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Abstract

Colorectal cancer is one of the most prevalent types of cancer, with histopathologic examination of biopsied tissue samples
remaining the gold standard for diagnosis. During the past years, artificial intelligence (Al) has steadily found its way into the
field of medicine and pathology, especially with the introduction of whole slide imaging (WSI). The main outcome of interest
was the composite balanced accuracy (ACC) as well as the F1 score. The average reported ACC from the collected studies was
95.8 +3.8%. Reported F1 scores reached as high as 0.975, with an average of 89.7 +9.8%, indicating that existing deep learning
algorithms can achieve in silico distinction between malignant and benign. Overall, the available state-of-the-art algorithms are
non-inferior to pathologists for image analysis and classification tasks. However, due to their inherent uniqueness in their training
and lack of widely accepted external validation datasets, their generalization potential is still limited.

Introduction

Colorectal cancer (CRC), a form of epithelial cancer
arising from the glandular tissue of the colon and rec-
tum, is the fourth most diagnosed cancer in the United
States. Even though current epidemiological data show
that the death rate for both men and women has been
dropping for the past several decades, it remains the
second most common cause of cancer-related deaths
when the numbers of both sexes are combined [1]. In
addition, the incidence of CRC in people under 50 years
old has steadily increased, with symptomatic disease
driving the need for further examinations and diagno-

sis at advanced stages, which is also associated with
a poorer prognosis [2]. Thus, screening methods are
needed now more than ever, with the most notable be-
ing routine colonoscopy, which allows direct visualiza-
tion of suspicious lesions or polyps and tissue biopsy
retrieval.

The evaluation of histopathological samples under
microscopy remains the gold standard for the establish-
ment of CRC diagnosis. This is done by examination of
haematoxylin and eosin (H&E)-stained tissues under
a microscope, examining an array of morphological
microscopical tissue alterations, first and foremost the

Creative Commons licenses: This is an Open Access article distributed under the terms of the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY -NC -SA 4.0). License (http://creativecommons.org/licenses/by-nc-sa/4.0/).


https://www.editorialsystem.com/editor/pg/article/341352/view/
mailto:oknarfmulita@hotmail.com

David Dimitris Chlorogiannis, Georgios-loannis Verras, Vasiliki Tzelepi, Anargyros Chlorogiannis, Anastasios Apostolos,
Konstantinos Kotis, Christos-Nikolaos Anagnostopoulos, Andreas Antzoulas, Spyridon Davakis, Michail Vailas, Dimitrios Schizas,

354

Francesk Mulita

presence and depth of tissue invasion, and additional
characteristics such as glandular architecture, cell po-
larity, the disappearance of glands, and the presence
of desmoplastic reactions, to determine the deviation
from normal tissue architecture and the presence of
malignancy. The pathological report is therefore essen-
tial for the optimal treatment protocol selection and
directly affects the patient’s length of survival. How-
ever, histopathological examination is a time-consum-
ing process, which in combination with the worldwide
pathologist shortage has led to an increased time for
diagnosis, which contributes to delays in treatment.
Moreover, this procedure is subjective by nature leading
to inconsistent results between pathologists (inter-ob-
server variability) [3, 4] as well as inconsistency in the
same pathologist due to fatigue and medical burnout
(intra-observer variability). To alleviate this process,
computer-aided diagnosis (CAD) systems have recently
been proposed to quantitively analyse digitalised coun-
terparts of glass slides: whole slide imaging (WSI).

WSI, also referred to as virtual pathology, involves
the creation of a very high-resolution digitalised ana-
logue of the images obtained through the entire stained
tissue as viewed under light microscopy. These images
carry the inherent advantages of any computerised im-
age such as magnification and free-hand navigation on
any of its parts. Recent publications have proposed that
WSI can be utilised for automated diagnostic tools that
are capable of producing results highly similar to those
of the human operator [5].

Many of the recently introduced CAD models have
been used to assist pathologists in the evaluation of
many tissue samples, such as lung, breast, and colon by
minimizing inter- and intra-observer variability, and they
have proven to be at least non-inferior in pathologic
image classification [6]. The spectrum of trained algo-
rithms ranges from conventional machine learning to
the more advanced and widely used deep learning (DL)
models, in the face of convolutional neural networks
(CNNs). CNNs extract information from the digitalized
RGB images, analyse them, and perform classification
of the colorectal tissue sample to provide robust results
and decrease the amount of time required for diagnosis.

