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Within neuroimaging large-scale, shared datasets are becoming increasingly commonplace, challenging existing tools both in terms of overall scale and complexity of 

the study designs. As sample sizes grow, researchers are presented with new opportunities to detect and account for grouping factors and covariance structure present 

in large experimental designs. In particular, standard linear model methods cannot account for the covariance and grouping structures present in large datasets, and 

the existing linear mixed models (LMM) tools are neither scalable nor exploit the computational speed-ups afforded by vectorisation of computations over voxels. 

Further, nearly all existing tools for imaging (fixed or mixed effect) do not account for variability in the patterns of missing data near cortical boundaries and the 

edge of the brain, and instead omit any voxels with any missing data. Yet in the large- 𝑛 setting, such a voxel-wise deletion missing data strategy leads to severe 

shrinkage of the final analysis mask. To counter these issues, we describe the “Big ” Linear Mixed Models (BLMM) toolbox, an efficient Python package for large-scale 

fMRI LMM analyses. BLMM is designed for use on high performance computing clusters and utilizes a Fisher Scoring procedure made possible by derivations for the 

LMM Fisher information matrix and score vectors derived in our previous work, Maullin-Sapey and Nichols (2021). 
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. Introduction 

.1. Background 

The field of functional Magnetic Resonance Imaging (fMRI) has re-

ently seen a drastic improvement in terms of the volume of data col-

ected and shared publicly. Many researchers now regularly face anal-

ses involving “large- 𝑛 ” (large number of observations) datasets con-

isting of tens of thousands of images, typically endowed with some

orm of complex covariance structure ( Smith and Nichols, 2018; Li et al.,

019; Haworth et al., 2019 ). For example, the Adolescent Brain Cogni-

ive Development (ABCD) and UK Biobank (UKB) datasets, which con-

ain imaging data from 10,000 and 30,000 subjects, respectively, both

ossess a multi-level covariance structure induced through a repeated

easures experimental design ( Casey et al., 2018; Allen et al., 2012 ).

imilarly, the well-known Enhancing NeuroImaging Genetics through

eta-Analysis (ENIGMA) cohort, which contains imaging data from tens

f thousands of subjects, also possesses a multi-level covariance struc-

ure due to its pooling of data from many different sources ( Bearden and

hompson, 2017 ). A more complex, but equally popular example is the

uman Connectome Project (HCP) dataset, which contains observations

rawn from 1200 subjects, but exhibits a constrained covariance struc-

ure due to relatedness between individuals and the sampling of family

nits ( Essen et al., 2013 ). 

Often, covariance structures in an experimental design arise from

rouping factors present in the data. Accounting for complex group-

ng factors during an fMRI analysis is an historically routine prac-

ice for small-sample studies. Commonly employed analysis designs
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n the small-sample setting include longitudinal multi-session analyses

observations grouped by subject), comparative group analyses (sub-

ects grouped by study conditions) and mega-analyses (analysis results

rouped according to study protocols). The widely-accepted, conven-

ional approach to modelling such datasets is to employ the Linear Mixed

odel (LMM) (c.f. Laird and Ware, 1982; Friston et al., 2002 ). The LMM

ccounts for complex grouping structures in datasets via the inclusion

f both “fixed effects ” and “random effects ” during model specification.

ixed effects are unknown constant parameters that are associated with

ovariates in the experimental design. Random effects are random vari-

bles that model the systematic differences between instances of a cat-

gorical variable (e.g. between-subject differences, between-site differ-

nces). 

There are many strong obstacles to the practical execution of LMM

nalyses for large- 𝑛 fMRI datasets. Generally, an LMM analysis con-

ists of two stages: parameter estimation and statistical inference, each

f which presents unique computational and theoretical challenges in

he large- 𝑛 fMRI analysis setting. An overview of the challenges spe-

ific to each of these stages is provided in Sections 1.1.1 and 1.1.3 ,

espectively. An additional issue, which merits separate consideration,

oncerning missing data found near cortical boundaries, is detailed in

ection 1.1.2 . In the univariate (non-imaging) setting, many tools ex-

st for estimating the parameters of and performing inference upon the

MM (c.f. Section 2.1.3 ). However, many of these tools are not designed

o (a) be scalable to arbitrarily large datasets and (b) exploit vectori-

ation speed-ups from processing multiple voxels simultaneously. To

ounter this, in recent work we derived novel closed form expressions

or the Fisher information matrices and LMM gradient vectors ( Maullin-

apey and Nichols, 2021 ), making vectorised Fisher scoring practical for
ober 2022 
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ass-univariate analysis. In this work, we shall demonstrate that these

xpressions may be employed to perform fast and scalable LMM param-

ter estimation and inference in the context of large- 𝑛 fMRI analysis. 

In this paper, we present “Big ” Linear Mixed Models (BLMM), a

ython-based tool for parameter estimation and statistical inference

f mass-univariate LMMs. The BLMM tool partitions fMRI analyses to

imit memory consumption, while still being able to exploit vectoriza-

ion speed-ups from working with multiple voxels. Despite being built

pecifically for use on Sun Grid Engine (SGE) clusters, SGE-specific code

n BLMM is isolated in one file (‘blmm_cluster.sh’) and may be adapted

or use on any HPC scheduler. In the following sections, we first pro-

ide background on LMM parameter estimation and inference as well as

he ǣvoxel-wise missingness ǥ ubiquitous in large- 𝑛 fMRI analyses. Fol-

owing this, we give preliminary statistical information describing the

nivariate LMM and its extension to the mass-univariate voxel-wise set-

ing. In the methods section, we then outline the computational pipeline

f BLMM, starting with the input specification, followed by the dis-

ributed stages of computation, parameter estimation and finally, in-

erence. Next, the correctness and performance of BLMM are assessed

ia simulation. We conclude by providing a real data example based on

he UK Biobank. 

.1.1. LMM parameter estimation 

A vast amount of literature exists on the development of LMM pa-

ameter estimation tools and methodology. Primarily proposed in the

ate 1970s and early 1980s, many early approaches to LMM parameter

stimation involved performing likelihood maximisation via numerical

ethods such as Fisher Scoring, Newton-Raphson and Expectation Max-

misation (c.f. Dempster et al., 1977; Jennrich and Schluchter, 1986 ;

aird et al., 1987 ). More recently, several tools which build upon these

undamental ideas have become available for LMM parameter estima-

ion in the univariate (single-model) setting. The most popular of these

nclude the SAS and SPSS packages, PROC-MIXED and MIXED ( SAS In-

titute, 2015; Corp, 2015 ), the R package lme4 ( Bates et al., 2015 ) and

he Windows package HLM ( Raudenbush et al., 2019 ). These tools have

een widely adopted within the statistical literature, largely due to their

emonstrable computational efficiency when performing parameter es-

imation for a single univariate model. 

However, in mass-univariate fMRI, parameter estimation is not per-

ormed for a single model, but rather for hundreds of thousands of mod-

ls, each corresponding to a different voxel in the analysis mask. For

 mass-univariate voxel-wise analysis to truly utilise the computational

ower available, it is a necessity that computation is vectorised across

oxels. Many of the established LMM tools are reliant upon operations

hat are not naturally amenable to vectorisation. Examples of such op-

rations include the sparse Cholesky decomposition employed by lme4

 Bates and DebRoy, 2004 ) and the sparse sweep operation employed

y PROC-MIXED and MIXED ( Wolfinger et al., 1994 ). The approaches

mployed by HLM circumvent this issue, but at the cost of generaliz-

bility since HLM only allows the estimation of LMMs which exhibit

re-specified structures ( Raudenbush and Bryk, 2002 ). Operations that

re not amenable to vectorisation create bottlenecks for mass-univariate

omputation as they must be executed separately for each voxel in the

mage. Serial execution of such operations can result in severe compu-

ational overheads, especially when modelling large sample sizes. As a

esult, many of the tools available for univariate LMM analysis cannot

e employed in the large- 𝑛 fMRI setting. 

In the small-sample fMRI setting, several tools exist for mass-

nivariate LMM parameter estimation. These include SPM’s built-in

ixed-effects module ( Friston et al., 2005 ), FSLs FLAME package

 Beckmann et al., 2003 ), FreeSurfers longitudinal analysis pipeline

 Bernal-Rusiel et al., 2013a ) and AFNIs 3dLME package ( Chen et al.,

013 ). The tools provided by SPM, FSL and FreeSurfer perform param-

ter estimation for only LMMs in which observations are grouped by a

ingle categorical factor. Specifically, SPM and FSL allow LMM parame-

er estimation of second-level designs (i.e. designs with subjects grouped
2 
y experimental features) whilst FreeSurfer allows for parameter estima-

ion of longitudinal LMM designs (i.e. designs with timepoints grouped

y subject) ( Group, 2020 ; Woolrich et al., 2004 ; Bernal-Rusiel et al.,

013b ; Madhyastha et al., 2018 ). In SPM and FreeSurfer, parameter es-

imates are obtained via Restricted Maximum Likelihood (REML) esti-

ation, whilst in FSL a Bayesian approach is adopted. In contrast, AFNI’s

dLME package allows parameter estimation of a much broader range of

MM designs and provides similar options to those offered by standard

ools in the univariate setting. 3dLME provides this support by calling

irectly to the R package lme4 and parallelising computation across all

vailable processors and cluster nodes via the use of the Dask Python

ackage ( Rocklin, 2015 ). 

The tools provided by SPM, FSL, FreeSurfer and AFNI are compu-

ationally efficient for parameter estimation in the small-sample mass-

nivariate analysis setting, but were not originally designed for appli-

ations involving large sample sizes. In the context of large- 𝑛 analyses,

PM, FSL and FreeSurfer quickly encounter memory errors as sample

izes increase into the hundreds whilst AFNI experiences overheads in

erms of computation time. For all tools, reduced computational perfor-

ance in the large- 𝑛 setting primarily stems from two issues: (1) con-

truction and storage of the analysis design (i.e. the design matrices and

esponse vector) and (2) bottleneck computations which must be per-

ormed independently for each voxel. 

