled datasets).

(b) We trained consensus common decoders to discriminate the two visual stimuli based on 

the neural activity evoked either in individual cortical areas or across the visible cortical 

regions, during the stimulus presentation period on ‘No-Lick’ trials (defined as those 

trials on which the mouse withheld a licking response) and on Lick trials (on which the 

mouse made a licking response). Thus, decoders for ‘No-Lick’ trials discriminated ‘Correct 

Rejection’ from ‘Miss’ trials, and decoders for ‘Lick’ trials discriminated ‘Hit’ from ‘False 

Alarm’ trials. Both types of decoders were trained on equally sized datasets, with equal 

numbers of trials of each type. We evaluated decoder performance for each mouse across 

the individual time bins of the trial structure and constructed the plot using the maximum 

(dʹ)2 values attained for each mouse across all time bins during stimulus presentation (0.5–2 

s after stimulus onset). (dʹ)2 values for stimulus decoding were statistically independent of 

the mouse’s upcoming ‘Lick’ or ‘No-Lick’ response (P < 0.7; Wilcoxon signed-rank test, 

N = 6 mice). Across b–g, gray and colored symbols respectively denote (dʹ)2 values for 

individual mice and mean values averaged over N = 6 mice; note that the y-axis scales vary 

substantially across the graphs.

(c, d) Using the same methods as in b, we trained consensus common decoders to 

discriminate the two visual stimuli based on the evoked neural activity in different cortical 

areas during the delay (c) and response (d) periods of the trial. Similarly to b, we evaluated 

decoder performance for each mouse across the individual time bins of the trial structure 

and constructed the plots using the maximum (dʹ)2 values attained for each mouse across all 

time bins during either the delay period, c, or the response period, d. Whereas values of (dʹ)2 

for stimulus decoding during the delay period were independent of the mouse’s upcoming 

motor response (P <0.3; Wilcoxon signed-rank test; N = 6 mice), during the response period 

(dʹ)2 values were significantly greater for ‘Lick’ trials (P <0.03). The latter, higher values of 

(dʹ)2 could stem from the divergent neural signals evoked by receipt of a reward or air puff 

on ‘Hit’ and ‘False Alarm’ trials, respectively.

(e–g) Using methods analogous to those in b, we trained consensus decoders of the mouse’s 

response on ‘Go’ and ‘No-Go’ trials based on the neural activity in different cortical areas 

during the stimulus presentation (e), delay (f), and response (g) intervals. As in b–d, we 

evaluated decoder performance for each mouse across the individual time bins of the trial 

structure and constructed the plots using the maximum (dʹ)2 values attained for each mouse 

across all time bins during either the stimulus period (0.5–2 s after stimulus onset), e, delay 

period, f, or response period, g. To determine the neural representations of the mouse’s 

response during the response interval, g, we used data from across the full 3-s response 

interval. Within this interval, the mouse received liquid rewards and aversive air puffs at 

variable time points. Thus, a distinct analysis would be needed to separate the coding 

relating to the receipt of the rewarding and aversive stimuli from that relating to the mouse’s 

actions. (dʹ)2 values for response decoding were significantly greater for ‘Go’ trials during 

the stimulus presentation (P <0.03; Wilcoxon signed-rank test; N = 6 mice), delay (P < 

0.06), and response (P < 0.06) intervals. These higher values of (dʹ)2 could reflect neural 

signals associated with reward prediction, motor planning and action arising on correctly 

performed ‘Go’ trials.
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(h–j) Map of the cortex for the same mouse as in Fig. 3g–j. Colored dots mark locations of 

cells that made the greatest contributions to the response decoder score (defined as cells with 

decoder weights deviating >2 s.d. from mean values) during the stimulus presentation (h), 

delay (i), and response (j) intervals. Because the mouse’s response was only weakly encoded 

in the neural dynamics observed on ‘No-Go’ trials (as shown in e–g), we created h–m based 

on the response decoders found by analysis of the ‘Go’ trials. Cells are colored according to 

the same scheme as in a. Scale bars: 1 mm.

(k–m) Mean ± s.e.m. (N = 6 mice) fractions of neurons in each brain area that had response 

decoder weights deviating >2 s.d. from mean values, during the stimulus presentation (k), 

delay (l), and response (m) intervals.

(n) Right, We measured the information (dʹ)2 conveyed about reward and punishment in 

each brain area by studying the neural activity evoked when the mouse licked. To evaluate 

the encoding of punishment, we compared the mean neural ensemble activity in the first 0.5 

s after licks that were punished with air puffs versus after licks that occurred during timeout 

periods and that elicited neither punishment nor reward. To evaluate the encoding of reward, 

we compared the mean neural ensemble activity in the first 0.5 s after licks that occurred 

during timeouts versus after licks triggered a reward. Both punishment and reward were 

represented to varying extents across the different brain areas. It is important to note that 

these representations could relate to any aspect of the rewarding or aversive experience, such 

as the experience of receiving or blinking in response to an aversive air puff or of receiving 

or tasting a reward. Left, As a control analysis, we performed the same calculations as for 

the right panel but using the neural activity that occurred within the 0.5 s intervals just 

before licks. As expected, during these periods there was notably less information encoded 

about upcoming rewards or punishments than about rewards or punishment that the mouse 

has just received.

(o) A graph of the s.d. of ( d′)2 values for each cell (individual data points) across all days 

of the study, for every cell with a significant (p<0.01) d′ value for trial-type encoding on at 

least one day, as a function of the cell’s weight in the across-day common decoder. Decoder 

weights are normalized by the maximum weight found in each mouse. The results show 

that cells can have stable or variable coding properties, irrespective of their decoder weights. 

Nevertheless, coding variability generally increases for cells with larger weights, as shown 

by the red line, which is a plot of the mean s.d. in ( d′)2 values, averaged over all cells within 

x-axis bins of 0.1.
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Extended Data Fig. 5. Information-limiting noise correlations and coding redundancy peaked 
just after stimulus onset and then declined for the rest of stimulus presentation.
(a) The fidelity with which the stimulus identity could be decoded from neural ensemble 

activity saturated for large (>2000) populations of cells, for real (purple curves) but not 

trial-shuffled (black curves) datasets. To study ensembles of each size denoted on the x-axis, 

we randomly chose 100 different subsets of cells from the entire pool of neurons imaged 

across all brain areas. We then trained and tested optimal linear Fisher decoders using 

the neural activity during the interval [0.4 s, 0.5 s] after stimulus onset on trials that the 

mouse performed correctly. We quantified decoding performance using the (dʹ)2 value, 

which is related to the Fisher information the neural dynamics conveyed about the trial-type. 