Our current fund of knowledge lacks a clear un-
derstanding of the current state of the DL algorithms
regarding CRC digital histology samples and whether
there is enough data to support their implementation
in the current evidence-based clinical practice as well
as a systematic report of under-utilised capabilities of
such models. The aim of this systematic review is to ad-
vance our understanding of these modern techniques,
specifically examining their diagnostic usage in binary
malignant detection and colorectal tissue classification.
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Material and methods

Search strategy and study eligibility
criteria

This systematic review was performed according to
the updated Preferred Reporting Items for Systematic
reviews and Meta-Analyses statement (PRISMA) and
was submitted to PROSPERO for registration. The study
period included PubMed literature searches from the
Cochrane Library from October 2009 until 1 November
2022, with the following keywords for the electron-
ic search: “convolutional neural networks”, “CNN”,
“deep learning”, “colon cancer”, “malignant intestinal
cancer”, “colorectal cancer”, “bowel cancer”, “biopsy”,
“histology”, “microscopy images”, and “histopathology.”
Systematic searches were conducted by 2 independent
investigators who were blind to each other, and any dis-
crepancies were resolved by consensus between them.

The systematic review was undertaken in accordance
with the Preferred Reporting ltems for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines [7]. Studies were
eligible for inclusion provided they met the following cri-
teria: presentation of the development of at least one
machine learning, deep learning model for tissue classi-
fication or diagnosis, using a binary or multiple class out-
come, with a training dataset that included histopatholog-
ical colorectal tissue whole-slide images or segmentations
of WSI (patches). Review articles, meta-analyses, or ar-
ticles that presented the use of algorithms for analysis
of images from endoscopic procedures or for a different
outcome other than tissue classification and diagnosis
were excluded. Institutional board review approval is not
required for a study-level systematic review.

Study selection and data collection
process

All results retrieved from the systematic search of
electronic libraries were imported into Rayyan, and
duplicates were manually removed. Titles, abstracts,
and keywords of all the articles were screened by
2 independent reviewers, and irrelevant reports were
removed. Full-text screening of the selected articles was
performed by the same 2 reviewers. Each disagreement
was resolved through discussion and consultation with
the other authors.

A data extraction form was created to extract the
study’s characteristics and model performance metrics.
This form was evaluated for suitability in 2 randomly
selected studies by all the study’s authors. After finaliz-
ing the form, 2 of the authors independently extracted
the data from each study (Table I).

The study of bias assessment was conducted using
the Quality Assessment for Diagnostic Accuracy Studies
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(QUADAS-2) tool, to assess studies regarding diagnostic
tests (Supplementary Table SI). QUADAS-2 is a highly
validated tool, focusing on 4 domains: patient selec-
tion, index tests, reference standard, and flow and tim-
ing (Supplementary Table SlI). Each domain is assessed
on 2 levels ranked as low/high/unclear risk of bias and
concerns regarding applicability. More information on
the tool itself and the assessment process can be found
in the corresponding reference [8].

Results

The systematic review searches recognised 309
articles for potential inclusion. After title and abstract
screening, 69 were deemed eligible for full-text screen-
ing. Overall, 41 articles were considered for this system-
atic review in accordance with the inclusion criteria. Our
systematic search of the literature is depicted in more
detail in the PRISMA flowchart (Figure 1). All details re-
garding the study origins, and the number of included
images can be viewed in Table I.

For evaluating the performance of a model, some-
times it is more useful to have a one-number summary
than to examine both the sensitivity and the speci-
ficity. Performance metrics were evaluated wherever
available, and the rest of the discussion was based
on qualitative results from the literature, fulfilling the
inclusion criteria. To compare the performance of the
2 sub-categories of models (customized vs. pre-trained)
the Mann-Whitney U test for comparison of means was
employed. One widely used metric is balanced accura-
cy (ACC). Since specificity and sensitivity are rates, it
is more suitable to compute the harmonic average. In
fact, the F1-score is the harmonic average of precision
and recall, and it has been regarded as the preferred
performance metric. It is worth mentioning that the size
of the datasets ranged greatly from 38 to 14,234 WSls
(170,099 patches).