.1.2. Missing data 

An important issue that must be addressed prior to or during the

arameter estimation stage of an fMRI analysis is the missing data ob-

erved on and around cortical boundaries. Such missingness is ubiq-

itous in whole-brain fMRI analyses and can be attributed to sev-

ral commonplace sources of between-image spatial variability. Such

ources include magnetic susceptibility artefacts, imperfections in the

mage alignment process, differing image acquisition parameters and,

ndirectly, between-subject biological variation. Conventionally, stan-

ard fMRI analysis tools address this missing data problem by omitting

oxels with incomplete observations from the analysis. As detailed by

aden et al. (2012) , and later by Gebregziabher et al. (2017) , adopting

his approach can negatively impact both the specificity and sensitiv-

ty of the analysis results, especially when spatial extent thresholding is

mployed for multiple comparisons correction. In terms of specificity,

n inflated Type II error rate may be observed when the removal of

oxels with incomplete data causes brain regions that are near cortical

oundaries to be excluded from the analysis. In terms of sensitivity, an

nflated Type I error rate may result from the smaller number of tests

eing performed, and consequently, the use of a less conservative mul-

iple comparisons correction. Whilst the removal of missing-data vox-

ls in the small-sample setting typically has a negligible effect, in the

arge- 𝑛 setting omitting voxels can profoundly influence results of an

nalysis, often deleting large chunks of the final images produced. The

eason that the severity of this issue becomes notably more pronounced

n the large- 𝑛 setting is that the probability of a given voxel being miss-

ng in at least one image increases with the number of images in the

nalysis. To address this issue, the patterns of missingness observed for

ach voxel must be carefully considered and accounted for in large- 𝑛

nalyses. 

.1.3. Inference 

In the small-sample setting, fMRI LMM analyses conclude with

ignificance-based hypothesis tests for the fixed-effects (predictors) in

he model by using Wald test statistics. Commonly adopted Wald-based

ypothesis testing procedures include the 𝑇 -test and the 𝐹 -test. The

 -test is used to assess whether linear relationships exist between the

OLD response and model predictors (such as age, weight and experi-

ental design), whilst the 𝐹 -test is used to assess whether the inclusion

f predictors in a model improves the model’s goodness of fit. In some

ircumstances, it may also be of practical interest to assess whether the

nclusion of random effects in the model improves the model fit. Such
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uestions are less commonly considered, but may be addressed using

 likelihood ratio test (c.f. Stram and Lee, 1995 ; Verbeke and Molen-

erghs, 2001 ). 

Hypothesis testing of fixed effects has long been a contentious topic

n the broader LMM literature, due to unknown variability in the es-

imation of variance components and lack of exact distribution for the

ald test statistics ( Verbeke and Molenberghs, 2001 ). As a result, whilst

any of the popular tools for univariate LMM analysis provide support

or calculating Wald T-statistics and F-statistics, there is debate concern-

ng how the corresponding p-values are to be calculated and whether

uch practices should be widely adopted (c.f. Manor and Zucker, 2004 ;

aayen et al., 2008 ; Luke, 2017 ). 

The lack of consensus in the LMM literature is reflected by the

ange of options available for performing LMM inference in the uni-

ariate setting. For example, HLM, MIXED and PROC-MIXED each

dopt the assumption that the Wald test statistics for the LMM ‘ap-

roximately’ follow students 𝑡 - and 𝐹 -distributions, but employ dif-

erent techniques for estimating the associated unknown degrees of

reedom. HLM approximates the degrees of freedom via closed-form

xpressions resembling those employed for multi-level linear model

nalyses (c.f. Raudenbush and Bryk, 2002 ; West et al., 2014 ). On the

ther hand, MIXED and PROC-MIXED utilize the Welch-Satterthwaite

quation (c.f. Section 2.1.4 ) and numerical gradient optimization

 Satterthwaite, 1946 ; Welch, 1947 ; Fai and Cornelius, 1996 ) in order to

btain degrees of freedom estimates for a more general breadth of LMM

pplications. For brevity, in the remainder of this paper we shall refer

o methods involving degrees of freedom estimation using the Welch-

atterthwaite equation as ‘WSDF’ (Welch-Satterthwaite Degrees of Free-

om) based methods. 

By employing this ‘approximate distribution’ assumption, HLM,

IXED and PROC-MIXED are able to provide support for significance-

ased hypothesis testing, outputting 𝑝 -values alongside Wald statistics

or a wide variety of LMMs. While lmer rejects any approximation

nd offers no p-values ( Bates, 2006 ), the supporting lmerTest pack-

ge ( Kuznetsova et al., 2017 ) provides p-values by using the same

ethods as MIXED and PROC-MIXED. Numerous studies have found

hat the WSDF-based approach employed by MIXED, PROC-MIXED and

merTest is notably more robust to small sample sizes, unbalanced de-

igns, covariance heterogeneity (when fitting the correct covariance

tructure) and non-normality than the approach adopted by HLM (c.f.

eselman et al., 1999 ; Schaalje et al., 2002 ; Kuznetsova et al., 2017 ;

uke, 2017 ; Francq et al., 2019 ). However, the computational burden

f the numerical gradient estimation required for the WSDF-based ap-

roach is substantial and constitutes a significant obstacle to large- 𝑛

MM analysis in the mass-univariate fMRI setting. 

Several tools are available in the small-sample fMRI setting for

ignificance-based hypothesis testing via Wald statistics. As with LMM

arameter estimation, these include SPM’s built-in mixed-effects mod-

le, FSL’s FLAME package, FreeSurfer’s longitudinal analysis pipeline

nd AFNI’s 3dLME package. Due to the low computational costs re-

uired, SPM, FreeSurfer and FSL each employ a similar approach to that

sed by HLM in the univariate setting by using closed-form expressions,

hich can be found, for example, in Pinheiro and Bates (2009) , to ap-

roximate the degrees of freedom. AFNI alternately employs the WSDF

pproach by acting as a wrapper for the lmerTest package. While the

ormer approach is more efficient in terms of computation time and

emory, it provides less accurate estimates for the degrees of freedom.

onversely, the latter approach provides more accurate estimation of

he approximate sampling distributions of the Wald test statistics, but

t the cost of increased computation time that scales with the number

f observations. In this work, we make use of recent novel closed-form

xpressions we developed for evaluating the gradients required by the

SDF approach ( Maullin-Sapey and Nichols, 2021 ). These expressions

ffer a viable and accurate alternative to gradient estimation and may

e employed in the large- 𝑛 fMRI setting using vectorised computation

ithout sacrificing statistical accuracy. 
3 
.2. Preliminaries 

In this section, a brief overview and statement of the mass-univariate

MM is provided. To simplify notation, we begin by defining the univari-

te LMM in Section 1.2.1 . Following this, in Section 1.2.2 we describe

ow the definition and notation of Section 1.2.1 are extended to the

ass-univariate fMRI setting. 

.2.1. The linear mixed model 

In the traditional univariate setting, an LMM containing 𝑛 observa-

ions is assumed to take the following form: 

𝑌 = 𝑋𝛽 + 𝑍𝑏 + 𝜖

𝜖 ∼ 𝑁(0 , 𝜎2 𝐼 𝑛 ) , 𝑏 ∼ 𝑁(0 , 𝜎2 𝐷) (1) 

here the observed quantities are the response vector 𝑌 , fixed effects

esign matrix 𝑋, and random effects design matrix 𝑍, and the unknown

odel parameters are the fixed effects parameter vector 𝛽, the scalar

xed effects variance 𝜎2 , and the random effects covariance matrix 𝐷. 

The random effects in the model are specified using factors (categori-

al variables which group the random effects) and levels (the individual

nstances of the categorical factors). The total number of factors that

roup the random effects in the model is denoted as 𝑟 . For the 𝑘 𝑡ℎ factor

n the model, 𝑙 𝑘 and 𝑞 𝑘 are used to denote the number of levels belonging

o the factor and the number of random effects that the factor groups,

espectively. The random effects design matrix, 𝑍, can be partitioned

orizontally as 𝑍 = [ 𝑍 (1 , 1) , … , 𝑍 (1 ,𝑙 1 ) , 𝑍 (2 , 1) , … , 𝑍 ( 𝑟,𝑙 𝑟 ) ] where 𝑍 ( 𝑘,𝑗) con-

ists of the random effects covariates which are grouped into the 𝑗 𝑡ℎ level

f the 𝑘 𝑡ℎ factor in the model. The random effects covariance matrix, 𝐷,

s block diagonal and can be specified as 𝐷 = 

⨁𝑟 

𝑘 =1 ( 𝐼 𝑙 𝑘 ⊗𝐷 

𝑘 ) , where 
⨁

s the direct sum and 𝐷 

𝑘 is the ( 𝑞 𝑘 × 𝑞 𝑘 ) within-level covariance matrix

or the 𝑘 𝑡ℎ factor in the model. This notation is essential for describing

he Fisher Scoring algorithm approach that will be employed by BLMM

or parameter estimation (see Section 2.1.3 ). To aid understanding, sev-

ral worked examples of this notation’s usage in practice are provided

n Supplementary Material Section S1, alongside extensive discussion of

he model covariance structures that may be estimated using BLMM. 

From Eq. (1) , the restricted log-likelihood function for the LMM,

gnoring constant terms, is given by: 

 𝑅 ( 𝜃) = − 

1 
2 

{ 

( 𝑛 − 𝑝 ) log ( 𝜎2 ) + 𝜎−2 𝑒 ′𝑉 −1 𝑒 + log |𝑉 | + log |𝑋 

′𝑉 −1 𝑋|} 

(2)

here 𝜃 is shorthand for the parameters ( 𝛽, 𝜎2 , 𝐷) , 𝑝 is the number of

xed effect parameters in the design, 𝑉 = 𝐼 𝑛 + 𝑍 𝐷𝑍 

′ is the marginal

ariance, and 𝑒 = 𝑌 − 𝑋𝛽 is the residual vector. Throughout this work,

e assume that 𝜃 takes the form 𝜃 = [ 𝛽′, 𝜎2 , vec ( 𝐷 

1 ) ′, … , vec ( 𝐷 

𝑟 ) ′] ′,
here vec represents the vectorization operator. It should be noted that

hilst this may seem like a natural representation of 𝜃, it is by no means

he only possible representation. A full discussion of this, alongside a

ore detailed introduction to the LMM and the notation described in

his section, is provided in our previous work, Maullin-Sapey, Nichols,

021 . 