Each curve shows data from one mouse. Whereas (dʹ)2 values saturated for large neural 

populations in the real data, this did not occur for trial-shuffled datasets in which cells’ 

correlated noise fluctuations were scrambled. Shading: s.d. across all 100 subsets of cells 

chosen for each ensemble size. Inset: A magnified view near the origin of the graphs for one 

example mouse.
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(b) Using the same methods as in a, we assessed how well optimal linear decoders could 

discriminate Go and No-Go trials. Plots show mean (dʹ)2 values for this discrimination as 

a function of neural ensemble size and for different time bins within the trial structure, 

averaged over N = 6 mice. The size of the cell ensemble at which (dʹ)2 values saturated 

rose substantially with time during stimulus presentation, but stayed relatively constant 

during the delay and response periods. (dʹ)2 values are normalized relative to their maximum 

(saturating) value at each time bin. Ensemble size values are normalized relative to the total 

number of cells recorded in each mouse.

(c) Plots of the same kind as in b, for each of 6 mice during the stimulus interval. Data are 

shown only for time bins in which ( d′)2 values were significantly greater than for control 

datasets in which the trial-type labels were randomly shuffled (P < 0.01; permutation test; N 
= 710–1340 trials).

(d) Mean ± s.e.m. (N = 6 mice) Ca2+ event rates for all neurons on Go and No-Go 

trials in which the mouse performed correctly. These mean event rates had near identical 

time-dependencies on the trials of the two types, but the temporal variations were distinct 

from those of the decoder score fluctuations (Fig. 4b) or the correlated fluctuations in cells’ 

activity rates shown in f. Dashed vertical lines in d–f demarcate the stimulus, delay and 

response periods of the trial structure.

(e) The time-dependence of the mean Fano factor, determined for each mouse by computing 

for each cell the ratio of the variance in the cell’s Ca2+ event rate to its mean Ca2+ event 

rate, on trials in which the mouse performed correctly. Shading indicates s.e.m. values (N = 

2236–5292 cells). The legend also applies to panels f and g.

(f) Noise correlations between pairs of cells with similar tuning to the stimulus rose sharply 

after stimulus onset, peaked ~0.2 s after stimulus onset, and then decayed to baseline values. 

Each colored trace shows the mean absolute value of noise correlation coefficients for all 

pairs of similarly tuned cells across all imaged brain areas in each mouse. Red trace is a 

mean over 6 mice.

(g) Plots of the cross-correlation functions between the dynamics of absolute noise 

correlations across pairs of cells, shown in f, and the Fano-factor, shown above in e, 

as determined for each mouse over the 2-s-stimulus period to characterize individual 

cells’ dynamical fluctuations. The graph shows that changes in pairwise noise correlation 

coefficients were negatively correlated with and most predictive of upcoming variations in 

the Fano factor with a lead time of ~200 ms. Shading indicates s.e.m. values (N = 10–20 

time bins for each value of the abscissa).

(h) A plot of the mean time-dependent rate (blue trace) of Ca2+ events in GO-stimulus-tuned 

neurons on GO trials and NO-GO-stimulus-tuned neurons on NO-GO trials, averaged over 

both cell-types and across all mice (N=6 mice). Shown for comparison is a plot of the 

mean absolute noise correlation coefficient (red trace) for pairs of similarly tuned neurons, 

computed as in panel f for the same 6 mice. Notably, the changes in noise correlation 

coefficient levels peaked sooner after stimulus onset than the Ca2+ activity rates of tuned 

cells. Moreover, after reaching their peak values, noise correlation coefficients declined back 

to baseline values by the end of stimulus presentation, whereas the Ca2+ activity rates did 

not. These differences make it hard to explain the dynamics of noise correlation coefficients 

as resulting simply from changes in neural activity rates. Shading: s.e.m. across 6 mice.
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(i) A scatter plot showing the change in information encoded by the neural ensemble if 

one cell were to become silent, assessed using instantaneous decoders (Methods). Each dot 

denotes the result from an individual time bin. (As shown in c and f, noise correlation 

coefficients vary with time following stimulus onset). Results for trial-shuffled data, in 

which correlated fluctuations have been scrambled, are denoted with crosses and reveal a 

greater sensitivity to the loss of one neuron.

(j) Left, Traces of the mean absolute noise correlation coefficients as a function of time 

during the stimulus presentation period, determined as in f for pairs of cells in primary 

visual cortex (V1; blue trace), secondary cortical visual areas (areas LV, MV and PPC; red 

trace) or non-visual cortical areas (areas A, S, M and RSC; black trace). Right, Traces of 

the mean absolute noise correlation coefficients between pairs of coding neurons located in 

different brain areas. The rise in noise correlations for similarly tuned cells in the visual 

cortex is greater than that for cells outside visual cortex (P < 0.03; Wilcoxon signed-rank 

test; N = 6 mice). Shading: s.e.m. across N = 6 mice.

(k) We calculated the covariance in the neurons’ responses on each trial-type and on each 

day. We then averaged the covariance matrices for the two trial-types and computed the 

top 3 eigenvectors for each day. Left, A plot showing the similarity between the pairs 

of different subspaces (Methods), each defined by the top 3 eigenvectors of the noise 

covariance matrix on each day of experimentation. The matrix row and columns labelled ‘C’ 

is for the noise covariance matrix computed for the set of all trials across all days. Right, 
As control, we computed the subspace similarities for trial-shuffled datasets in which each 

neuron’s responses were permuted across trials with the same stimulus. Overall, the results 

show that the noise covariance structure in the real data is significantly similar across days, 

to a degree much beyond that in shuffled datasets.

Extended Data Fig. 6. The discriminability of the two stimuli based on their evoked neural 
dynamics fluctuated trial-by-trial in a way that was highly correlated between cortical areas.
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(a) Example scatter plot for an individual mouse in which the instantaneous stimulus 

decoder scores based on the activity patterns of cortical area PPC are plotted against those 

for cortical area RSC. Each data point shows results for an individual trial, at 0.5 s after 

stimulus onset, for Go trials (blue data points) or No-Go trials (black data points). Stimulus 

decoder scores for the two brain areas exhibit positively correlated trial-to-trial fluctuations.

(b) Traces showing the mean time-dependent correlations of the fluctuations in 

instantaneous stimulus decoder scores for 8 different cortical areas and each of the other 

7 brain areas within the imaging field-of-view. For most pairs of brain areas, these correlated 

noise fluctuations in decoder scores attained their maximum shortly after stimulus onset and 

then gradually decayed. Decoder training and testing was limited in this analysis to trials 

that the mice performed correctly. Shading: s.e.m. over N = 6 mice. Vertical dashed lines 

demarcate the stimulus presentation, delay and response intervals.

(c) Two plots showing examples of stimulus-coding cells whose responses were modulated 

by the mouse’s response. Each plot shows the mean rate of Ca2+ events in an individual 

neuron, as a function of time relative to stimulus onset at t = 0, for the 4 different trial-types. 

The cell of the top plot is from area MV, and the cell of the bottom plot is from PPC. 

