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Negative regulation of thyroid 
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in the cardiac glycoside‑induced anti‑cancer 
effect
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Abstract 

Cardiac glycosides, known as inhibitors of Na+,K+-ATPase, have anti-cancer effects such as suppression of cancer 
cell proliferation and induction of cancer cell death. Here, we examined the signaling pathway elicited by cardiac 
glycosides in the human hepatocellular carcinoma HepG2 cells and human epidermoid carcinoma KB cells. Three 
kinds of cardiac glycosides (ouabain, oleandrin, and digoxin) inhibited the cancer cell proliferation and decreased 
the expression level of thyroid adenoma-associated protein (THADA). Interestingly, the knockdown of THADA inhib-
ited cancer cell proliferation, and the proliferation was significantly rescued by re-expression of THADA in the THADA-
knockdown cells. In addition, the THADA-knockdown markedly decreased the expression level of L-type amino 
acid transporter LAT1. Cardiac glycosides also reduced the LAT1 expression. The LAT1 inhibitor, JPH203, significantly 
weakened the cancer cell proliferation. These results suggest that the binding of cardiac glycosides to Na+,K+-ATPase 
negatively regulates the THADA-LAT1 pathway, exerting the anti-proliferative effect in cancer cells.

Keywords  Thyroid adenoma-associated protein, L-type amino acid transporter 1, Na+,K+-ATPase, Cardiac glycoside, 
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Background
The gene of Thyroid adenoma associated (THADA) was 
identified as a target gene affected by chromosome 2p21 
translocations in thyroid adenomas, and encodes the 
hypothetical 1954 amino acids (220 kDa) [1]. Thereafter, 
THADA was found to be associated with type 2 diabe-
tes mellitus (T2DM) [2] and polycystic ovary syndrome 
(PCOS) [3].

Recently, several functions of the THADA protein have 
been reported. Moraru et al. [4] reported that THADA-
knockout in flies (Drosophila melanogaster) led to obe-
sity due to hyperphagia, reduced thermogenesis, and 
increased lipid storage. Interestingly, the THADA func-
tion requires interaction between THADA and the sarco/
ER Ca2+-ATPase (SERCA) [4]. Zhang et al. [5] reported 
that THADA is strongly activated in human and mouse 
islets of T2DM. In the mechanism of impairment of insu-
lin secretion in β-cells, activation of THADA decreases 
ER Ca2+ storage through SERCA2 and ryanodine recep-
tor 2. In fact, THADA inhibition in mice protects against 
T2DM [5]. These findings suggest that function of 
THADA is associated with Ca2+-ATPase which belongs 
to P2-type ATPase family [6].
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On the other hand, THADA may be involved in cancer 
pathogenesis. It has been reported that polymorphism 
of THADA may be associated with prostate cancer risk 
[7]. THADA is highly expressed in human colorectal can-
cer, and functions as an indispensable regulator of pro-
grammed death-ligand 1 (PD-L1) maturation [8].

So far, cardiac glycosides, such as ouabain, oleandrin, 
and digoxin, have been reported to suppress cell prolif-
eration and induce cell death in cancer cells [9, 10]. Thus, 
Na+,K+-ATPase, a target of cardiac glycosides, is con-
sidered as a potent molecule with clinical benefit in can-
cer treatment [11]. Na+,K+-ATPase belongs to P2-type 
ATPase family as well as Ca2+-ATPase [6]. In the pre-
sent study, we examined whether THADA contributes 
to the cardiac glycoside-induced anti-cancer mechanism 
and found that THADA is negatively regulated in the 
mechanism.