.2.2. The mass univariate model 

In the mass-univariate setting we fit and infer on hundreds of thou-

ands of LMMs concurrently. In the setting of fMRI, each LMM corre-

ponds to a voxel in the study’s analysis mask. Adapting the notation of

he previous section, this is represented as: 

 𝑣 = 𝑋𝛽𝑣 + 𝑍𝑏 𝑣 + 𝜖𝑣 

𝑣 ∼ 𝑁(0 , 𝜎2 
𝑣 
𝐼 𝑛 ) , 𝑏 𝑣 ∼ 𝑁(0 , 𝜎2 

𝑣 
𝐷 𝑣 ) 

(3) 

here the subscript 𝑣 represents voxel number. In Eq. (3) , the fixed ef-

ects and random effects design matrices ( 𝑋 and 𝑍) are treated as con-

tant across all voxels, whilst the response vector ( 𝑌 ), design parameters

 𝛽, 𝜎2 and 𝐷) and random terms ( 𝜖 and 𝑏 ) vary from voxel to voxel. By

xtension, this also means that 𝑛, 𝑟, { 𝑙 𝑘 } 𝑘 ∈{1 , …𝑟 } and { 𝑞 𝑘 } 𝑘 ∈{1 , …𝑟 } are also

reated as constant across voxels. Eq. (3) extends the conventional form
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f the univariate LMM to the mass-univariate setting. As hierarchical,

ulti-stage designs can be expressed using the above formulation (c.f.

inheiro and Bates, 2009 ; West et al., 2014 ), the model specifications

dopted by the each of the existing fMRI LMM software packages may

e viewed as particular instances of Eq. (3) . As noted in Section 1.1.2 ,

his model does not account for mask-variability and, as a result, must

e adapted to reflect the pattern of missingness observed at each voxel.

To account for such missingness in 𝑌 𝑣 , we adopt an MCAR (Missing

ompletely At Random) assumption and define the ( 𝑛 × 𝑛 ) -dimensional

missingness matrix’, 𝑀 𝑣 , as a diagonal indicator matrix, where the

 𝑖, 𝑖 ) 𝑡ℎ element is 1 if the 𝑖 𝑡ℎ element of 𝑌 𝑣 is not missing and 0 other-

ise. We now define 𝑋 𝑣 = 𝑀 𝑣 𝑋 and 𝑍 𝑣 = 𝑀 𝑣 𝑍 and assume that miss-

ngness in 𝑌 𝑣 and 𝜖𝑣 is encoded as 0. The model specification for a

ass-univariate LMM that accounts for missingness induced by mask-

ariability is now given as follows: 

 𝑣 = 𝑋 𝑣 𝛽𝑣 + 𝑍 𝑣 𝑏 𝑣 + 𝜖𝑣 

𝑣 ∼ 𝑁(0 , 𝜎2 
𝑣 
𝑀 𝑣 ) , 𝑏 𝑣 ∼ 𝑁(0 , 𝜎2 

𝑣 
𝐷 𝑣 ) 

(4) 

he inclusion of the missingness matrix, 𝑀 𝑣 , ensures that rows of the

esign at which missingness occurred for voxel 𝑣 are replaced with ze-

os, or “zero-ed out ”. This process ensures that the analysis proceeds as

hough such ‘missing-data’ rows had not been included in the design at

ll. 

An important ramification of this model construction is that the fixed

ffects and random effects design, 𝑋 𝑣 and 𝑍 𝑣 , as well as the number of

bservations, 𝑛 𝑣 , are now treated as spatially varying. If naively imple-

ented, a model involving a spatially varying design (such as Eq. (4) )

resents a much more formidable computational challenge than its non-

patially varying counterpart (i.e. Eq. (3) ), as additional expenses in

emory and computation time arise from accounting for voxel-specific

esign matrices. However, in this context, it must be noted that as 𝑋 𝑣 

nd 𝑍 𝑣 are constructed by ‘zero-ing out’ rows of 𝑋 and 𝑍, many voxels

ill employ identical design matrices for analysis (i.e. it is often the case

hat 𝑋 𝑣 1 
= 𝑋 𝑣 2 

and 𝑍 𝑣 1 
= 𝑍 𝑣 2 

for two separate voxels 𝑣 1 and 𝑣 2 ). In par-

icular, it is expected that inside the brain, far from cortical boundaries,

o missingness will be observed, and therefore, for many voxels, 𝑋 𝑣 = 𝑋

nd 𝑍 𝑣 = 𝑍. In other words, whilst it is true that the design matrices,

 𝑣 and 𝑍 𝑣 , vary spatially across the whole brain, it is expected that

arge contiguous groups of voxels will exist over which 𝑋 𝑣 and 𝑍 𝑣 do

ot vary at all. Accounting for this “between-voxel design commonality ”

an result in drastic improvements in computation speed and efficiency,

nd thus, constitutes a key motivation behind the approach adopted by

LMM. 

In the following sections, unless stated otherwise the subscript 𝑣 ,

epresenting voxel number, will be dropped from our notation. For the

emainder of this work, it is assumed implicitly that any equations pro-

ided correspond to a model of the form (4) for some given voxel. 

. Methods 

In this section, we describe the computational pipeline employed by

LMM to perform mass-univariate LMM analysis of large- 𝑛 fMRI data,

s well as the simulations and real-data examples for which results are

ater presented in Section 3 . To begin, Section 2.1 gives an in-depth

verview of the stages of the BLMM computational pipeline. Following

his, Section 2.2 describes simulations that shall be used to assess the

orrectness and performance of BLMM. Finally, Section 2.3 details a

eal-world example based on repeated-measures data drawn from the

K Biobank, demonstrating BLMM’s usage in practice. 

.1. The BLMM pipeline 

A visual overview of the BLMM pipeline is provided by Fig. 1 in the

orm of an activity diagram. Highlighted in Fig. 1 are the four “stages ”

f the BLMM pipeline: input specification, product form computation,

arameter estimation, and inference and output. Each of these stages is
4 
escribed in turn by Sections 2.1.1 –2.1.4 , respectively. Also labelled in

ig. 1 are the steps of the pipeline which employ distributed computa-

ion: “Image-wise batching ” and “Voxel-wise batching ”, each of which is

urther discussed further in Sections 2.1.2 and 2.1.3 –2.1.4 , respectively.

.1.1. Input specification 

To specify an analysis design in BLMM, the user must provide the

xed effects design matrix, 𝑋, the response images, 𝑌 , and the random

ffects design matrix, 𝑍. For specification of the random effects design

atrix, 𝑍, a similar approach to that of lmer is adopted ( Bates et al.,

015 ). For each factor in the design, the user provides a factor vector,

 𝑘 , and a “raw ” regressor matrix, 𝑧 𝑘 . The raw regressor matrix, 𝑧 𝑘 , is

 matrix of dimension ( 𝑛 × 𝑞 𝑘 ) and contains the covariates which cor-

espond to the random effects that are to be grouped by the 𝑘 𝑡ℎ factor

n the model. The factor vector, 𝑔 𝑘 , is a numerical vector of dimension

 𝑛 × 1) with entries indicating to which level of the 𝑘 𝑡ℎ factor each ob-

ervation belongs. From these inputs, the following construction is used

o obtain the random effects design matrix 𝑍: 

 = 

[
𝐽 ′1 ∗ 𝑧 

′
1 , … , 𝐽 ′

𝑟 
∗ 𝑧 ′

𝑟 

]
, where ( 𝐽 𝑘 ) [ 𝑖,𝑗] = 

{ 

1 if ( 𝑔 𝑘 ) [ 𝑖 ] = 𝑗 

0 otherwise 

nd ∗ is the Khatri-Rao product. For example, in a longitudinal design,

 1 would be a vector of subject identifiers and 𝑧 1 could contain a column

f 1’s for a random intercept and a column of study times for a random

lope for the time effect. See Supplementary Material Section S1 for

everal worked examples. 

During input specification, BLMM also provides a range of masking

ptions. By default, the user is required to specify an analysis mask. In

ddition, the user may specify one mask per input image, as well as a

missingness threshold ”. The missingness threshold, which may be spec-

fied as either a percentage or an integer, indicates how many input im-

ges a voxel must have recorded data for in order for it to be retained in

he final analysis. This threshold is essential, as while accommodating

issingness is an essential feature of BLMM, allowing excessive miss-

ngness (down to a small faction of the data) is not advised and may

esult in rank-deficient designs. Implicit masking is also supported by

LMM, with any voxel set to 0 or NaN in an input image being treated

s ‘missing’ from the analysis. 

Whilst specifying the analysis model, the user may also opt to per-

orm hypothesis testing using an approximate Wald 𝑇 − test or 𝐹 − test.

o specify a hypothesis test of this form, the user must provide a con-

rast vector, 𝐿 , representing the null hypothesis, and the type of statistic

o be used to perform the test (i.e. 𝑇 or 𝐹 ). Further detail on hypothesis

esting via approximate Wald statistics is provided in Section 2.1.4 . 

.1.2. Product form computation 

Computation within the BLMM pipeline begins by, for each voxel 𝑣 ,

omputing the “product forms ” defined as follows: 

 𝑣 = 𝑋 

′
𝑣 
𝑋 𝑣 , 𝑄 𝑣 = 𝑋 

′
𝑣 
𝑌 𝑣 , 𝑅 𝑣 = 𝑋 

′
𝑣 
𝑍 𝑣 , 

𝑆 𝑣 = 𝑌 ′
𝑣 
𝑌 𝑣 , 𝑇 𝑣 = 𝑌 ′

𝑣 
𝑍 𝑣 , 𝑈 𝑣 = 𝑍 

′
𝑣 
𝑍 𝑣 . (5) 

Following the computation of the product forms, the original matri-

es, 𝑋 𝑣 , 𝑌 𝑣 and 𝑍 𝑣 , can be discarded since only the product forms are re-

uired for future computation (c.f. Sections 2.1.3 –2.1.4 ). This approach

s adopted by BLMM as the dimensions of the product forms do not scale

ith 𝑛 but rather with 𝑝 and 𝑞, the second dimensions of the fixed effects

nd random effects design matrices, respectively. As 𝑝 and 𝑞 are assumed

o be much smaller than 𝑛 , working with the product forms instead of

 𝑣 , 𝑌 𝑣 and 𝑍 𝑣 can provide large reductions in both memory consump-

ion and computation time (c.f. Maullin-Sapey and Nichols, 2021 ). 