Both cells had P-values of <0.01 for stimulus-coding on Lick and No-Lick trials, and also 

had P<0.01 for response-coding on Go-trials). We determined P-values through comparisons 

to trial-shuffled datasets (1000 different sub-samplings and random permutations of trials 

using equal numbers of trials of both stimulus- or response-types). The separation between 

the traces for Hit and Miss trials shows the extent of response-related modulation on trials 

with a Go stimulus. Shading: s.e.m. over trials (410 Hit trials, 218 Miss trials, 665 Correct 

Rejection trials, 100 False Alarm trials).

(d) To determine if the elevated correlated noise fluctuations along the stimulus-coding 

direction within the interval [0.2 s, 0.5 s] after stimulus onset, when correlations were at 

their peak, reflects choice information relating to the formation of a motor response plan, 

we computed for each stimulus-type the proportion of the neural activity variance along 

the stimulus-coding direction that co-varied with the mouse’s upcoming motor response. 

The results show that only a tiny percentage (0.5% on average) of the variations in stimulus-

coding can be explained as reflecting the mouse’s decision or response. Blue-shaded points 

denote data from individual mice. Red points are averages across mice. See also Fig. 5e.

(e) Peak values of the time-dependent decoder score noise correlations (r), determined as in 

b, for all pairs of imaged brain areas for an example mouse, using either the data from each 

of five different imaging sessions, or the aggregated set of data from all imaging sessions. 

Fluctuations of decoder scores were correlated between sensory cortical areas during all 

recording sessions. The same general pattern of correlations between brain areas was visible 

in every session.
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Extended Data Fig. 7. Canonical correlation noise modes during the visual stimulation period for 
28 different pairs of cortical areas
(a) Multiple ensembles of neurons from different cortical areas had strongly correlated 

noise fluctuations during visual stimulus presentation. By performing a canonical correlation 

analysis (CCA) on cells’ mean-subtracted activity traces for each trial type, we identified 

multiple modes of significantly correlated noise modes (P < 0.01; comparisons of real vs. 
trial-shuffled data using the permutation test; N = 710–1340 trials) that were shared across 

28 different pairs of cortical areas (abbreviated as in Fig. 1). Plots show mean ± s.e.m. (N = 

6 mice) correlation coefficients between the first 20 CCA noise modes for all pairs of brain 

areas, as determined from validation datasets that were held out from the training datasets 

used to identify the CCA noise modes (Methods).

(b, c) In each cortical area, ~70–90% of the neurons that contributed substantially to the 

largest CCA noise mode were distinct from the cells that contributed to the second-largest 

mode. A cell was considered to contribute substantially to a CCA noise mode if its weight 

in the CCA mode population vector was >2 s.d. above or below the ensemble mean. (b) 

The mean ± s.e.m. (N = 6 mice) number of cells that contributed substantially to both 

the first and second CCA noise modes in each brain area, normalized by the total number 

of cells that contributed substantially to either of these two modes and averaged over all 

pairings with the other 7 brain areas. (c) Distributions of the number of simultaneously 
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active neurons in each time bin of the stimulus presentation period for the largest five CCA 

noise modes shared between V1 and the other 7 cortical areas.

(d) Mean correlation coefficients (N = 6) for neural activity in the first CCA noise mode 

shared between the 28 different pairs of cortical areas, for validation (top left) and training 

(top right) datasets, and on the set of No-Go (bottom left) and Go (bottom right) trials. 

The similarity of the noise correlation coefficients for all 4 subsets of trials suggests that 

correlated activity exists in these modes irrespective of the trial-type and that the results are 

not due to overfitting.

(e) Highly correlated noise fluctuations between cortical areas cannot simply be explained as 

resulting from the activity patterns of cells on the borders between pairs of cortical areas. We 

repeated the analysis in (a) for all pairs of areas, while discarding the activity traces of cells 

in each area closer than 60 μm to the boundary of the other area identified by retinotopic 

mapping. The plot shows the resulting mean ± s.e.m. (N = 6 mice) correlation coefficients 

for the CCA noise mode fluctuations between V1 and other cortical areas.
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Extended Data Fig. 8. The canonical correlation noise modes before stimulus onset were distinct 
from those after stimulus onset, which were task-related.
(a) During the inter-trial interval (ITI), there were significantly correlated noise fluctuation 

modes that were shared between cortical areas. However, these modes were not the same 

as the shared noise fluctuations that arose at stimulus onset. The plots show the mean (N 
= 6 mice) time courses of the correlation coefficients for the first- and second-largest noise 

modes shared between 28 different pairs of brain areas (pairs denoted via the graph titles 

and the color legend at far right), as found by applying canonical correlation analysis (CCA) 

separately to ITI periods (−2 < t < 0) and visual stimulation periods (2 > t > 0). Dashed 
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traces, with and without open circles, respectively show the correlation coefficients for the 

first and second shared noise modes as identified during ITI periods. Solid traces, with and 

without open circles, respectively show the correlation coefficients for the first and second 

share noise modes as identified during stimulus periods. At stimulus onset (t = 0), correlated 

fluctuations declined within the CCA noise modes identified during ITI periods, whereas 

correlated fluctuations within the modes identified during the task substantially increased.

(b) CCA noise modes found during stimulus periods differ from those found during ITI 

periods, as shown by the cross-correlation coefficients between the CCA noise modes 

found for each pair of brain areas before vs. after stimulus onset. The plots show these 

cross-correlation coefficient values for the largest 5 modes for each pair of brain areas. To 

compute these coefficients, for each mouse we created 200 different random assignments of 

half of the trials into a training set and half of the trials into a validation set. Using 100 of 

these random assignments, we determined CCA noise modes for the ITI period. Using the 

other 100 assignments, we determined CCA noise modes for the task period. For each entry 

in the plots, we plotted the mean value of the cross-correlation coefficient, averaged across 

all 10,000 pairings of one mode from the ITI period and one from the stimulus period, and 

across 6 different mice. Within each plot, row labels designate the brain area for which we 

computed the cross-correlation coefficient; column labels designate the area with which the 

row area was paired in the CCA.

(c) As a control analysis for the results of (b), we examined the variability in our estimates 

of the largest 5 CCA noise modes during the stimulus period. To do this, we computed 

for each mouse the correlation coefficients between the CCA modes determined from 100 

different random assignments of trials into training and validation sets. This showed that 

most CCA modes are stable during the stimulus presentation period. For each entry in the 

plots, we plotted the mean value of the cross-correlation coefficient, averaged across all 

9,900 pairings of two different mode determinations from the stimulus period, and across 6 

different mice. Within each plot, row labels designate the brain area for which we computed 

the cross-correlation coefficient; column labels designate the area with which the row area 

was paired in the CCA. The results show that the relative lack of stability exhibited in 

(b) between CCA noise modes before versus after stimulus onset is not simply due to the 

statistical variability in the determination of CCA noise modes.

(d) In each imaged brain area, we performed a principal component analysis (PCA) of the 

noise fluctuations around the mean stimulus-evoked responses, averaged over both stimuli. 