Methods
Chemicals
Ouabain, oleandrin, and digoxin were obtained from 
Sigma-Aldrich. JPH203 was from Selleckchem. Rab-
bit polyclonal anti-THADA antibody was from Bio-
world Technology and Atlas Antibodies. Mouse 
monoclonal anti-4F2hc (Clone: E-5), mouse monoclonal 
anti-Na+,K+-ATPase α1-isoform (Clone: C464.6), and 
mouse monoclonal anti-Na+,K+-ATPase α3-isoform 
(Clone: XVIF9-G10) antibodies were from Santa Cruz 
Biotechnology. Mouse monoclonal anti-β-actin antibody 
(Clone: 8H10D10) was from Cell Signaling Technology. 
Mouse monoclonal anti-LAT1 antibody was from Trans 
Genic. Alexa Fluor 488- and 568-conjugated IgG anti-
bodies were from Abcam. Lipofectamine 3000 was from 
Thermo Fisher Scientific. Screen Fect reagent was from 
Fujifilm Wako Pure Chemical. DAPI was from Dojindo 
Laboratories. THADA and negative control siRNA pools 
were from Dharmacon. All other reagents were of the 
molecular biological grade or the highest grade of purity 
available.

Microarray gene expression analysis and RT‑PCR
Microarray gene expression analysis was performed 
using a GeneChip system with a Human Genome U133-
plus 2.0 array, which was spotted with 54,675 probe 
sets (Affymetrix, Inc.) according to the manufacturer’s 
instructions. In brief, 500 ng of total RNA prepared from 
HepG2 cells was used to synthesize cRNA with a Gene-
Chip 3′ IVT Express kit (Affymetrix, Inc.). Fragmentated 
biotin-labeled cRNA was hybridized to the array at 45 ℃ 
for 16 h. After the staining with streptavidin–phycoeryth-
rin, the array was scanned using a probe array scanner. 
The obtained hybridization intensity data were analyzed 
using GeneSpring GX software (Agilent Technologies, 

Inc.) to extract the significant genes. In RT-PCR using 
total RNA of HepG2 cells, the following thermal condi-
tions were used: a predenature of 94 °C for 30 s and the 
next 30 cycles of 94 °C for 30 s, 60 °C for 30 s and 68 °C 
for 19  s or 11  s. The designed primer pairs were as fol-
lows: for THADA: 5′-gaccatttgccatcagga-3′ and 5′-ggtg-
catagcctcaggtaga-3′ and for glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH): 5′-aacctgccaaatatgatgac-3′ 
and 5′-ataccaggaaatgagcttga-3′.

Quantitative RT‑PCR
Total RNA was extracted from the KB cells treated with 
or without ouabain (100  nM for 48  h) and transcribed 
into cDNA. Quantitative RT-PCR were conducted with 
Luna Universal qPCR Master Mix (New England Bio-
labs) in a real-time PCR system (Mx3000P: Agilent 
Technologies). The following thermal conditions were 
used: an initial denaturation of 95  °C for 60  s and the 
next 50 cycles of 95  °C for 15  s and 60  °C for 30  s. The 
designed primer pairs were as follows: for SLC2A13: 
5′-cattgactcctcctgtgttcca-3′ and 5′-tcctgtacttcttgcc-
caaagg-3′, for SLC3A2: 5′-tctggttctactggggagcata-3′ and 
5′-tctcatccccgtagctgaaaac-3′, for SLC7A5: 5′-cattataca-
gcggcctctttgc-3′ and 5′-caggtgatagttcccgaagtcc-3′, for 
SLC7A11: 5′-cttcatctctcctaagggcgtg-3′ and 5′-tccaccca-
gactcgtacaaaag-3′, for SLC12A7: 5′-ttttctgacgtacatctc-
cccg-3′ and 5′-cttgttgacatacttgacgccc-3′, for SLC39A9: 
5′-ctggctatgttggtgggatgt-3′ and 5′-cttgcttggtggt-
gttttccc-3′ and for glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH): 5′-aacctgccaaatatgatgac-3′ and 
5′-ataccaggaaatgagcttga-3′.

Cell culture
Human hepatocellular carcinoma HepG2 cells (RIKEN 
Cell Bank; RCB1648) and human epidermoid carci-
noma KB cells (kindly gifted from Prof. Yasunobu Okada, 
National Institute for Physiological Sciences) were main-
tained in Minimum Essential Medium (MEM; Fujifilm 
Wako pure chemical) supplemented with 100 units/ml 
penicillin, 100  µg/ml streptomycin (Fujifilm Wako Pure 
Chemical), and 10% fetal bovine serum (FBS; Nichirei 
biosciences).