Binary outcomes (benign or malignant)

The simplest result for DL techniques is to return
a binary outcome (yes or no) of whether the sample
includes any suspicious parts for malignancy, because
the answer to this question alters the therapeutic plan
completely.

For this reason, to provide more robust results Qa-
iser et al. [9] tested 2 convolutional neural network
(CNN) models while also using persistent homology
profiles of topological features of WSIs, with the au-
thors reporting the highest F1 score achieved to be 92%
on a retrospectively obtained dataset. Furthermore,
Yu et al. [10], using a database of 13,111 WSlIs from
13 centres, constructed a semi-supervised learning al-
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Identification of studies via databases and registers

Records identified from:

Records removed before screening:

Databases (n = 322)
Registers (n = 0)

|dentification

Y

> Duplicate records removed (n = 13)
Records marked as ineligible by automation tools
(n=0)

Records screened (n = 309)

Y

Y

Records excluded (n = 210)

Reports sought for retrieval (n = 99)

Screening

Y

Y

Reports not retrieved (n = 30)

Y

Reports excluded:

Reports assessed for eligibility (n = 69)

Y

Studies included in review (n = 41)

Included

Review/meta-analysis articles (n = 13)
Studies on endoscopic imaging (n =9
Reported outcomes different from target (n = 6)

Figure 1. Study selection process according to Preferred Reporting Items for Systematic Reviews and

Meta-Analyses (PRISMA) guidelines

gorithm (SSL), which performed equally to pathologists
for CRC recognition.

A recent trend that is being adopted is transfer
learning models. Transfer learning is a subclass of ma-
chine learning that implements knowledge used in an
already existing model (pre-trained) in order to tackle
a different but related task using a new model, with the
main advantages being better performance and short-
er training time. Utilising InceptionV3 as the basis, Xu
et al. [11] trained a CNN model for screening with
99.9% accuracy on normal slides compared to a pa-
thologist, which was pretrained on ImageNet — a well-
known image dataset that follows a nodular organi-
zation of image groups that illustrate a word and its
cognitive synonyms. ImageNet utilises the grouping
of nouns into cognitive synonyms (nodes) formed by
WordNet, created according to conceptual relation-
ships between words, to categorize and organize into
nodule images pertaining to or depicting these words.
A different multicentre study that compared the perfor-
mance of an Al pre-trained model with pathologists was
presented by Wang et al. [6], using a large database
(14,680 WSIs) with the reported AUC for Al being 99%
vs. 97% of the pathologists. Another unique Al model
was developed by Ho et al. [12], which was based on
a faster-region-based CNN (faster-RCNN) with ResNet
as a backbone, and which simultaneously segmented
the glands from the WSIs into high-risk or low-risk
while also classifying them into the following: benign
glands, glands that are either characteristic for adeno-
carcinoma or high-grade dysplasia, low-grade dysplasia,

blood vessels, necrosis, mucin, or inflammation. Despite
the model’s high sensitivity (97.4%), the small dataset
limits its generalization.

Direct comparison of the state-of-the-art pre-trained
CNN feature extractors on different segmentation archi-
tectures was conducted by Kassani et al. [13], who un-
derscored that shared DenseNet and LinkNet architec-
ture is the one with the most potential, with reported
accuracy of 87.07% and F1-score of 82.79%. In this do-
main, a study by Gupta et al. [14] compared the perfor-
mance of many pre-trained techniques for discriminat-
ing the abnormal from normal patches obtained from
digitalized images, with IR-v2 performing better than
the rest without sacrificing time for diagnosis. Another
comparative study, using the LC25000 dataset, which
includes both lung and CRC images, tested 6 different
pre-trained models and compared their performance.
The results showed that the XGBoost model had a high-
er accuracy of 99% and an F1-score of 98.8% [15].

Following the current trends of machine learning
research in histopathology, a team led by Collins et al.
tried to extrapolate the pre-trained CNNs and utilise
them to detect the presence of cancer-free margins in
hyperspectral images (HIS) of surgical specimens. This
study highlights a novel field of CNN training, providing
results even faster than conventional pathology, and tis-
sue classification techniques in the operative setting.
This approach is effectively an extension towards not
only characterizing a specimen as benign or malignant
but also determining the spatial boundaries of the ma-
lignant tissue [16].