For each brain area, we then computed correlation coefficient between the modes identified 

by PCA and those identified by CCA with each of the other 7 brain areas. The results show 

that fluctuation modes identified by PCA are highly distinct from those found by CCA, 

indicating that PCA can be incapable of detecting correlated fluctuations between brain 

areas.

(e) Analogous plots to those in (d), except that we performed the PCA over the aggregated 

set of all brain areas.

(f) Plots analogous to those in Fig. 5e, except that results are shown for all pairs of brain 

areas, rather than averaged across all pairs of sensory areas.
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Extended Data Fig. 9. Computational simulations of network dynamics show that the global 
CCA mode likely reflects a common signal that is broadcast to all the imaged cortical areas.
(a) For the real experimental data, the graphs show the time-dependence of the information, 

( d′)2, encoded about stimulus identity within CCA modes 2–10 in each brain area, plotted 

as a function of time relative to stimulus onset. (We omitted the first CCA mode, which 

does not convey stimulus information, Fig. 5d,e). To compute ( d′)2 we trained consensus 

decoders based on the neural activity in each brain area during the stimulus presentation 

period of correctly performed trials. We then projected the neural dynamics onto each of the 

CCA modes and used the resulting 9-dimensional activity data to train and test instantaneous 

decoders of the stimulus identity. The vertical dashed lines indicate the stimulus onset.

(b) To explore the patterns of interconnectivity that can give rise to a global CCA 

noise mode, we simulated neural activity within a range of small world networks and 
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systematically varied the extent and randomness of the inter-connections between pairs of 

brain areas (Methods). The schematic shows 3 example small world model networks with 

unidirectional connections between 11 brain areas. Each node denotes one brain area with 

500 neurons. The parameter K is the ‘in-degree’, i.e. the number of projections received 

by each brain area. The parameter P determines the probability that the brain area sending 

a projection is randomly reassigned to a node outside the K nearest neighbors of the 

recipient brain area. The distribution of connection weights between areas was set so as 

to approximately match the canonical correlation coefficients observed in the real cortical 

recordings (Methods). A wide range of these models exhibited CCA modes among all pairs 

of brain areas that resembled the patterns of correlated activity fluctuations in our in vivo 
recordings of neural activity (panel c). However, no model had a global CCA mode, as each 

pair of brain areas generally had a unique set of co-fluctuations distinct from those in other 

pairs of brain areas (panel d).

(c) Canonical correlation coefficients for the strongest CCA modes between all pairs of 11 

areas, plotted for different values of K and P. Strongly correlated CCA fluctuations were 

observed between all pairs of areas in most of the simulations.

(d) Correlation coefficients for the first CCA modes between one simulated brain area and 

each of the other 10 brain areas, plotted as in Fig. 5a. Even when strongly correlated CCA 

modes exist between all pairs of areas, as shown in (c), the neural ensembles comprising 

these modes are largely unique and do not establish a global mode—unlike in our actual 

recordings (Fig. 5a) in which the first CCA mode was global and independent of the pair 

of brain areas chosen for CCA. These results suggest that global CCA modes may be 

inconsistent with information transmission through a small-world architecture.

(e) The number of cells in each simulated brain area that had their first PCA weights >2 s.d. 

away from the mean value. Even though the simulated small world networks lacked a global 

CCA mode, the first mode identified by principal components analysis (PCA) was widely 

distributed across brain areas. Thus, the existence of distributed PCA modes does not imply 

the existence of a global CCA mode.

(f, g) Schematic, f, of a simulated neural network (Methods) in which information about 

the visual stimulus is transmitted via separate channels to different higher-order cortical 

areas, whereas information about the sensory decision is broadcasted in parallel to these 

higher-order areas. The strengths of neural connections from the early visual area and each 

of the two higher-order areas were chosen randomly from a Gaussian distribution. The 

matrix of neural connections between each pair of brain areas had a rank between 1–10. 

g, correlation coefficients between CCA modes in simulated cortical areas. In contrast to 

small-world connectivity, networks in which a single source broadcasted a common signal 

to multiple brain areas did have a global CCA mode, as in cortex (Fig. 5a). These results 

suggest the global CCA mode in cortex reflects the widespread distribution of a common 

signal conveying information about the mouse’s upcoming response to all imaged brain 

areas, rather than via separate inter-area connections.

(h, i) Normalized values of ( d′)2 determined for the simulated network of (f) for 

distinguishing between the two different stimuli, (h), or decisions, (i), plotted for each of 

the 10 largest CCA modes between all pairs of areas receiving input from the Early Visual 

Area. Results are shown separately for networks with neural connection matrices of different 

ranks. Results are averaged across 25 different networks with similar architecture. Shading: 
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s.e.m. across the 3 different simulated areas, Areas A, B and C. Fig. 5e shows similar results 

for the real experimental data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We gratefully acknowledge research support from HHMI (M.J.S.), the Stanford CNC Program (M.J.S.), DARPA 
(M.J.S.), NIH BRAIN Initiative grant 1UF1NS107610–01 (M.J.S.), the NSF NeuroNex Program (M.J.S.), an 
NSF CAREER Award (S.G.), and the Burroughs-Wellcome (S.G.), McKnight (S.G.), James S. McDonnell (S.G.) 
and Simons (S.G.; MJS) foundations, and a Stanford Graduate Fellowship (O.R.). We thank B. Ahanonu, A. 
Christensen, H. Kim, T. Rogerson, A. Shai, and A. Tsao, for helpful conversations, and H. Zeng for providing 
transgenic mice.

Data availability.

The data that support the findings of this study are available from the corresponding authors 

upon reasonable request.

References

1. Faisal AA, Selen LP & Wolpert DM Noise in the nervous system. Nat Rev Neurosci 9, 292–303, 
doi:10.1038/nrn2258 (2008). [PubMed: 18319728] 

2. Lutcke H, Margolis DJ & Helmchen F Steady or changing? Long-term monitoring of neuronal 
population activity. Trends Neurosci 36, 375–384, doi:10.1016/j.tins.2013.03.008 (2013). [PubMed: 
23608298] 

3. Rumyantsev OI et al. Fundamental bounds on the fidelity of sensory cortical coding. Nature 580, 
100–105, doi:10.1038/s41586-020-2130-2 (2020). [PubMed: 32238928] 

4. Stein RB, Gossen ER & Jones KE Neuronal variability: noise or part of the signal? Nat Rev 
Neurosci 6, 389–397, doi:10.1038/nrn1668 (2005). [PubMed: 15861181] 

5. Zohary E, Shadlen MN & Newsome WT Correlated neuronal discharge rate and its implications 
for psychophysical performance. Nature 370, 140–143, doi:10.1038/370140a0 (1994). [PubMed: 
8022482] 

6. Driscoll LN, Pettit NL, Minderer M, Chettih SN & Harvey CD Dynamic Reorganization 
of Neuronal Activity Patterns in Parietal Cortex. Cell 170, 986–999 e916, doi:10.1016/
j.cell.2017.07.021 (2017). [PubMed: 28823559] 