Transfection of siRNA
KB cells (2 × 104 cells) and HepG2 cells (1.5 × 105 cells) 
were transfected with THADA siRNA (siTHADA) or 
negative control siRNAs (siNC) using Lipofectamine 
3000 or Screen Fect reagent, and the medium was 
changed 5  h after transfection. The experiments were 
performed 48  h after the transfection unless otherwise 
described.
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Plasmid construction
A full-length cDNA encoding human THADA was 
cloned from the human colorectal cancer HT-29 cells. 
The fragment was inserted into the pcDNA4/His C vec-
tor by using BamHI and ApaI restriction sites. The cDNA 
sequence was verified using Big Dye Terminator V3.1 
Cycle Sequencing Kit (Thermo Fisher Scientific) and an 
ABI PRISM 3500 sequencer (Applied Biosystems).

Cell proliferation assay
To check the effects of chemicals, 2 × 104 cells (KB cells) 
or 2 × 105 cells (HepG2 cells) were seeded in each well 
of a 24-well culture plate. After seeding (24 h later), cells 
were treated with cardiac glycoside (ouabain, oleandrin 
or digitoxin) or JPH203 for 24 h, and the cell numbers in 
each well were counted. To check the effects of siRNAs, 
KB cells (2 × 104 cells) were transfected with siNC or 
siTHADA, and the medium was changed 5 h after trans-
fection. Then, the cell numbers in each well were counted 
24 h, 48 h, and 72 h after transfection. When indicated, 
the cells transfected with siTHADA for 24  h were fur-
ther treated with human THADA-expressing vector 
(hTHADA) or empty vector (mock) using Lipofectamine 
3000, and the medium was changed 5 h after treatment.

Preparation of the lysate samples from the cells
To prepare the lysate samples, the cells cultured in 
12-well or 24-well plate were washed once with ice-
cold phosphate buffered saline (PBS) and treated with 
lysis buffer (150 mM NaCl, 50 mM Tris–HCl (pH 7.4), 
1 mM EDTA, and 1% Triton X-100) on ice for 20 min. 
Then, the cells were centrifuged at 16,000×g for 20 min 
at 4  °C, and the supernatant was collected. The pro-
tein concentration of the samples was quantified by the 
absorbance at 570 nm using BCA Protein Assay Kit and 
bovine serum albumin (BSA) as a standard.

Western blotting
Western blotting was carried out as described previously 
[12]. As primary antibodies, anti-THADA (1:5000 dilu-
tion), anti-4F2hc (1:2500 dilution), anti-β-actin (1:5000 
dilution), anti-Na+,K+-ATPase α1-isoform (1:2500 dilu-
tion), and anti-LAT1 (1:1000 dilution) antibodies were 
used. As secondary antibodies, horseradish peroxidase-
conjugated anti-rabbit and anti-mouse IgG antibodies 
were used (1:5000 dilution). Chemiluminescence was 
observed using Western Lighting ECL Pro and detection 
was performed by LAS-4000 plus system (Fujifilm).

Immunocytochemistry
KB cells cultured on coverslips were fixed in ice-
cold methanol for 5  min and permeabilized with PBS 

containing 0.1  mM CaCl2, 1  mM MgCl2, 0.3% Triton 
X-100 and 0.1% BSA for 15 min at room temperature. 
For blocking, the goat serum dilution buffer (GSDB; 
PBS supplemented with 300 mM NaCl, 17% goat serum 
and 0.3% Triton X-100) was used. The cells were treated 
with the anti-THADA (1:100 dilution), anti-β-actin 
(1:50 dilution), anti-Na+,K+-ATPase α1-isoform (1:100 
dilution) or anti-Na+,K+-ATPase α3-isoform (1:100 
dilution) antibody overnight at 4  °C and then with 
Alexa Fluor 488-conjugated anti-rabbit IgG and Alexa 
Fluor 546-conjugated anti-mouse IgG antibodies (1:100 
dilution) for 60  min at room temperature. DNA was 
visualized using DAPI (1:1000 dilution). Immunofluo-
rescence images were visualized by using a Zeiss LSM 
780 laser scanning confocal microscope.