Gastroenterology Review 2023; 18 (4)
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Higher-class tissue classification and

grading

To further advance the protean characteristics of
the cellular level images, models that report higher
class outcomes have also been proposed for grading
purposes (normal tissue, low grade of differentiation,
high grade of differentiation) and even models that are
designed to classify the tissue in up to 9 types, such
as adipose, background, debris, lymphocytes, mucus,
smooth muscle, normal colon mucosa, cancer-associat-
ed stroma, and colorectal adenocarcinoma epithelium.

To tackle the CRC grading task (normal, low, and
high grade of dysplasia, according to the WHO histo-
pathological classification) Awan et al., Shaban et al.,
and Yan et al. [17-19] developed custom CNN models
with reported accuracy of 91%, 95.7%, and 95.3%. The
latter proposed CNN was also based on majority-vot-
ing (MV) technique, and it could also be used in differ-
ent tissues like breast cancer WSI samples, proving its
superiority. One of the largest evaluations for a CNN
model was presented by Dabass et al. [20], which
comprised enhanced convolutional learning modules
(ECLMs), a multi-level attention learning module (ALM),
and transitional modules (TMs) and was tested on
4 diverse, publicly available datasets (Gland Segmen-
tation challenge [GlaS], Lung Colon [LC]-25000, Kath-
er_Colorectal Cancer Texture_Images (Kather-5k), and
NCT_HE_CRC_100K [NCT-100k]) and one from their de-
partment (HosC). The reported F1-score for cancer gland
classification was as follows: GlaS 97.67%, LC-25000
100%, and HosC 99.65%, while also for the tissue clas-
sification: Kather-5k 98.85% and NCT-100k 97.71%.

Following the trend of transfer learning, Malik et al.
[21] were among the first to propose a pre-trained CNN
model (InceptionV3) and tested its accuracy, which
reached 87% for multiclassification outcomes. In certain
instances, however, the reported accuracy of the models
was characterized by high values of standard deviation,
such as in the work of Popa et al. [22] with a reported
standard deviation of 4%. This variability of the accuracy
metric could compromise the stability of the model’s per-
formance. To overcome this hindrance, Albashish et al.
designed 2 models (E-CNNs) that ensemble the previ-
ously pretrained transfer learning models DenseNet,
MobileNet, VGG16, and InceptionV3 to maximize the
efficiency of feature extraction and classification tasks.
The reported accuracy of the 2 models was 95.20% and
94.52%, respectively, with a standard deviation that
was much lower, calculated at 1.7% when tested on the
dataset of Stoean et al. [23] In a different comparative
study, Ben Hamida et al. [24] trained a “from-scratch”
CNN model using the AiCOLO-8 database along with
pre-trained CNN state-of-the-art models (AlexNet, VGG,

Gastroenterology Review 2023; 18 (4)

ResNet, DenseNet, Inception) and externally validated
them in a different very large WSI dataset comparing
their results. The ResNet model achieved the highest
accuracy of 96.98%. Moreover, a study [25] highlighted
the feasibility of encompassing the spectrum of the CRC
into 4 stages (non-neoplastic, adenoma, well-to-mod-
erately differentiated ADC, poorly differentiated ADC)
using DL techniques with comparable performance re-
sults, such as the proposed models of Sena et al. and
Kim et al. [26, 27]. Three studies evaluated the perfor-
mance of custom 8-category tissue type classification
techniques on CRC patches reporting similar results
[28-30]. Of note, although the databases that were
evaluated had a significant number of patches, they
were different from each other. Lastly, Li et al. proposed
that fine tuning the ImageNet-based neural networks
with histopathological images could significantly en-
hance the prediction performance with segmentation
of up to 9 tissue types (adipose, background, debris,
lymphocytes, mucus, smooth muscle, normal colon mu-
cosa, cancer-associated stroma, and colorectal adeno-
carcinoma epithelium), while also being used for the
prediction of gene mutation and expression [31].