7. Greicius MD, Supekar K, Menon V & Dougherty RF Resting-state functional connectivity reflects 
structural connectivity in the default mode network. Cereb Cortex 19, 72–78, doi:10.1093/cercor/
bhn059 (2009). [PubMed: 18403396] 

8. Rosenberg MD et al. A neuromarker of sustained attention from whole-brain functional 
connectivity. Nat Neurosci 19, 165–171, doi:10.1038/nn.4179 (2016). [PubMed: 26595653] 

9. Montijn JS, Meijer GT, Lansink CS & Pennartz CM Population-Level Neural Codes Are Robust to 
Single-Neuron Variability from a Multidimensional Coding Perspective. Cell Rep 16, 2486–2498, 
doi:10.1016/j.celrep.2016.07.065 (2016). [PubMed: 27545876] 

10. Semedo JD, Zandvakili A, Machens CK, Byron MY & Kohn A Cortical areas interact through a 
communication subspace. Neuron 102, 249–259. e244 (2019). [PubMed: 30770252] 

11. Stringer C et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, 
255, doi:10.1126/science.aav7893 (2019). [PubMed: 31000656] 

12. Abbott LF & Dayan P The effect of correlated variability on the accuracy of a population code. 
Neural computation 11, 91–101 (1999). [PubMed: 9950724] 

Ebrahimi et al. Page 51

Nature. Author manuscript; available in PMC 2024 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



13. Averbeck BB & Lee D Effects of noise correlations on information encoding and decoding. J 
Neurophysiol 95, 3633–3644, doi:10.1152/jn.00919.2005 (2006). [PubMed: 16554512] 

14. Moreno-Bote R et al. Information-limiting correlations. Nat Neurosci 17, 1410–1417, doi:10.1038/
nn.3807 (2014). [PubMed: 25195105] 

15. Carrillo-Reid L, Han S, Yang W, Akrouh A & Yuste R Controlling Visually Guided 
Behavior by Holographic Recalling of Cortical Ensembles. Cell 178, 447–457 e445, doi:10.1016/
j.cell.2019.05.045 (2019). [PubMed: 31257030] 

16. Graf AB, Kohn A, Jazayeri M & Movshon JA Decoding the activity of neuronal populations in 
macaque primary visual cortex. Nat Neurosci 14, 239–245, doi:10.1038/nn.2733 (2011). [PubMed: 
21217762] 

17. Ziv Y et al. Long-term dynamics of CA1 hippocampal place codes. Nat Neurosci 16, 264–266, 
doi:10.1038/nn.3329 (2013). [PubMed: 23396101] 

18. Xia J, Marks TD, Goard MJ & Wessel R Stable representation of a naturalistic movie 
emerges from episodic activity with gain variability. Nat Commun 12, 5170, doi:10.1038/
s41467-021-25437-2 (2021). [PubMed: 34453045] 

19. Gonzalez WG, Zhang H, Harutyunyan A & Lois C Persistence of neuronal representations through 
time and damage in the hippocampus. Science 365, 821–825 (2019). [PubMed: 31439798] 

20. Deitch D, Rubin A & Ziv Y Representational drift in the mouse visual cortex. Curr Biol 31, 
4327–4339 e4326, doi:10.1016/j.cub.2021.07.062 (2021). [PubMed: 34433077] 

21. Sridharan D, Levitin DJ & Menon V A critical role for the right fronto-insular cortex in switching 
between central-executive and default-mode networks. Proceedings of the National Academy of 
Sciences 105, 12569–12574 (2008).

22. Allen WE et al. Thirst regulates motivated behavior through modulation of brainwide 
neural population dynamics. Science 364, 253, doi:10.1126/science.aav3932 (2019). [PubMed: 
30948440] 

23. Musall S, Kaufman MT, Juavinett AL, Gluf S & Churchland AK Single-trial neural 
dynamics are dominated by richly varied movements. Nat Neurosci 22, 1677–1686, doi:10.1038/
s41593-019-0502-4 (2019). [PubMed: 31551604] 

24. Niell CM & Stryker MP Modulation of Visual Responses by Behavioral State in Mouse Visual 
Cortex. Neuron 65, 472–479, doi:10.1016/j.neuron.2010.01.033 (2010). [PubMed: 20188652] 

25. Montani F, Kohn A, Smith MA & Schultz SR The role of correlations in direction 
and contrast coding in the primary visual cortex. J Neurosci 27, 2338–2348, doi:10.1523/
JNEUROSCI.3417-06.2007 (2007). [PubMed: 17329431] 

26. Goard MJ, Pho GN, Woodson J & Sur M Distinct roles of visual, parietal, and frontal motor 
cortices in memory-guided sensorimotor decisions. Elife 5, doi:10.7554/eLife.13764 (2016).

27. Poort J et al. Learning Enhances Sensory and Multiple Non-sensory Representations in Primary 
Visual Cortex. Neuron 86, 1478–1490, doi:10.1016/j.neuron.2015.05.037 (2015). [PubMed: 
26051421] 

28. Britten KH, Shadlen MN, Newsome WT & Movshon JA The analysis of visual motion: a 
comparison of neuronal and psychophysical performance. Journal of Neuroscience 12, 4745–4765 
(1992). [PubMed: 1464765] 

29. Kanitscheider I, Coen-Cagli R & Pouget A Origin of information-limiting noise correlations. 
Proceedings of the National Academy of Sciences 112, E6973–E6982 (2015).

30. Bullmore E & Sporns O Complex brain networks: graph theoretical analysis of structural and 
functional systems. Nat Rev Neurosci 10, 186–198, doi:10.1038/nrn2575 (2009). [PubMed: 
19190637] 

31. Yu Y, Stirman JN, Dorsett CR & Smith SL Mesoscale correlation structure with single cell 
resolution during visual coding. bioRxiv, 469114 (2018).

32. Gregoriou GG, Gotts SJ & Desimone R Cell-type-specific synchronization of neural activity in 
FEF with V4 during attention. Neuron 73, 581–594, doi:10.1016/j.neuron.2011.12.019 (2012). 
[PubMed: 22325208] 

33. Gregoriou GG, Gotts SJ, Zhou H & Desimone R High-frequency, long-range coupling 
between prefrontal and visual cortex during attention. Science 324, 1207–1210, doi:10.1126/
science.1171402 (2009). [PubMed: 19478185] 

Ebrahimi et al. Page 52

Nature. Author manuscript; available in PMC 2024 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



34. Ruff DA & Cohen MR Attention Increases Spike Count Correlations between Visual Cortical 
Areas. J Neurosci 36, 7523–7534, doi:10.1523/JNEUROSCI.0610-16.2016 (2016). [PubMed: 
27413161] 

35. van Kempen J et al. Top-down coordination of local cortical state during selective attention. 
Neuron 109, 894–904 e898, doi:10.1016/j.neuron.2020.12.013 (2021). [PubMed: 33406410] 

36. Chen JL, Voigt FF, Javadzadeh M, Krueppel R & Helmchen F Long-range population dynamics of 
anatomically defined neocortical networks. Elife 5, doi:10.7554/eLife.14679 (2016).