To compute the product forms efficiently, BLMM employs an image-

ise batching approach. In this approach, the input images and model

atrices are split into batches and computation is performed in paral-

el across several cluster nodes. More precisely, given 𝐵 nodes, 𝑋 and

are vertically partitioned into evenly sized blocks { 𝑋 

( 𝑏 ) } 𝑏 ∈{1 , …,𝐵} and
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Fig. 1. Activity diagram detailing the BLMM pipeline. The boundary of the BLMM code is indicated by the gray outline. The start and end nodes of the pipeline 

are represented by the black circle and nested black and white circles, respectively. Decision nodes are represented by diamonds and parallel stages of computation 

are represented with vertical bars. Also included are dotted lines indicating the distinct “stages ” of the BLMM pipeline. Of particular note are the image-wise and 

voxel-wise batching stages of the pipeline, in which computation is parallelised across 𝐵 𝐼 groups of images and 𝐵 𝑣 groups of voxels, respectively. 
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Algorithm 1: Product Form Computation Pseudocode. 

1 On the central node 

2 Partition 𝑋 and 𝑍 vertically into 𝐵 batches. 

3 Partition list of 𝑌 images into 𝐵 batches. 

4 end 

5 On each node, node 𝑏 

6 Read in the 𝑏 𝑡ℎ batch of 𝑌 images as 𝑌 ( 𝑏 ) . 

7 Read in the 𝑏 𝑡ℎ batches of 𝑋 and 𝑍 as 𝑋 

( 𝑏 ) and 𝑍 ( 𝑏 ) , respectively. 

8 for all voxels do 

9 Compute mask 𝑀 

( 𝑏 ) 
𝑣 

by considering the pattern of zeros in 𝑌 ( 𝑏 ) 
𝑣 

. 

10 Apply masking to 𝑋 

( 𝑏 ) 
𝑣 

and 𝑍 ( 𝑏 ) 
𝑣 

to obtain 𝑋 

( 𝑏 ) 
𝑣 

= 𝑀 

( 𝑏 ) 
𝑣 
𝑋 

( 𝑏 ) and 

𝑍 ( 𝑏 ) 
𝑣 

= 𝑀 

( 𝑏 ) 
𝑣 
𝑍 ( 𝑏 ) . 

11 Compute the product forms for this partition: 𝑃 ( 𝑏 ) 
𝑣 

, 𝑄 ( 𝑏 ) 
𝑣 
, 𝑅 ( 𝑏 ) 

𝑣 
, 𝑆 ( 𝑏 ) 

𝑣 
, 𝑇 ( 𝑏 ) 

𝑣 
and 

𝑈 ( 𝑏 ) 
𝑣 

. 

12 Send the product forms to the central node. 

13 end 

14 end 

15 On the central node 

16 for all voxels do 

17 Compute the product forms; 𝑃 𝑣 , 𝑄 𝑣 , 𝑅 𝑣 , 𝑆 𝑣 , 𝑇 𝑣 and 𝑈 𝑣 by summing over 

results from nodes (e.g. 𝑃 𝑣 = 
∑

𝑏 𝑃 
( 𝑏 ) 
𝑣 

). 

18 end 

19 end 
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 𝑍 

( 𝑏 ) } 𝑏 ∈{1 , …,𝐵} , respectively. The list of input images, 𝑌 , is also parti-

ioned into 𝐵 lists of 𝑛 
𝐵 

input images, { 𝑌 ( 𝑏 ) } 𝑏 ∈{1 , …,𝐵} , each correspond-

ng to a partition of 𝑋 and 𝑍. Each node is assigned a partition of 𝑋,

he corresponding partition of 𝑍 and the corresponding list of input im-

ges. For every voxel in the analysis mask, this means that the 𝑏 𝑡ℎ node

ow possesses 𝑛 
𝐵 

observations (assuming missing values are encoded as

ero). We denote the response vector of observations at voxel 𝑣 , taken

rom the images 𝑌 ( 𝑏 ) , as 𝑌 
( 𝑏 ) 
𝑣 . 

The 𝑏 𝑡ℎ node now applies voxel-specific masking to 𝑋 

( 𝑏 ) and 𝑍 

( 𝑏 ) to

btain the spatially-varying designs { 𝑋 

( 𝑏 ) 
𝑣 } and { 𝑍 

( 𝑏 ) 
𝑣 } . For each voxel, 𝑣 ,

his is achieved by considering whether 𝑣 has missing data in the input

mages listed in 𝑌 ( 𝑏 ) and “zero-ing ” out the corresponding rows of 𝑋 

( 𝑏 ) 

nd 𝑍 

( 𝑏 ) accordingly (c.f. Section 1.2.2 ). Given the spatially varying de-

igns, { 𝑋 

( 𝑏 ) 
𝑣 } and { 𝑍 

( 𝑏 ) 
𝑣 } , and response vector, { 𝑌 ( 𝑏 ) 𝑣 } , the product forms

or this partition of the model are now computed as: 𝑃 
( 𝑏 ) 
𝑣 = 𝑋 

( 𝑏 ) ′
𝑣 𝑋 

( 𝑏 ) 
𝑣 ,

 

( 𝑏 ) 
𝑣 = 𝑋 

( 𝑏 ) ′
𝑣 𝑌 

( 𝑏 ) 
𝑣 ,... and so forth. 

For each voxel, the product forms for each partition are then sent

o a designated central node. For the 𝑣 𝑡ℎ voxel, the central node now

omputes the product forms for the entire model by summing over those

ent from each node (i.e. 𝑃 𝑣 = 

∑
𝑏 𝑃 

( 𝑏 ) 
𝑣 , 𝑄 𝑣 = 

∑
𝑏 𝑄 

( 𝑏 ) 
𝑣 ,...). This approach

an be seen to produce the product forms which were defined by Eq.

5) by noting, for arbitrary matrices of appropriate dimension, 𝐴 and

, with corresponding vertical partitions { 𝐴 

( 𝑏 ) } and { 𝐵 

( 𝑏 ) } , that 𝐴 

′𝐵 =
𝑏 𝐴 

( 𝑏 ) ′𝐵 

( 𝑏 ) . Pseudocode for the product form computation stage of the

LMM pipeline is provided by Algorithm 1 . 

To prevent convergence failure due to rank deficiency, follow-

ng product form calculation, any voxels for which rank ( 𝑃 𝑣 ) < 𝑝 or

ank ( 𝑈 𝑣 ) < 𝑞 are dropped from the analysis. Removal of such voxels is

dvised during analysis but can be prevented by setting the “safeMode ”

ption to 0. The approach described in this section was initially mo-

ivated by a similar method employed for parameter estimation of

he Linear Model. Details of this method are provided in Supplemen-

ary Material Section S2, alongside a corresponding implementation

ritten in Python. Further notes on the computational efficiency of

lgorithm 1 are also provided in Supplementary Material Section S3. 

.1.3. Parameter estimation 

The most computationally intensive stage of any LMM analysis is

he estimation of the unknown model parameters ( 𝛽, 𝜎2 , 𝐷) . A common

pproach to estimating the unknown model parameters of the LMM is
5 
o perform Restricted Maximum Likelihood (REML) estimation using

q. (2) . BLMM employs the Full Simplified Fisher Scoring (FSFS) algo-

ithm to perform this task for each voxel in the analysis mask. Proposed

or the multi-factor LMM in our previous work, the FSFS algorithm it-

ratively performs updates to the fixed effects parameter vector, 𝛽, and

xed effects variance estimate, 𝜎2 , using the Generalized Least Squares

GLS) estimators, and to { vec ( 𝐷 

𝑘 )} 𝑘 ∈{1 , …,𝑟 } separately using a Fisher

coring update step based on the “full ” representation of 𝐷 

𝑘 , vec( 𝐷 

𝑘 ).

 “Full ” refers to the parameterization of vec( 𝐷 

𝑘 ); see Section 2.1.2 of

aullin-Sapey and Nichols (2021) for further detail). Formally, during

ach iteration, 𝛽 and 𝜎2 are updated according to the following GLS

pdate rules: 

𝑠 +1 = 

(
𝑋 

′𝑉 −1 
𝑠 

𝑋 

)−1 
𝑋 

′𝑉 −1 
𝑠 

𝑌 , 𝜎2 
𝑠 +1 = 

𝑒 ′
𝑠 +1 𝑉 

−1 
𝑠 

𝑒 𝑠 +1 
, (6) 
𝑛 
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Algorithm 2: Full Simplified Fisher Scoring Pseudocode. 

1 Assign 𝛽0 , 𝜎
2 
0 and { 𝐷 

𝑘 
0 } 𝑘 ∈{1 , …𝑟 } to aninitial estimate (c.f. Appendix B). 

2 while current 𝑙 𝑅 ( 𝜃) and previous 𝑙 𝑅 ( 𝜃) differ by more than a predefined tolerance do 

3 Update 𝛽 and 𝜎2 using (6). 

4 for 𝑘 ∈ {1 , …𝑟 } do 

5 Update vec( 𝐷 

𝑘 ) using (7). 

6 Project 𝐷 

𝑘 to the space of non-negative definite matrices using an 

eigendecomposition. 

7 end 

8 Recompute 𝑙 𝑅 ( 𝜃) using (2). 

9 Assign 𝛼 = 𝛼
2 

if 𝑙 𝑅 ( 𝜃) has decreased in value. 