Customized vs. pre-trained models

A comparison of reported metrics between custom-
ized and pre-trained models did not return any significant
differences. To compare the average reported metrics
from reporting studies, we employed the Mann-Whit-
ney U test for comparison of mean values. On average,
the F1-score reported by custom CNNs was calculated
at 0.88, as opposed to 0.93 from pre-trained models,
a difference that was not of statistical significance (p =
0.423). Classification accuracy was also non-significantly
different between customized networks and pre-trained
models, with a reported average of 0.95 and 0.953, re-
spectively (p = 0.9). Therefore, no significant differences
in terms of performance, can be detected between pre-
trained and customized neural networks currently re-
ported in the literature. Pre-trained networks are usually
built similarly to the UNET example, as reported by Awan
et al. The network performs pixel-based classification
tasks by importing a pixel of a histopathological image
as an input, then outputting a corresponding pixel that
represents the probability that the pixel of origin belongs
to a glandular structure or not, therefore characterizing
the presence of tumour, as well as being able to classify
its histological grade. Customised models largely follow
the structure of the LeNet model proposed in 1998 [32]
and are composed of convolutional layers that lead their
output into a function, which produces the pixel’s prob-
ability of belonging to a pre-specified class (usually be-
nign/malignant if it is a binary classification algorithm).
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Attention learning models in tissue
classification

Due to its recent rise in popularity within classifi-
cation tasks, we separately discuss the performance of
attention learning within tissue classification in CRC.
Within the included studies, there were 2 reports of at-
tention modelling techniques employed in pathological
image analysis [20, 33]. Dabass et al. (2022) present the
inclusion of an attention learning module within their
CNN architecture, as an enhancer deep learning mod-
ule, tasked with allocating bias towards the most infor-
mative features of those already extracted by enhanced
convolutional learning modules previously involved in
the image analysis. The goal of the attention learning
module is to tackle the challenge of varying sizes of im-
portant pathological regions in an image, and therefore
enhance the model’s target refinement capacity. The bi-
asing mechanism effectively re-directs computational
resources towards the classification-specific tasks only.
The result of incorporating the attention module was
to counter the gradual decrease of spatial resolution
of malignant feature maps. The team ran an analysis
of the classification model before and after the inclu-
sion of the attention module [20]. They demonstrated
an increase in all prediction metrics in both binary and
multi-level classification tasks for colorectal tumours.
In binary grade classification, all metrics (accuracy, pre-
cision, sensitivity, and specificity) were estimated at
a range of 99.31-100% for the testing dataset. It must
also be noted that this study utilised slides from a com-
pletely different dataset to the testing set, rather than
utilising images from the same dataset, which could
falsely generate better model performance metrics.
Multi-class classification of tumour structure was also
augmented after the introduction of the attention mod-
ule, increasing the Fl-score to a total of 97.7% (from
93% prior to the inclusion of the attention module). In-
tegrating attention modelling overcame the variability
in tissue patterns by selectively enhancing the weights
of specific structures of interest for the classification of
a tissue specimen. The model’s performance metrics on
an entirely separate dataset, originating from different
patients, is evidence that adding attention modelling
modules to a CNN can help overcome the interpersonal
tissue variability that exists in clinical practice and bur-
dens the human operator.

Another example of attention modelling in patho-
logical images of CRC is the one developed by Yan et al.
[33]. The ultimate goal of their classification model was
to classify cellular nucleic structures from histological
slides as belonging to malignant tissue or not, follow-
ing image decomposition into nucleic and non-nucleic
structures. The proposed architecture followed a “di-

vide-and-attention” structure. The initial model splits
the image data into 3 categories and performs feature
extraction. At the end, the branches are re-fused, using
global average pooling, to obtain a total of 5 feature
vectors. Data from these vectors are funnelled into the
attention learning module which selects the most rep-
resentative tissue features and allows the model to fo-
cus on them. Although the team does not report results
before and after the inclusion of the attention model
layer, the overall reported accuracy for their model was
95.33% with an AUC of 0.94. It must be noted, however,
that both the training and the testing image sets were
derived from the same dataset [34-51].