37. Doiron B, Litwin-Kumar A, Rosenbaum R, Ocker GK & Josic K The mechanics of state-
dependent neural correlations. Nat Neurosci 19, 383–393, doi:10.1038/nn.4242 (2016). [PubMed: 
26906505] 

38. Churchland MM et al. Stimulus onset quenches neural variability: a widespread cortical 
phenomenon. Nat Neurosci 13, 369–378, doi:10.1038/nn.2501 (2010). [PubMed: 20173745] 

39. Wagner MJ et al. Shared Cortex-Cerebellum Dynamics in the Execution and Learning of a Motor 
Task. Cell 177, 669–682 e624, doi:10.1016/j.cell.2019.02.019 (2019). [PubMed: 30929904] 

40. Steinmetz NA, Zatka-Haas P, Carandini M & Harris KD Distributed coding of choice, action 
and engagement across the mouse brain. Nature 576, 266–273, doi:10.1038/s41586-019-1787-x 
(2019). [PubMed: 31776518] 

41. Britten KH, Newsome WT, Shadlen MN, Celebrini S & Movshon JA A relationship between 
behavioral choice and the visual responses of neurons in macaque MT. Vis Neurosci 13, 87–100, 
doi:10.1017/s095252380000715x (1996). [PubMed: 8730992] 

42. Keller AJ, Roth MM & Scanziani M Feedback generates a second receptive field in neurons of the 
visual cortex. Nature 582, 545–549, doi:10.1038/s41586-020-2319-4 (2020). [PubMed: 32499655] 

43. Bondy AG, Haefner RM & Cumming BG Feedback determines the structure of correlated 
variability in primary visual cortex. Nat Neurosci 21, 598–606, doi:10.1038/s41593-018-0089-1 
(2018). [PubMed: 29483663] 

44. Zipser K, Lamme VA & Schiller PH Contextual modulation in primary visual cortex. J Neurosci 
16, 7376–7389 (1996). [PubMed: 8929444] 

45. Mashour GA, Roelfsema P, Changeux JP & Dehaene S Conscious Processing and the 
Global Neuronal Workspace Hypothesis. Neuron 105, 776–798, doi:10.1016/j.neuron.2020.01.026 
(2020). [PubMed: 32135090] 

46. Cohen MX & Ranganath C Reinforcement learning signals predict future decisions. J Neurosci 27, 
371–378, doi:10.1523/JNEUROSCI.4421-06.2007 (2007). [PubMed: 17215398] 

47. Bassett DS & Bullmore E Small-world brain networks. Neuroscientist 12, 512–523, 
doi:10.1177/1073858406293182 (2006). [PubMed: 17079517] 

48. Oh SW et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214, doi:10.1038/
nature13186 (2014). [PubMed: 24695228] 

Additional References for Methods and Extended Data Figures.

49. Garrett ME, Nauhaus I, Marshel JH & Callaway EM Topography and areal organization of mouse 
visual cortex. J Neurosci 34, 12587–12600, doi:10.1523/JNEUROSCI.1124-14.2014 (2014). 
[PubMed: 25209296] 

50. Kalatsky VA & Stryker MP New paradigm for optical imaging: temporally encoded maps 
of intrinsic signal. Neuron 38, 529–545, doi:10.1016/s0896-6273(03)00286-1 (2003). [PubMed: 
12765606] 

51. Marshel JH, Garrett ME, Nauhaus I & Callaway EM Functional specialization of seven mouse 
visual cortical areas. Neuron 72, 1040–1054 (2011). [PubMed: 22196338] 

52. Zhuang J et al. An extended retinotopic map of mouse cortex. Elife 6, e18372 (2017). [PubMed: 
28059700] 

53. Lecoq J et al. Visualizing mammalian brain area interactions by dual-axis two-photon calcium 
imaging. Nat Neurosci 17, 1825–1829, doi:10.1038/nn.3867 (2014). [PubMed: 25402858] 

54. Lein ES et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–
176, doi:10.1038/nature05453 (2007). [PubMed: 17151600] 

Ebrahimi et al. Page 53

Nature. Author manuscript; available in PMC 2024 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



55. Thevenaz P, Ruttimann UE & Unser M A pyramid approach to subpixel registration based 
on intensity. IEEE Trans Image Process 7, 27–41, doi:10.1109/83.650848 (1998). [PubMed: 
18267377] 

56. Mukamel EA, Nimmerjahn A & Schnitzer MJ Automated analysis of cellular signals from large-
scale calcium imaging data. Neuron 63, 747–760 (2009). [PubMed: 19778505] 

57. Kanitscheider I, Coen-Cagli R, Kohn A & Pouget A Measuring Fisher information accurately in 
correlated neural populations. PLoS Comput Biol 11, e1004218, doi:10.1371/journal.pcbi.1004218 
(2015). [PubMed: 26030735] 

58. Barker M & Rayens W Partial least squares for discrimination. Journal of Chemometrics: A 
Journal of the Chemometrics Society 17, 166–173 (2003).

59. Wold H Estimation of principal components and related models by iterative least squares. 
Multivariate analysis, 391–420 (1966).

60. Kohn A & Smith MA Stimulus dependence of neuronal correlation in primary visual cortex of the 
macaque. J Neurosci 25, 3661–3673, doi:10.1523/JNEUROSCI.5106-04.2005 (2005). [PubMed: 
15814797] 

61. Hotelling H in Breakthroughs in statistics Vol. 2 Perspectives in Statistics (eds Kotz S & Johnson 
NL) 162–190 (Springer-Verlag, 1992).

62. Witten DM & Tibshirani RJ Extensions of sparse canonical correlation analysis with applications 
to genomic data. Stat Appl Genet Mol Biol 8, Article28, doi:10.2202/1544-6115.1470 (2009). 
[PubMed: 19572827] 

63. Watts DJ & Strogatz SH Collective dynamics of ‘small-world’networks. Nature 393, 440–442 
(1998). [PubMed: 9623998] 

64. Honey CJ, Kotter R, Breakspear M & Sporns O Network structure of cerebral cortex shapes 
functional connectivity on multiple time scales. Proc Natl Acad Sci U S A 104, 10240–10245, 
doi:10.1073/pnas.0701519104 (2007). [PubMed: 17548818] 

65. Lu J, Yu X, Chen G & Cheng D Characterizing the synchronizability of small-world dynamical 
networks. IEEE Transactions on Circuits and Systems I: Regular Papers 51, 787–796 (2004).

Ebrahimi et al. Page 54

Nature. Author manuscript; available in PMC 2024 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. Cellular-level imaging across multiple cortical areas during a visual discrimination task.
(a) A custom macroscope imaged Ca2+ activity in thousands of layer 2/3 pyramidal neurons.