10 end 
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here 𝑉 𝑠 = 𝐼 + 𝑍 𝐷 𝑠 𝑍 

′, 𝑒 𝑠 = 𝑌 − 𝑋𝛽𝑠 and the subscript 𝑠 here, and

hroughout the remainder of this section only, denotes iteration number.

or 𝑘 ∈ {1 , … , 𝑟 } , the update rule employed for 𝐷 

𝑘 takes the following

orm: 

ec ( 𝐷 

𝑘 
𝑠 +1 ) = vec ( 𝐷 

𝑘 
𝑠 
) + 𝛼𝑠 ( 𝐹 𝑘 𝑠 ) 

−1 𝜕 𝑘 
𝑠 
. (7)

ere, 𝛼𝑠 is a scalar step size, which is initialized to 𝛼0 = 1 and halved

ach time a decrease in log-likelihood is observed between iterations,

 

𝑘 
𝑠 

acts as a Fisher Information matrix given by: 

 

𝑘 
𝑠 
= 

𝑙 𝑘 ∑
𝑖,𝑗=1 

(
𝑍 

′
( 𝑘,𝑖 ) 𝑉 

−1 
𝑠 

𝑍 ( 𝑘,𝑗 ) ⊗𝑍 

′
( 𝑘,𝑖 ) 𝑉 

−1 
𝑠 

𝑍 ( 𝑘,𝑗 ) 

)
, 

nd 𝜕 𝑘 
𝑠 

is the score vector given by: 

 

𝑘 
𝑠 
= vec 

( 

𝑙 𝑘 ∑
𝑗=1 

(
𝑍 

′
( 𝑘,𝑗 ) 𝑉 

−1 
𝑠 

𝑒 𝑠 

)(
𝑍 

′
( 𝑘,𝑗 ) 𝑉 

−1 
𝑠 

𝑒 𝑠 

)′
− 𝑍 

′
( 𝑘,𝑗 ) 𝑉 

−1 
𝑠 

𝑍 ( 𝑘,𝑗 ) 

+ 𝑍 

′
( 𝑘,𝑗 ) 𝑉 

−1 𝑋 

(
𝑋 

′𝑉 −1 𝑋 

)−1 
𝑋 

′𝑉 −1 𝑍 ( 𝑘,𝑗 ) 

)
. 

n this approach, to ensure that the estimates of { 𝐷 

𝑘 } 𝑘 ∈{1 , …𝑟 } are non-

egative definite following each evaluation of the above update rules,

n eigendecomposition based approach is used to project 𝐷 

𝑘 to the

pace of non-negative definite matrices. Further detail on the use of

he eigendecomposition in this manner can be found, for example, in

emidenko (2013) . We note here that 𝐹 𝑘 
𝑠 

is technically not a Fisher

nformation matrix, but rather a simplified version of the true Fisher

nformation matrix for the “full ” representation of 𝜃 that provides the

xact same updates during optimisation. For further details on this dis-

inction, see our previous work, Maullin-Sapey and Nichols (2021) . 

It is important to note that, in every equation given above, the right-

and side can be reformulated to be expressed solely in terms of the

roduct forms and the parameter estimates ( 𝛽, 𝜎2 , 𝐷) . This is crucial to

he BLMM framework as, as is noted in Section 2.1.2 , to prevent mem-

ry consumption and computation time from scaling with 𝑛 , only the

roduct forms are retained in memory following product form compu-

ation. Detail of how the above equations can be expressed in terms of

he product forms is provided in Appendix A . Initial starting points for

he FSFS algorithm are detailed in Appendix B . 

Successful convergence of the FSFS algorithm is deemed to occur

hen the difference in log-likelihood observed between successive iter-

tions becomes less than a predefined tolerance ( 10 −6 by default) whilst

onvergence failure is deemed to have occured if the maximum number

f iterations ( 10 4 by default) is exceeded. The predefined tolerance and

aximum number of iterations may be changed by the user via the “tol ”

nd “maxnit ” options, respectively. We note here that the default value

f 10 4 for maxnit is likely over-cautious as the simulations in our pre-

ious work ( Maullin-Sapey and Nichols, 2021 ) found that, for a range

f well-specified designs, the FSFS algorithm typically converged within

 − 30 iterations. 

Pseudocode for the FSFS algorithm is provided by Algorithm 2 . In

ertain instances, further improvements in terms of computational per-

ormance can be obtained by utilising structural features of the analysis

esign which simplify the above expressions. In particular, BLMM has

een optimized to give faster performance for models that contain (i)

ne random effect grouped by one random factor and (ii) multiple ran-

om effects grouped by one random factor. Further detail and discussion

f the improvements employed for such models can be found in Supple-

entary Material Section S4. 

In the fMRI analysis setting, careful attention must be given to

omputational efficiency during parameter estimation, as parameters

ust be estimated for every voxel in the analysis mask. As noted in

ection 1.1.1 , computation that is performed independently for one

oxel at a time can result in prohibitively slow computation speeds.

t follows that, in order to execute LMM parameter estimation for fMRI

ata in a practical time frame, computation must be streamlined to allow
6 
or parameter estimation to be performed concurrently across multiple

oxels at once. 

On a single node, parameter estimation may be parallelised across

oxels by using broadcasted computation, which exploits the repetitive

ature of simplistic operations to streamline calculation. A considerable

dvantage in using the FSFS algorithm is that it relies upon only con-

eptually simplistic operations (such as matrix multiplication, matrix

nversion and the eigendecomposition), for which a wealth of broad-

asted support already exists in modern programming languages such

s MATLAB and Python. By utilizing this support, the FSFS algorithm

ay be executed for multiple voxels concurrently in order to achieve

uick and efficient computational performance (c.f. Section 3.1.2 for an

ssessment of BLMM computation time). 

If multiple nodes are available, parameter estimation may also be

arallelised further by partitioning the analysis mask into “batches ” of

oxels and having each node perform parameter estimation for an indi-

idual batch. This approach is also provided by BLMM and is referred to

s “voxel-wise batching ”. The ability to distribute computation in this

anner is advantageous in situations where the analysis design is large

nd the product forms cannot be read into memory for many voxels at

nce. However, this additional layer of parallelisation may not be neces-

ary for smaller designs and is therefore offered optionally in the BLMM

ackage (as shown in Fig. 1 ). 

.1.4. Inference and output 

The final stage of the BLMM pipeline is to perform inference on the

xed effects parameters and output the analysis results in NIfTI format.

o support null-hypothesis testing for the fixed effects parameter vec-

or, 𝛽, BLMM adopts an approach that is similar to that taken by the

opular univariate LMM packages lmerTest, MIXED and PROC-MIXED

c.f. Section 1.1.3 ). In this approach, the REML estimates of the parame-

er vector, ( ̂𝛽, ̂𝜎2 , �̂� ) , are used to construct Wald test statistics. To obtain

orresponding 𝑝 -values, a WSDF-based approach is then employed to

odel the sampling distribution of the Wald statistics. 

Assuming the user has provided a contrast vector, 𝐿 , to specify a null

ypothesis 𝐻 0 ∶ 𝐿𝛽 = 0 , BLMM will compute the corresponding Wald T-

tatistic or F-statistic for each voxel as follows: 

𝑇 = 

𝐿 ̂𝛽√ 

�̂�2 𝐿 

(
𝑋 

′𝑉 −1 𝑋 

)−1 
𝐿 

′
, 

 = 

𝛽′𝐿 

′
[
𝐿 

(
𝑋 

′𝑉 −1 𝑋 

)−1 
𝐿 

′
]−1 

𝐿 ̂𝛽

�̂�2 rank ( 𝐿 ) 
, 

here 𝑉 = 𝐼 𝑛 + 𝑍 �̂� 𝑍 

′. BLMM assumes that the distributions of 𝑇 and

 are reasonably approximated with a student’s 𝑡 - or 𝐹 -distribution.

s the distributional assumptions for 𝑇 and 𝐹 are approximate, and

ot exact, the degrees of freedom are unknown and must be estimated.

he estimation is performed using a WSDF-based approach based on the
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elch-Satterthwaite equation; 

 ( ̂𝜂) = 

2( 𝑆 

2 ( ̂𝜂)) 2 

Var ( 𝑆 

2 ( ̂𝜂)) 
, 

here �̂� represents an estimate of the variance parameters 𝜂 =
 𝜎2 , 𝐷 

1 , …𝐷 

𝑟 ) and 𝑆 

2 ( ̂𝜂) = �̂�2 𝐿 ( 𝑋 

′𝑉 −1 𝑋) −1 𝐿 

′. The numerator of the

bove expression may be evaluated directly. However, the below ap-

roximation, obtained using a second order Taylor expansion, must be

mployed to estimate the unknown variance term in the denominator: 

ar ( 𝑆 

2 ( ̂𝜂)) ≈
( 

𝑑𝑆 

2 ( ̂𝜂) 
𝑑 ̂𝜂

) 

′Var ( ̂𝜂) 
( 

𝑑𝑆 

2 ( ̂𝜂) 
𝑑 ̂𝜂

) 

. 

While other tools (lmerTest, MIXED, PROC-MIXED) require numeri-

al optimisation to obtain this denominator, we make use of our previ-

us work, Maullin-Sapey and Nichols (2021) , where we presented novel

losed-form expressions which may be used to evaluate the variance and

erivative terms in the above directly. These expressions not only pro-

ide a computationally efficient alternative to the use of numerical opti-

isation, but also can be expressed purely in terms of the product forms

see Supplementary Material Section S5 for further detail). As a conse-

uence of this, using a similar approach to that of Section 2.1.3 , BLMM

s able to perform degrees of freedom estimation by utilising only the

roduct forms and parameter estimates at each voxel, and by employ-

ng operations that can be broadcasted or further accelerated through

atch-wise parallelisation. 

Once an analysis has been executed using BLMM, parameter esti-

ate images for 𝛽, 𝜎2 and 𝐷, contrast images of the form 𝐿 ̂𝛽 and Wald

tatistic images with corresponding 𝑝 − value images are output, which

ust then be corrected for multiple testings. Correction for multiple

esting is essential, though the non-linear estimation process precludes

he use of standard random field theory and, while permutation or wild

ootstrap methods are available for mixed models, such methods add

ubstantial computational burden. Hence, either control of the Family-

ise Error rate (FWE) with the Bonferroni correction ( Dunn, 1961 ) or

he False Discovery Rate (FDR) with the Benjamini-Hochberg method

 Benjamini and Hochberg, 1995 ) should be used to account for multiple

esting. 