Discussion

In this systematic review we analysed 41 studies fo-
cusing on the binary (normal, malignant) and multiclass
categorization and grading of digital colorectal tissue
pathology using state-of-the-art CNN classifiers. The re-
ported classification outcomes and measures of effect
differed among studies, while reaching impressive indi-
vidually high numbers with a mean balanced accuracy
of 95.8 +£3.8% (the highest reported being 99.69%) and
mean F1-Score of 89.7 +9.8% (the highest reported be-
ing 99%), with only a few studies also co-reporting sen-
sitivity, specificity, precision, and recall. Of note, the ef-
ficiency of the models increased in accordance with the
years. However, upon closer investigation of the individ-
ual studies, there is a lack of a standardized approach
in reporting the results as well as the heterogeneity in
the training datasets, which makes a direct objective
comparison between the studies impossible. Another
common characteristic of the included studies is an in-
herent weakness in image acquisition. Most datasets
reached their final number of images from far fewer
pathological slides which they rotated or refocused
slightly in order to obtain a different picture. However,
the likeliness between these images can contribute to
better classification performance metrics.

One possible explanation for the inter-model vari-
ability of the tissue segmentation classes could be the
reflection of the inter-observer variability of Western
versus Eastern pathologists. In Western countries the
presence of a cancerous lesion is confirmed by inva-
sion beyond the submucosal tissue (also referred to as
Vienna classification), while in the Eastern model the
diagnosis is based on inner structural and nucleic ab-
normalities of the epithelium (also referred to as Japa-
nese classification). Despite the research for which the
CRC spectrum is encompassed in its entirety, a unified
method has yet to be finalized [51, 52].

A comparison of handcrafted feature-based models
versus automated deep learning models also showed

Gastroenterology Review 2023; 18 (4)
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the superiority of unsupervised training in classifica-
tion models, rather than feature-based classification
[53]. Another point raised by several authors, regard-
ing the comparison of different classification models, is
the quality of the initial annotation by the pathologist,
which can influence solely the malignancy-containing
slides [28, 48]. Furthermore, the direct comparison of
different models and classification architectures is fur-
ther hindered by the variability of the tissue itself. For
instance, higher histological grades of colorectal cancer
have been pointed out as being a challenge for the deep
learning algorithms due to the presence of irregular and
dense structures that are an impediment for the seg-
mentation algorithms [54]. There is a lack of reporting
of histological grades in many of the included studies
and a complete absence of comparison of performance
metrics between tissue grades. Therefore, the introduc-
tion of machine learning-based tissue classification in
true clinical practice first requires the resolution of such
issues.

Furthermore, even though it is evident that the per-
formance of the included CNNs for CRC diagnosis is on
par with the clinical pathologists [52, 55], many of the
studies’ generalization potential was hindered by the
study design and the relatively small and proprietary
nature of training and validation datasets of many indi-
vidual studies. For this reason, it is often recommended
to externally cross-validate using publicly available, ac-
cepted, and large datasets such as the TCGA database,
Glas, LCK25000, etc. Furthermore, estimations of at
least 10,000 WSIs are required to train a CNN model
for histopathology tasks without even accounting for
the variation in each of the WSIs due to the digitaliza-
tion process [34-36, 56-58]. From the studies included
in this review, only 3 were evaluated with databases in
accordance with this estimation, while 8 tested their re-
sults in widely available large datasets. Thus, standard-
ized evaluation of a model’s architecture and reporting
is a necessary step towards its clinical implementation.
A few studies mention an existing discrepancy between
the automated classification results and the expert pa-
thologist’s diagnosis. Scanning only select slides, and
slides that happen to contain no abnormal architecture
of carcinomas, (despite the existence of malignancy in
the tissue in a deeper slide) are some of the dangers
that are already described by authors [55]. As a result,
it should be noted that the macroscopic appearance of
a tissue specimen, the selection of scanned slides, and
the overall distribution and number of processed im-
ages from the slides of a specimen are still issues that
remain to be resolved, and they are quite possibly the
parts where a human operator might be called on to
support a machine learning algorithm.

Gastroenterology Review 2023; 18 (4)

A more unified approach in reporting the results
was performed in the Al models that participated in the
Gland Segmentation in Colon Histology Images (GlaS)
challenge in 2015 and onwards [59]. The GlaS challenge
was conducted by the 18™ International Conference
on Medical Image Computing and Computer-Assisted
Intervention (MICCAI), in which the proposed models
competed with objective measures of effect to achieve
the optimal gland segmentation. The metrics of perfor-
mance consisted of the F1-score, Dice Score (evaluating
similarity of sample A vs. sample B), and Hausdorff dis-
tance (measure for comparing the end result with the
segmentation result) [59].