(b) On each trial, mice viewed a moving grating (2 s duration). After a 0.5-s-delay, an 

auditory tone initiated a 3-s-long response period, when mice could respond by licking a 

spout. Responses to a horizontal grating (the ‘GO’ stimulus) elicited a water reward. If the 

mouse responded to a vertical grating, it received an air puff and an 8-s-timeout before the 

next trial. Mice performed 83±3% of trials correctly (mean±s.e.m.; 6 mice; Extended Data 

Fig. 1).

(c) Imaged brain areas (encircled). Scale bars: 1 mm. Same color scheme and abbreviations 

used in all subsequent figures. Inset: Magnified view.

(d) Maximum projection of a Ca2+-video (280-min-duration) with 5292 cells, overlaid with 

cortical area boundaries. Scale bar: 1 mm. Inset: Enlargement of red boxed area. Scale bar: 

0.1 mm.
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Fig. 2. Layer 2/3 cells exhibit diverse coding properties during visual discrimination.
(a) Mean numbers of cells identified in each mouse and brain area [total cells: 3597±1082 

(s.d.); 6 mice]. Gray points: data from individual mice. Inset: Histogram of the number of 

days each cell was active [error bars (s.d.) determined as counting errors].

(b) Ca2+ traces for 3 neurons from each of 8 areas. Traces of cells responding during 

stimulus, delay, or response intervals are blue, red, and black, respectively.

(c) Pie charts: percentages of cells in each area significantly encoding the stimulus-type 

(yellow; P<0.01; permutation test; 710–1340 trials) on correct trials, across all sessions. 

Venn diagrams: proportions of coding cells whose dynamics significantly encoded the 

stimulus-type during one or more of the intervals within correct trials. Errors: s.d. over 

6 mice.

(d) For each area, we computed the distribution of cellular d′ values for trial-type encoding 

on correct trials. Plots show d′ values for each percentile of the distributions, averaged over 6 

mice. Tick marks: 0, 25th, 50th, 75th and 100th percentiles.
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Fig. 3. Accounting for correlated fluctuations among task-related cells facilitates stable 
representations of stimulus-type.
(a) Mean accuracies for inferring stimulus-identity using optimal instantaneous (100 ms 

time-bins) linear decoders of activity for individual (colored traces) or all brain areas (black 

trace) Dashed lines in a, l and m demarcate stimulus, delay and response intervals. Shading: 

s.e.m. across 6 mice.

(b) Mean similarities between all pairs of instantaneous decoders, assessed via correlation 

coefficients between pairs of decoder weights for all cells in each mouse (N=6 mice). Given 

the decoder constancy across stimulus presentation, in c–j we trained ‘consensus’ decoders, 

optimized for 0.5–2.0 s after stimulus onset. See also Extended Data Fig. 3f,h.

(c, d) To assess decoder stability, we trained ‘common’ consensus decoders on data from 

all days and compared them to consensus decoders trained on data from single days. We 

evaluated real, c, and trial-shuffled datasets, d, in which each cell’s Ca2+ traces were 

randomly permuted across trials of the same stimulus-type from the same day. Each blue 

shade in c–e denotes data from one mouse during stimulus presentation. Each datum in 

c,d is from one session and shows the stimulus-identity information ( d′)2 conveyed by 

common and single-day decoders given identical test datasets from individual days. On real 

datasets, common decoders outperformed single-day decoders, c. On trial-shuffled datasets, 

single-day decoders outperformed common decoders, d. Error bars: s.d. across 100 random 

divisions of each dataset into thirds, for dimensionality reduction, decoder training and 
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testing. Insets: Correlation coefficients, r, between consensus decoders from individual days 

and the common decoder (‘C’), averaged over 6 mice. See also Extended Data Fig. 3i.

(e) Left: Optimal linear decoders outperformed diagonal decoders that ignore correlated 

fluctuations (68±6%, P<1.7×10−6 and 40±5%, P<2.3×10−6 mean±s.e.m. more information 

captured by optimal decoders of trial-type, respectively, for common and single-day 

decoders of activity during stimulus presentation; signed-rank test; N=30 sessions in 6 

mice). Right: The superiority of optimal over diagonal decoders was greater for common 

than single-day decoders. Increases in ( d′)2 for optimal vs. diagonal decoders were 55±26% 

(s.e.m.) greater for common than single-day decoders; P<4.9×10−5; signed-rank test; N=30 

sessions). Each connected pair of blue-shaded points shows results from one session and one 

mouse. Red points: mean values for individual mice.

(f) Day-to-day drifts in neural responses were aligned with within-day, trial-to-trial 

fluctuations. To assess day-to-day drift, we computed the unity normalized vector between 

the mean neural ensemble responses to each stimulus on consecutive days, (μ2–μ1)/(||μ2–
μ1||). To characterize trial-to-trial fluctuations, we computed the noise covariance matrix of 

ensemble responses, averaged over both stimuli, for the first day of all consecutive pairs 

of days. We projected (μ2–μ1)/(||μ2–μ1||) onto this matrix’s eigenvectors and averaged over 

both stimuli and all pairs of consecutive days. Day-to-day drifts aligned with within-day, 

principal noise eigenvectors in real (purple points; r=0.95; P<10–50) but not trial-shuffled 

(red points; r=0.02; P=0.82) data. Inset: Cumulative plots of the fraction of the power of 

day-to-day variations lying within the subspace defined by the first n noise eigenvectors 

(where n is the abscissa value) for real (purple) and trial-shuffled (red) data.

(g–j) Cells contributing most to the performance of stimulus-only decoders were 

interspersed across cortex. Maps of these most-informative cells (with decoder weights that 

deviated >2 s.d. from the mean) are shown for one mouse, g–i, averaged over both response-

types. Scale bars: 1 mm. j shows mean±s.e.m. (6 mice) percentages of most-informative 

cells in each area. Colors scheme as in a. Extended Data Fig. 4h–m show results for 

response-decoders.

(k) Coding redundancy peaked just after stimulus onset. For each time bin after stimulus 

onset (denoted in color), we measured the information conveyed about stimulus-identity by 

subsets of cells randomly chosen across all areas using instantaneous decoders. Plotted 

values are from one mouse and are averages over 100 different subsets of each size, 

normalized to the result for all cells. Extended Data Fig. 5b,c has results for all mice and the 

delay and response periods. s.e.m. values are not shown but are <8% for all points.

(l) Mean ensemble sizes, N0.5, at which ( d′)2 reached its half-maximum, estimated for each 

time bin using instantaneous decoders of activity across all imaged areas. Shading: s.e.m. 

across 6 mice.

(m) Traces show absolute values of mean noise correlations in Ca2+ event rates for pairs 

of most-informative cells (defined in g–j) both tuned to Go stimuli (blue trace), both tuned 

to No-Go stimuli (red trace), or oppositely tuned (magenta trace). Black trace: results for 

untuned cells. Shading: s.e.m. across 6 mice.