Following the conclusion of a BLMM analysis, BLMM also provides

ikelihood Ratio Testing (LRT) for comparison of LMM analyses which

ontain a single-random factor and differ only by the inclusion of ran-

om effects. More precisely, the output from several BLMM (or BLM,

.f. Supplementary Material Section S2) analyses may be used to per-

orm hypothesis testing of the below form: 

 0 ∶ 𝐷 { 𝐽} = 0 𝐻 1 ∶ 𝐷 { 𝐽} ≠ 0 

here 𝐽 represents a predetermined set of elements of 𝐷 which cor-

espond to the removal of 𝑞 random effects from the study design.

he above hypothesis is tested using the LRT statistic of the form

2 ln ( 𝑙 ( ̂𝜃0 )∕ 𝑙 ( ̂𝜃)) , where �̂�0 and �̂� are the parameter estimates obtained

rom BLMM analyses in which the random effects 𝐷 { 𝐽} are and are not

ncluded in the model specification, respectively. Following the recom-

endations of Verbeke and Molenberghs (2001) , BLMM assumes that

he LRT test statistic follows the distribution 𝜒2 
𝑞− ̃𝑞 ,𝑞 , where 𝜒2 

𝑎,𝑏 
represents

n even mixture of the distributions 𝜒2 
𝑎 

and 𝜒2 
𝑏 
. Under this distributional

ssumption, BLMM may be used to generate uncorrected p-value signif-

cance images for the LRT statistic. Examples of this method in practice

re provided by Section 3.2 . 

.2. Simulation methods 

In order to quantitatively assess and demonstrate the computational

ccuracy and efficiency of BLMM, extensive simulations were con-

ucted. Simulated data was generated for nine simulation settings: three

ample sizes ( 𝑛 = 200 , 500 and 1000, respectively), each generated un-

er three experimental designs. The experimental designs considered for

imulation in this work reflect the two settings for which parameter es-

imation in BLMM has been explicitly optimized (c.f. Section 2.1.3 and
7 
upplementary Material Section S4), as well as the most general model

pecification that BLMM caters to. These were the settings in which the

xperimental design contains; (i) one random factor which groups one

andom effect, (ii) one random factor which groups multiple random

ffects and (iii) multiple random factors, respectively. These models

orrespond to common use cases designs employing, for example, (i)

 subject-level random intercept in a repeated measures setting, (ii) a

ubject-level random intercept and slope in a repeated measures set-

ing, and (iii) a subject-level intercept and site-level intercept for re-

eated measures taken from multiple subjects across multiple sites. For

ach simulation setting, 1000 individual simulation instances were per-

ormed, and all reported results are given as averages taken across the

000 instances. 

In each simulation setting, the fixed effects parameter vector, 𝛽, and

he fixed effects variance, 𝜎2 , were fixed across simulation instances

nd given by 𝛽 = [4 , 3 , 2 , 1 , 0] ′ and 𝜎2 = 1 , respectively. The fixed effects

esign matrix, 𝑋, contained an intercept and four regressors, each of

hich varied across simulation instances and consisted of values gener-

ted according to a uniform [−0 . 5 , 0 . 5] distribution. Each experimental

esign enforced a different structure on the random effects design and

ovariance matrices, 𝑍 and 𝐷. The first experimental design (Design 1)

ncluded a single factor which grouped one random effect into 100 levels

i.e. 𝑟 = 1 , 𝑞 1 = 1 and 𝑙 1 = 100 ). The second experimental design (Design

) included a single factor which grouped two random effects into 50

evels ( 𝑟 = 1 , 𝑞 1 = 2 , 𝑙 1 = 50 ). The third experimental design (Design 3)

ncluded two crossed factors, the first of which grouped two random ef-

ects into 20 levels and the second of which grouped one random effect

nto 10 levels (i.e. 𝑟 = 2 , 𝑞 1 = 2 , 𝑞 2 = 1 , 𝑙 1 = 20 and 𝑙 2 = 10 ). In all simu-

ation instances, the first random effect appearing in 𝑍 was an inter-

ept. Any additional random effects regressors varied across simulation

nstances and were generated according to a uniform [−0 . 5 , 0 . 5] distri-

ution. For each factor, observations were assigned to levels uniformly

t random so that the probability of an observation belonging to any

pecific level was the same for all levels. The diagonal and off-diagonal

lements of the random effects covariance matrix for each factor were

eld fixed across simulation instances and given as 1 and 0.5, respec-

ively. 

The spatially varying random terms, 𝜖 and 𝑏 were generated as im-

ges of Gaussian noise, with the appropriate covariance between im-

ges induced for 𝑏 . The response images, 𝑌 , were then calculated using

, 𝑍, 𝛽, 𝑏 and 𝜖 according to Eq. (1) . An isotropic Gaussian filter with

 Full Width Half Maximum (FWHM) of 5 was then applied to the re-

ponse images, 𝑌 , to induce spatial correlation across voxels. Following

his, for each response image, random perturbations were applied to the

SL standard 2mm MNI brain mask in order to generate a correspond-

ng “random mask ” image, thus simulating missingness near the edge of

he brain (c.f. Supplementary Material Section S6). The “random ” masks

ere applied to the response images to finally obtain a masked smoothed

andom response, roughly resembling null fMRI data. A visual overview

f the data generation process is provided by Fig. 2 . All NIfTI volumes

enerated for simulation were of dimension (100 × 100 × 100) voxels. It

ust be stressed that this process was not designed to simulate realistic

MRI data rigorously, but rather data that had approximately the same

hape, size, smoothness, and degree of missingness as might be observed

n real fMRI data. 

In order to assess the accuracy and performance of the parameter

stimation in each simulation instance, the R function lmer was also

sed to obtain parameter estimates for each voxel in the analysis mask.

o measure computation speed, we define the ‘Serial Computation Time’

SCT) for BLMM parameter estimation as the time in seconds that would

ave been spent executing the FSFS algorithm if the computation per-

ormed by each node had been run back-to-back in serial. The serial

omputation time for lmer parameter estimation is similarly defined as

he total amount of time that would have been spent executing the func-

ion ‘optimizeLmer’ had all computation been performed in serial. The

erformance of lmer and BLMM was contrasted in terms of SCT averaged
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Fig. 2. A visual representation of the pipeline employed to generate the simulated data of Section 3.1 . The first box depicts the model which was used for data 

generation, notably highlighting that 𝜖 and 𝑏 varied across space. The second box details the smoothing process, with the ⊗ symbol representing convolution in this 

instance. The third box details the masking stage, with ⊙ representing the Hadamard (element-wise) product. 
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cross simulation instances, whilst the parameter estimates produced by

mer and BLMM were compared in terms of image-wide mean absolute

ifference to assess the correctness of the FSFS algorithm employed by

LMM. It is noted here that the computation of product forms is not

ncluded in our evaluation of SCT for BLMM. However, we do not be-

ieve this has impacted the results of our analysis as preliminary testing

emonstrated that the time spent performing product form computa-

ion was many orders of magnitude (approximately 10 5 ) smaller than

he time spent performing REML estimation using the FSFS algorithm. 

The primary purpose in choosing lmer as a baseline for comparison

as to demonstrate the substantial computational benefits of using the

LMM pipeline for mass-univariate analysis in the place of naive com-

utation via ‘for loops’ and lmer. We stress that it is not the author’s

ntention for the results of this analysis to be interpreted as a reflection

n the ability of the lme4 package, which is not designed for use in the

ass-univariate setting, but rather the efficiency of the FSFS algorithm

hen combined with vectorised computation. To ensure the missingness

apabilities of BLMM were exhaustively tested, each simulated analysis

mployed a lenient missingness threshold of 50% . 

In sum, the simulations we have described assess BLMM’s (i) cor-

ectness in terms of parameter estimation, (ii) ability to handle missing

ata, and (iii) computation speed for parameter estimation. All reported

esults were obtained using an HPC cluster with Intel(R) Xeon(R) Gold

126 2.60GHz processors each with 16GB RAM. 
8 
.3. Real data methods 

As a demonstration of the large-scale capabilities of BLMM, here we

rovide an example involving a much larger model than those consid-

red during the simulations of Section 2.2 . In this example, we utilise

ata from the UK Biobank, in which repeated measures were recorded

or 2461 subjects, each of whom completed a “faces vs shapes ” task

wice across separate visits. Each stimuli image of a face had either an

ngry or fearful expression, designed to elicit a strong emotional re-

ponse, whilst the stimuli images of shapes were abstract and neutral. In

SL, a first-level analysis was conducted independently for each visit for

ach subject. In each first-level analysis, the task design was regressed

nto Blood Oxygenation Level Dependent (BOLD) response. During first-

evel analysis, for each subject and visit, a Contrast Parameter Estimate

COPE) map was generated. Each COPE map represented, for a given

isit and subject, the difference in BOLD response between the subject

iewing images of faces and images of abstract shapes. 

At the group level, BLM and BLMM were used to perform parame-

er estimation for three models, each designed to estimate the average

roup level ‘faces > shapes’ response. In each model, the response images,

 , were the COPE maps that were output by FSL during the first-level

nalysis, registered to MNI space. The fixed effects design matrix, 𝑋,

n each model included an intercept, the cross-sectional effect of age

age of subject in years, averaged across visits), longitudinal time (age
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Fig. 3. Observed serial computation times for each experimental design, displayed as a function of the number of observations, 𝑛 . Displayed are the SCT in kiloseconds 

for BLMM (dashed) and lmer (dotted). 
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A  
t each visit, demeaned for each subject individually), sex (encoded as a

wo-valued factor with −0 . 5 = Male and 0 . 5 = Female), a cross-sectional

ge-sex interaction effect and the Townsend deprivation index (a mea-

ure of socio-economic status). 

The primary effect of interest in this model was the group-level av-

rage BOLD response to the faces vs shapes task (i.e. the intercept).

owever, we were also interested in the effect of age. In this repeated

easures context, simply adding an age covariate imposes a strong

ssumption that cross-sectional and longitudinal effects of ageing are

qual, which is often not the case ( Neuhaus and Kalbfleisch, 1998 ;

uillaume et al., 2014 ). Instead, two regressors are added, one a pure

ross-sectional effect of age (subject age, averaged over visits, for each

ubject), and one a pure within-subject effect of ageing (age, centred by

ubject). Such an approach is commonly adopted in the univariate longi-

udinal modelling literature (c.f. Brant and Verbeke, 1997 ; Morrell et al.,

009 ). 