When looking into possible differences between pre-
trained models and custom neural networks, we found
no differences in the reported numerical outcomes for
accuracy, specificity, and sensitivity of classification. It
must be noted, however, that looking into the model
builds described, pre-trained and CNNs, are largely
based on the same mechanisms and model layers.

A subsection of models used for tissue classification
employed attention learning algorithms. Although these
instances were scarce in the current literature on CRC
pathological classification [20, 33], they provide some in-
sights that could enhance the model outcomes already
predicted by other CNNs. There is, however, some out-
standing criticism regarding attention modelling. One
issue that the experts mention is that attention models
are fitted on top of usually pre-existing CNN backbone ar-
chitectures [60]. Therefore, the question remains to be an-
swered: to what extend do the attention models (and in
turn, their performance) rely on the backbone architecture
on which they are placed? Objective techniques for model
assessment must be created if the quality of “learning” is
to be properly assessed. In addition, recent technologies
such as wireless sensor networks (WSN), the Internet of
things (IoT), and the Internet of surgical things (10ST) con-
tribute significantly to the development of smart health
monitoring systems and applications for early diagnosis
of non-contagious diseases such as cancers [61].

Lastly, it is worth mentioning that the spectrum of
CRC histology and CNNs is ever evolving, and recent ad-
vances include many more areas of interest, other than
structural alterations like tumour microenvironment,
prognosis and survival, nucleic alterations like micro-
satellite instability, specific gene mutation prediction,
and more. The emergence of potent DL techniques that
harness the widely available data can enrich the cancer
diagnosis field with the introduction of new research
fields that could also provide invaluable information for
the diagnostic process and aid the therapeutic plan.

Although most of the included studies are of a high
standard, there are still a few underreported parame-
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ters that still need to be assessed before such innova-
tions are introduced within everyday practice. The vast
majority of existing studies fail to take into account
significant histological findings that constitute onco-
logical parameters, such as histological subtypes, stage
of colorectal cancer, tumour grade, necrotic debris, and
peritumoural necrosis. Additionally, there is a lack of
research endeavours regarding the histological classifi-
cation of harvested lymph nodes, and there is very lit-
tle work on the identification of metastatic carcinomas.
Future work should also include the exploration of cor-
relations between patient factors and the performance
of such models. It is highly likely that patients with ear-
ly-stage tumours (e.g. in situ carcinomas) pose a high-
er classification challenge to DL models, due to more
subtle differences with normal tissue. On the other end
of the spectrum, higher-grade carcinomas and tissue
specimens with extremely distorted architectures are
a hurdle for image segmentation algorithms and fea-
ture extraction models. Future research steps should in-
clude the use of such models in the clinical environment
rather than testing them in pre-determined datasets, as
well as setting up randomized controlled trials for true
comparison with expert pathologists. In the long run,
more work is needed, to determine whether the use
of such methods influences treatment choices, patient
survival, and disease-free survival.

Conclusions

The performance of the currently available CNNDL
models is at least non-inferior to conventional im-
age-pattern recognition from pathologists, exhibiting
impressive accuracy. However, owing to the small-scale
datasets, variability of their training data, and lack of
large-scale external validation, generalization of these
results is not yet possible. In all likeliness we are at least
a few years away from large-scale, systematic inclusion
of Al-assisted pathological reviews of specimens. Ad-
ditionally, we cannot expect the first implementation
of such approaches to fully replace pathologists; Al-as-
sisted screening will aid in the reduction of work hours,
lessening the time-to-diagnosis period in the process.
Few studies tackle the issue of external validation,
further solidifying the need for future ones being com-
pared using the same large datasets and thus paving
the way for their implementation in the evidence-based
healthcare system. In our study we can conclude not
only that the current state-of-the-art algorithms are
non-inferior to pathologists for image analysis and clas-
sification tasks, but also that their generalization po-
tential is still limited due to their inherent uniqueness
in their training and lack of widely accepted external
validation datasets.
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