(n) Cell pairs with similar stimulus-tuning had their greatest noise correlation coefficients 

just after stimulus onset. Plotted are distributions of these coefficients at different times 

(denoted in color), pooled over 6 mice. Error bars (s.d.) are too small to be visible.
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(o) N0.5 vs. the ratio of the mean of the noise covariance matrix’s diagonal elements to the 

mean of its non-diagonal elements, for most-informative neurons (see g–j) . Each datum 

is from one mouse and time-bin during stimulus presentation. Colors denote individual 

mice and reveal a linear relationship (r=0.9 ; P<1.4·10−25) consistent with mice having 

statistically similar neural connectivity matrices. Error bars: s.e.m. over 100 sub-samplings 

of cells (y-axis) or 51–296 cells (x-axis).
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Fig. 4. Inter-area fluctuations and stimulus encoding redundancy peaked ~200 ms after stimulus 
onset.
(a) Different sensory areas had strongly correlated decoder scores. To illustrate, for correctly 

performed trials we trained stimulus-type decoders using either V1 or S1 activity from 0.5–

0.6 s after stimulus onset. Each datum shows the two decoder scores on one trial. See also 

Extended Data Fig. 6a.

(b, c) Correlation coefficients, r, for decoder scores peaked ~200 ms after stimulus onset. b 
shows time-varying mean±s.e.m. (6 mice) r-values between V1 and 7 other regions. c shows 
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peak r-values across for all area pairs, averaged over mice. See also Extended Data Fig. 6b,d. 

Dashed lines in b,d demarcate stimulus, delay and response periods.

(d) Redundancy of stimulus encoding across cortex peaked ~200 ms after stimulus onset and 

then declined back toward unity. Shading: s.e.m. over 6 mice.

(e) Bottom: Raster plots of Ca2+ events in individual cells (from 8 areas in one mouse) 

with large contributions to inter-area co-fluctuation modes found by canonical-correlation 

analysis (CCA). Top: Colored traces show dynamics of the largest CCA modes between V1 

and 7 other areas. V1 trace is an average over results from all 7 analyses. Cyan and gray 

shading respectively mark Go and No-Go stimulus presentations.

(f) Inter-area co-fluctuations comprised ~60% of the total power of cortical noise modes. 

Plot shows mean powers of the 10 largest CCA modes (red curve, left axis), averaged over 

all 28 area pairs and both areas per pair, and the mean power of the 10 largest noise modes 

(blue curve) found by principal component analysis (PCA) of fluctuations in each area, 

averaged over all 8 areas. Noise modes found by randomly shuffling weights from CCA 

(black curve) had far less power. Ratios of noise power in CCA and PCA modes (magenta 

curve, right axis) were consistently ~60%. Shading in f,g: s.e.m. over 6 mice.

(g) Distinct inter-area co-fluctuations arose during visual stimulation and inter-trial intervals 

(ITIs; 2-s-intervals preceding stimulus onsets). We separately applied CCA to ITIs and 

stimulus presentation periods. Plotted are time-varying correlation coefficients for the largest 

noise modes between V1 and 7 other areas (color-coded as in b,e). At stimulus onset, 

correlated activity rose sharply in modes found during visual stimulation, whereas activity in 

the ITI modes declined. See also Extended Data Fig. 8.
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Fig. 5. Orthogonal inter-area co-fluctuations communicate sensory data and the mouse’s 
upcoming response.
(a) Each matrix shows correlation coefficients, r, for CCA modes between one of 8 source 

areas (listed at bottom) and 2 target regions (arranged as in the insets). A large matrix 

element value indicates the source co-fluctuated with the 2 targets using a similar activity 

mode; small values imply distinct co-fluctuation modes. Results are shown for the 5 largest 

CCA modes for each source/target pair, averaged over 6 mice. The largest CCA mode (top 
row) was largely invariant to source/target choices and thus globally shared across areas 

(mean r-values of the largest modes for individual mice were 0.99, 0.95, 0.85, 0.91, 0.92, 

0.68). Insets: Magnified views for the largest CCA modes involving V1 and one of 7 other 

areas (top), and the second-largest modes between V1 and these other areas (bottom). In 5 

of 6 mice there were at least 2 clusters (orange and olive fonts) of secondary modes with 

moderate similarity (schematized in c). Modes involving V1 and either LV, MV or PPC 

comprised one cluster; modes involving V1 and either area A or S comprised another.

(b) Left, Map of neurons (green) contributing significantly (weights deviating >2 s.d. from 

mean values) to the global fluctuation mode in one mouse. Right, Map of neurons in 

the 2 clusters of second-largest CCA modes involving V1 (see a,c). Cells marked red 

contributed to co-fluctuations between V1 and either S or A. Cells marked cyan contributed 

to co-fluctuations between V1 and either LV, MV or PPC.
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(c) Left, Clustering revealed 2 subsets of target areas with similar second-largest CCA 

modes in V1, as seen in a,b. Right, 10 example activity traces for these modes, colored to 

match areas at left. Solid traces: Activity within the CCA mode in V1. Dotted traces: activity 

in the target area’s CCA mode.

(d) Aggregate neural Ca2+ signals in one mouse within the population vector dimensions 

determined by the largest 3 CCA modes (columns), for 4 different area pairs (rows) and 

trial outcomes (colored traces). Dashed line: stimulus onset. Ordinate values are shifted and 

normalized to lie within [0,1]. Shading: s.e.m. (N=100–678 trials).

(e) Right, The global fluctuation mode, identified in (a), lies in the dimension encoding 

information late in the stimulus period about the mouse’s upcoming response. Left, The 

second- to fifth-largest CCA modes lie in dimensions encoding stimulus-type. Results are 

from a CCA analysis of V1, LV, MV, PPC, A and S in which the cell ensembles significantly 

encoded stimulus-type or the mouse’s upcoming response (P<0.01; permutation test across 

trials of different types, using equal trials of each type (52–854 trials per type per mouse). 

We analyzed the 15 area pairs, projected activity in each area onto the dimensions identified, 

and computed how accurately ( d′)2 this activity subset encoded the stimulus-type (on Lick 

and No-Lick trials) or upcoming response (on Go trials). Plots show time-varying ( d′)2 

values, averaged over both projections for each of 15 area pairs in 6 mice, for the 10 largest 

CCA modes. See also Extended Data Fig. 8.

(f) To determine the proportion of stimulus information shared via CCA modes, we plotted 

the total information encoded in CCA modes between a source (colored traces) and the 

other 7 areas, relative to the total information encoded within the source. Visual areas had 

a preponderance of their stimulus information encoded within CCA modes, especially early 

during stimulus presentation; ratios for non-visual areas peaked later in the trial. Shading: 

s.e.m. over 6 mice. See also Extended Data Fig. 9a.
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