The first of the three group-level analyses (Model 1) was a linear

egression model estimated using BLM. As it was a standard linear re-

ression, this model included no random-effects design matrix, 𝑍. The

econd group-level model (Model 2) was analysed using BLMM and in-

luded a subject-level random intercept in the random-effects design

atrix. The third of the group-level models (Model 3) was run using

LMM and included both a subject-level random intercept and a subject-

evel random slope for longitudinal time in the random-effects design

atrix. For each model, approximate Wald 𝑇 − statistics were computed,

sing the methods of Section 2.1.4 , for the model intercept (the group-

evel average response to the ‘faces > shapes’ task), the cross-sectional

ge and longitudinal time. Once the parameters of each model had been

stimated, to assess goodness of fit, model comparison was performed

sing the LRT method detailed in Section 2.1.4 . 

It must be noted that, as each model contained two observations per

ubject and model 3 contained two random effects per subject, model

 contained the same number of observations as random effects. As a

esult of this, model 3 may be expected to be unidentifiable for many

oxels, as parameter estimation for any voxel with missing data will

ttempt to model at least two random effects using less than two visits.

his choice of model is deliberate as model 3 is an extreme use-case that

oth stress-tests the BLMM code and serves as a clear example of a model

hat is expected to be rejected by the LRT procedure. It must be stressed

hat, by including model 3 in this example, it is not our intention to

ndorse estimation of models that have been ill-specified in this manner.

odel 3 is provided purely for the purposes of demonstration and can

nly be estimated in BLMM by turning off a ‘safeMode’ setting during

nput specification. 

The primary purpose of the analyses described above is to demon-

trate BLMM’s usage in practice and highlight BLMM’s efficiency and

calability via a worked example. In order to assess computational ef-
 t  

9 
ciency, model 2 was also estimated voxel-wise using lmer and, as in

ection 2.2 , serial computation times were recorded for parameter esti-

ation for both lmer and BLMM. However, the same comparison could

ot be performed for model 3, as the default settings in lmer will not al-

ow for models with equal numbers of random effects and observations

o be estimated. In Section 3.2 , results are reported for both Likelihood

atio Tests (model 1 vs model 2 and model 2 vs model 3), with 𝑝 -value

ignificance maps for the approximate Wald 𝑇 -tests then being provided

or the selected model. All reported significance regions were obtained

sing a 5% Bonferonni corrected threshold. All analysis results were ob-

ained using a SGE cluster with Intel(R) Xeon(R) Gold 61262.60GHz

rocessors, each with 16GB RAM. 

. Results 

.1. Simulation results 

.1.1. Parameter estimation 

Across the nine simulation settings outlined in Section 2.2 (three de-

igns across three sample sizes), all parameter estimates and maximised

estricted likelihood criteria produced by BLMM were near identical to

hose produced by lmer. In particular, extremely strong agreement was

bserved between the parameter estimates produced by BLMM and lmer

or both voxels with missing observations and voxels with all observa-

ions present, illustrating BLMM’s capacity for handling missing data.

or each experimental design, the largest mean absolute difference for

arameter estimation was observed in the estimation of the random ef-

ects covariance parameters (the unique non-zero elements of 𝐷) in the

 = 200 setting. The observed mean absolute difference in the random

ffects covariance parameter estimates produced by BLMM and lmer for

his setting were 6 . 86 × 10 −9 , 4 . 39 × 10 −5 and 6 . 02 × 10 −3 for designs 1, 2

nd 3, respectively. For double-precision floats, fractional rounding er-

ors can occur at a magnitude of 2 −52 by chance. Such errors can further

ropagate to be of size 2 −26 ≈ 1 . 49 × 10 −8 when square roots are involved

n computation. If we take 2 −26 ≈ 1 . 49 × 10 −8 as the tolerance level for

hich double floating point representations of the parameter estimates

re treated as no longer distinguishable from one another, it can be seen

hat this means the estimates produced by BLMM and lmer were indis-

inguishable at the machine precision level for design 1 and very similar

or designs 2 and 3. Similar results may also be observed across simula-

ions for the maximised REML criterions produced by BLMM and lmer

see Supplementary Material Sections S7–S10). 

.1.2. Computation time 

The observed SCTs for each simulated setting are presented in Fig. 3 .

s can be seen from Fig. 3 , BLMM significantly outperformed compu-

ation via ‘for loops’ and lmer and, notably, appeared to maintain an
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Fig. 4. First row: The MNI152 2mm anatomical template, for reference. Second row: 𝜒2 statistics for comparison of model 1 and model 2, displayed on the square 

root scale; outlined in black are regions where evidence was found that inclusion of a random subject intercept significantly affected (at the 5% Bonferroni-significance 

level) the results of the analysis. Third row: 𝜒2 statistics for comparison of model 2 and model 3, displayed on the square root scale; outlined regions indicate where 

the inclusion of a random subject slope significantly affected the results of the analysis. Fourth row: Effect estimates for the “Faces > Shapes ” contrast, derived from 

model 2; for this row, voxels demarcated are those Bonferroni-significant at the 5% level. Fifth row: The fixed effects standard deviation ( 𝜎), derived from model 2. 

Sixth row: The standard deviation of the subject-level random intercept ( 𝜎
√
𝑑 where 𝑑 is the only non-zero element of 𝐷 in model 2). 
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pproximately constant computation time as the number of observa-

ions, 𝑛 , increased. In contrast, computation time for lmer appeared to

ncrease as the number of observations increased. These results match

xpectation as, as noted in Section 2.1.2 , the BLMM pipeline begins by

omputing the product forms and discarding any model matrices which

ad dimensions scaling with 𝑛 . This means that during parameter es-

imation (the most intensive stage of the BLMM pipeline, which domi-

ates the computation time), the computation required for a single it-

ration of the FSFS algorithm does not scale as a function of 𝑛 . As the

omputation time required for each iteration of the FSFS algorithm does

cale as a function of 𝑞, however, it should be noted that, as shown in

ig. 3 , when 𝑞 and 𝑛 are close in magnitude the benefits of the product

orm approach to computation are less pronounced. 

We note that, although computation for each individual iteration of

he FSFS algorithm is dependent only upon 𝑞, and not 𝑛 , the number of

terations required for the FSFS algorithm to converge may bear a more

omplex relationship to the number of observations and the structure

f the random effects in the analysis. This is as misspecified random

ffects, complex covariance structures, and insufficient sample sizes can

ubstantially impact the convergence of iterative likelihood estimation

rocedures. For a further comprehensive discussion of the convergence

roperties of the FSFS algorithm, we refer the reader to our previous

ork, Maullin-Sapey and Nichols (2021) . 

The results of Fig. 3 demonstrate BLMM’s strong computational ef-

ciency for analysing the designs which were simulated. However, it

hould be noted that the difference in SCT between lmer and BLMM

ay be smaller than those observed in these simulations for analyses

nvolving designs in which the second dimension of the random effects

esign matrix, 𝑞, is very large. The reason for this is that, as 𝑞 increases,
 r  

10 
he storage requirements associated with each voxel increase and, as a

esult, parameter estimation can be performed for fewer voxels concur-

ently via vectorisation. In the simulations presented in this section, 𝑞

as set to 100 in designs 1 and 2 and set to 50 in design 3. We note that it

ould be of benefit to conduct further detailed analysis of BLMM’s per-

ormance compared to that of lmer for models containing larger values

f 𝑞 and more complex random effects structures. However, at present,

uch comparative simulations are practically infeasible due to the inor-

inate computation time they would require (the reported simulations

equired several months to run, generated over five million simulated

rain images and executed approximately 10 7 univariate LMM analy-

es in lmer). Whilst such extensive simulations may not be possible, we

ighlight here that the analyses presented in Section 3.2 provide fur-

her evidence of BLMM’s strong performance for two models in which

is much larger than considered in the simulations presented in this

ection ( 𝑞 = 2461 and 𝑞 = 4922 in models 1 and 2, respectively). 

.2. Real data results 

.2.1. Model comparison 

The results for the real data analysis are presented in Fig. 4 . The

econd and third rows of Fig. 4 display the 𝜒2 -statistics (on the square

oot scale) for model comparison between models 1 and 2, and models

 and 3, respectively, with 5% Bonferroni-significant voxels demarcated

n black. The results of the first LRT, comparing model 2 (the random

ntercept model) and model 1 (the linear regression), highlight most of

ccipital, parietal and frontal lobes. This observation suggests that, in

hese regions, evidence was observed that the inclusion of subject-level

andom intercepts substantially influenced the outcome of the analysis.
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his conclusion is reasonable and reflects regions where there is non-

egligible BOLD response to this task (see Section 3.2.2 ). 

The second LRT, comparing model 3 (the random intercept and slope

odel) to model 2, only identifies two different regions: orbitofrontal

reas, which are often subject to signal loss, and white matter areas in

he centre of brain, which have the poorest SNR with this multicoil ac-

uisition. The sporadic and noisy appearance of the regions identified

ere could indicate that these regions were influenced by idiosyncratic

emporal changes due to variation in head placement or simply by large

andom temporal changes. In either case, it can be seen that the inclu-

ion of a random slope in the analysis had little impact on anatomical re-

ions of practical relevance to the ‘faces vs shapes’ task. The conclusion

f the LRTs is, therefore, that model 2 should be chosen as the suitable

odel upon which inference can be performed using approximate Wald

 -tests. 

.2.2. Analysis results 

Of the three contrasts that were estimated for model 2 using the

pproximate Wald 𝑇 -test, only the first contrast (the main effect of

he “Faces vs Shapes ” task) reported significant regions following a 5%
onferroni-corrected threshold. The effect estimates for this contrast ( 𝐿𝛽

alues) are displayed on the fourth row of Fig. 4 with Bonferroni sig-

ificant voxels demarcated in black. In this instance, the occipital lobe,

nown for its role in processing perceptual information and the amyg-

ala, known to be involved in emotional response (c.f. Rehman and

halili, 2019 ; Zald, 2003 ), have been identified as significant. This

attern of activation is similar to that found in Hariri et al. (2002) ,

anuck et al. (2007) and Barch et al. (2013) and is to be expected given

he visual nature of the task and the emotional response the facial ex-

ressions were designed to elicit (c.f. Ekman and Friesen, 1976 ). The

econd and third contrasts, which assessed the impact of cross-sectional

nd longitudinal age on BOLD response, respectively, both displayed

o significant regions of activation. These results may be interpreted as

tating that no evidence was found to suggest that either age covariate

ad an impact on the BOLD response to the “faces vs shapes ” task. For

eference, the BOLD response images for the second and third contrasts

ave been included in Supplementary Material Section S11. 

Also provided in the fifth and sixth rows of Fig. 4 are the estimated

esidual standard deviation (i.e. 𝜎) and the subject-level random inter-

ept standard deviation ( 𝜎
√
𝑑 , where 𝑑 is the unique non-zero element

n 𝐷) for model 2. The residual standard deviation demonstrates sub-

tantial measurement error at the edge of the brain, which is likely

ue to imperfections in registration and preprocessing. By contrast, the

ubject-level deviation bears a strong resemblance to the BOLD activa-

ion seen in the fourth row. This latter image serves as a useful diagnos-

ic, as it highlights regions at which inclusion of the random intercept

otably contributed to the analysis results. This illustrates the vital role

hat the inclusion of a random intercept played in obtaining the results

f this analysis and reinforces the conclusion of the LRT testing proce-

ure of Section 3.2.1 . 

.2.3. Computation time 

In total, computation time in BLMM for this analysis took approxi-

ately 55 min for model 2 and 4 h for model 3, using 500 nodes. The

xtreme computation time observed for model 3 can be attributed to the

dentifiability problems noted in Section 2.3 , with parameter estimation

or approximately 150 voxels exceeding the default maximum iteration

imit. By way of comparison, for model 2, the SCT observed for BLMM

as approximately 77 . 6% of that observed for lmer. As noted previously,

his difference is less pronounced than those observed in the simulations

f Section 3.1 , as the second dimension of the random effects design ma-

rix is extremely large ( 𝑞 = 2461 ) and close in magnitude to the value of

 ( 𝑛 = 4922 ). The linear regression model, model 1, was run using BLM

nd took approximately 5 min using 60 computational nodes. The full

nalysis results for all three models are publicly available and may be

ccessed on NeuroVault (see the data and code availability declaration).
11 
. Discussion and conclusion 

In this work, we have detailed and presented BLMM, a freely avail-

ble software package for performing LMM parameter estimation and

nference on large- 𝑛 fMRI datasets. LMM computation for fMRI is an

xtremely computationally intensive task and, as a result, the work pre-

ented in this paper is both informed and limited by the currently avail-

ble support in terms of software and technology. For this reason, BLMM

s a continually evolving project, and it is expected that much of the

ethodology currently implemented in BLMM may gradually change

ver time. 

A large driving force motivating the approaches taken in this work

s the current lack of available support for broadcasted sparse matrix

perations. Whilst the available support for sparse matrix methodology

n programming languages such as MatLab and Python has substantially

mproved in recent years, currently, there is little support for perform-

ng sparse matrix operations concurrently many times. Unfortunately,

his substantially limits the utility of sparsity-based approaches to LMM

stimation in the context of fMRI analysis. This is due to the substantial

verheads which would be accrued if LMM estimation were performed

ndependently for each voxel in an image. An undesirable ramification

f this is that the BLMM code, which has been explicitly optimised to

ccount for the patterns of sparsity present in single-factor models (see

upplementary Material Section S4), may not provide comparable per-

ormance for multi-factor models in which 𝑞 is very large. However,

s programming languages evolve and new support becomes available,

his is expected to change, and we predict that future development of

LMM is highly likely to incorporate sparse matrix methodology into its

pproach to analysing multi-factor models. For this reason, we suggest

hat the incorporation of sparse matrix methodology into BLMM may

orm a substantial basis for future development. 

Another potential avenue for future development focuses on how

LMM currently handles file input and output on HPC clusters. In recent

ears, in Python especially, there has been a strong movement towards

tandardising and streamlining cluster-based computation. A project of

articular note is the Dask Python package, which acts as a standardised

pecification to encode parallel algorithms and file I/O ( Rocklin, 2015 ).

s noted in Section 1.1.1 , Dask is heavily employed by the AFNI pack-

ge 3dLME and provides substantial benefits both in terms of compu-

ation time and ease of distribution. Although many of the broadcasted

perations employed by BLMM are yet to be supported by Dask, we

uggest that incorporating the approach of AFNI’s 3dLME by integrat-

ng Dask with the existing BLMM code-base may provide further speed

mprovements and could form the foundation of future development

ithin BLMM. 

There is also much room for further theoretical development of

LMM. In our previous work, Maullin-Sapey and Nichols (2021) , we

resented a general approach for performing constrained optimisation

o enforce structure in the random effects covariance matrix. This con-

ept may be of utility in a wide range of commonplace applications, as

tructured covariance matrices are a feature of many popular statisti-

al models. Such applications include, for example, modelling genetic

omponents in twin studies and auto-correlation in time-series analy-

es. Whilst the approaches outlined in our previous work are sufficiently

eneral to perform such analyses in the univariate setting, it is not im-

ediately apparent whether they may be feasibly executed on a mass-

nivariate scale. For this reason, we suggest that the potential for en-

orcing covariance structure in BLMM merits further investigation. 

Another potential direction for future work stems from the obser-

ation that the BLMM framework could be used to support remote dis-

ributed computation when raw data cannot be centrally stored. Such

rohibitive situations are common when, for example, the raw data is

xtremely large, or subject to privacy constraints preventing it from be-

ng shared. The BLMM framework may be of utility in such situations

s each remote site may compute their product forms using only their

ata and their portion of the design matrix, apply some form of differ-
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ntial privacy protection to the results (e.g. add calculated amounts of

oise to the product forms to preserve privacy), and send the results to

 central coordinate that never sees the raw data. Similar approaches to

istributed computation have been notably adopted by the Collabora-

ive Informatics and Neuroimaging Suite Toolkit for Anonymous Com-

utation (COINSTAC, c.f. Plis et al., 2016 ) and suggest new alternative

pplications for the BLMM framework. 
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ppendix A. The Product Form Approach to Parameter Estimation

In this appendix, we provide further detail on how the product forms

escribed in Section 2.1.2 are employed to perform the parameter esti-

ation procedure of Section 2.1.3 . The GLS update rules for 𝛽 and 𝜎2 ,

q. (6) , can be written in terms of the product forms and parameter

stimates as follows: 

𝛽𝑠 +1 = ( 𝑃 − 𝑅𝐷 𝑠 ( 𝐼 + 𝐷 𝑠 𝑈 ) −1 𝑅 

′) −1 ( 𝑃 − 𝑅𝐷 𝑠 ( 𝐼 + 𝐷 𝑠 𝑈 ) −1 𝑅 

′) , 
2 
𝑠 +1 = 

1 ( 𝑆 − 2 𝑄 

′𝛽𝑠 + 𝛽′
𝑠 
𝑃 𝛽𝑠 ) , 
𝑛 

12 
nd the expressions for 𝐹 𝑘 
𝑠 

and 𝜕 𝑘 
𝑠 

can be seen to be composed entirely

f sub-matrices of 𝑋 

′𝑉 −1 
𝑠 

𝑋, 𝑍 

′𝑉 −1 
𝑠 

𝑍 and 𝑍 

′𝑉 −1 
𝑠 

𝑒 𝑠 , which are given by:

 

′𝑉 −1 
𝑠 

𝑋 = 𝑃 − 𝑅𝐷 𝑠 ( 𝐼 + 𝐷 𝑠 𝑈 ) −1 𝑅 

′, 

𝑍 

′𝑉 −1 
𝑠 

𝑍 = 𝑈 − 𝑈𝐷 𝑠 ( 𝐼 𝑞 + 𝐷 𝑠 𝑈 ) −1 𝑈 , 

𝑍 

′𝑉 −1 
𝑠 

𝑒 𝑠 = 𝑇 ′ − 𝑅 

′𝛽𝑠 − 𝑈𝐷 𝑠 ( 𝐼 𝑞 + 𝐷 𝑠 𝑈 ) −1 ( 𝑇 ′ − 𝑅 

′𝛽𝑠 ) . (A.1) 

he restricted log-likelihood function, given by Eq. (2) , can similarly

e rewritten in terms of product forms as follows: 

 𝑅 

(
𝜃𝑠 
)
= − 1 

2 

{ 

( 𝑛 − 𝑝 ) log 
(
𝜎2 
𝑠 

)
+ log |𝐼 + 𝐷 𝑠 𝑈 | + log |𝑃 − 𝑅𝐷 𝑠 

(
𝐼 + 𝑈𝐷 𝑠 

)−1 
𝑅 

′|
+ 𝜎−2 

𝑠 

(
𝑆 − 2 𝑄 

′𝛽𝑠 + 𝛽′𝑠 𝑃 𝛽𝑠 + 
(
𝑇 ′ − 𝑅 

′𝛽𝑠 
)′
𝐷 𝑠 

(
𝐼 + 𝑈𝐷 𝑠 

)−1 (
𝑇 − 𝑅 

′𝛽𝑠 
))} 

.

ppendix B. Initial Values for Parameter Estimation 

In this appendix, we provide expressions for the initial values used

y BLMM during the FSFS algorithm. To choose initial values for

he optimization procedure, BLMM follows the recommendations of

emidenko (2013) and Maullin-Sapey and Nichols (2021) , employing

he OLS estimators as starting estimates for 𝛽 and 𝜎2 ; 

0 = 

(
𝑋 

′𝑋 

)−1 
𝑋 

′𝑌 , 𝜎2 0 = 

𝑒 ′0 𝑒 0 

𝑛 
, (B.1)

nd the FSFS update rule, (7) , with 𝐼 𝑛 substituted in the place of 𝑉 , for

 starting estimate of vec ( 𝐷 

𝑘 ) : 

ec 
(
𝐷 

𝑘 
0 
)
= 

( 

𝑙 𝑘 ∑
𝑗=1 

𝑍 

′
( 𝑘,𝑗 ) 𝑍 ( 𝑘,𝑗 ) ⊗𝑍 

′
( 𝑘,𝑗 ) 𝑍 ( 𝑘,𝑗 ) 

) −1 

vec 

( 

𝑙 𝑘 ∑
𝑗=1 

𝑍 

′
( 𝑘,𝑗 ) 

( 

𝑒 ′0 𝑒 0 

𝑛 
− 𝐼 𝑛 

) 

𝑍 ( 𝑘,𝑗 ) 

) 

. (B.2) 

gain, the above expressions may be evaluated using only the product

orms and do not require use of the original matrices 𝑋, 𝑌 and 𝑍. 

upplementary material 

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.neuroimage.2022.119729 . 
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