Statistical analysis
Results are shown as means ± standard error of the mean. 
Differences between groups were analyzed by one way 
analysis of variance, and correction for multiple com-
parisons was made by using Tukey’s multiple comparison 
test. Comparison between the two groups was made by 
using Student’s t test. Statistically significant differences 
were assumed at P < 0.05.

Results
Inhibition of the THADA expression by cardiac glycosides
In the present study, three kinds of cardiac glycosides 
(ouabain, oleandrin, and digoxin) were used. All of them 
at 300  nM significantly inhibited the cell proliferation 
in HepG2 and KB cells (Fig. 1). To clarify the molecules 
involved in the cardiac glycosides-elicited pathway, 
we performed microarray analysis using HepG2 cells 
treated with or without ouabain (1 µM). In the analysis, 
the expression of THADA was found to be markedly 
decreased in the ouabain-treated cells (Additional file 1: 
Fig. S1A). In fact, ouabain (1 µM) decreased the expres-
sion of THADA mRNA in the cells (Additional file 1: Fig. 
S1B). In HepG2 and KB cells, ouabain, oleandrin, and 
digoxin (30 nM–1 µM) decreased the expression level of 
THADA protein in a concentration-dependent manner 
(Fig. 2).

Inhibition of cancer cell proliferation 
by THADA‑knockdown
To examine properties of THADA protein in the can-
cer cells, THADA was knocked down by using siRNA 
in HepG2 and KB cells. The cells were transfected with 
THADA siRNA (siTHADA) or negative control siRNA 
(siNC). The transfection efficiency into these cells was 
8.7 ± 2.3% (HepG2; n = 5) and 83.7 ± 4.3% (KB; n = 5). 
Actually, the expression level of THADA protein was 
markedly decreased by siTHADA in KB cells (Fig. 3A, B) 
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but not in HepG2 cells (data not shown). Thus, we used 
KB cells to assess the pathophysiological properties of 
THADA in the following experiments.

In the KB cells, the cell proliferation was inhibited by 
the treatment of siTHADA (Fig.  3C). After the knock-
down of THADA, we tried to rescue the THADA expres-
sion in the KB cells (Fig.  4A). The expression level of 
THADA in the rescued cells was comparable to that in 
the siNC-transfected cells (Fig.  4A). Interestingly, the 

cell proliferation was significantly stimulated by re-
expression of THADA in the THADA-knockdown cells 
(Fig. 4B). These results suggest that negative regulation of 
THADA expression is involved in the cardiac glycosides-
induced anti-cancer effect.

Down‑regulation of SLC7A5 (LAT1) and SLC3A2 (4F2hc) 
in the THADA‑knockdown cells
To find the genes affected by the THADA-knockdown, 
microarray analysis was performed. We used KB cells 
transfected with siTHADA or siNC. Here, we focused 
on the change in expression of the solute carrier (SLC) 
transporters involved in nutrient uptake in cancer cells 
[13, 14], and found that the expression levels of SLC7A5 
(LAT1; L-type amino acid transporter 1) and SLC3A2 
(4F2hc; 4F2 heavy chain) were markedly decreased by 
the THADA-knockdown (Additional file  1: Fig. S2). 
LAT1, a Na+-independent amino acid transporter [15], is 
highly expressed in many types of cancer cells and associ-
ated with cancer cell proliferation [16]. LAT1 forms the 
hetero dimer with 4F2hc, an essential protein for func-
tional expression of LAT1 [15]. In Western blotting, 
expression of both LAT1 and 4F2hc proteins was signifi-
cantly decreased by the THADA-knockdown in KB cells 
(Fig. 5).

Negative regulation of THADA‑LAT1 pathway in the cardiac 
glycosides‑induced inhibition of cancer cell proliferation
Next, we examined the effects of cardiac glycosides on 
the expression of LAT1 and 4F2hc in KB cells. Similar to 
the THADA-knockdown cells (Additional file 1: Fig. S2), 
LAT1 and 4F2hc mRNAs were markedly decreased in 
the ouabain (100 nM)-treated KB cells, and no significant 
change in the mRNA expression of SLC2A13, SLC12A7, 
and SLC39A9 was observed (Additional file  1: Fig. S3). 
It is noted that SLC7A11 mRNA was slightly but signifi-
cantly decreased by ouabain (Additional file 1: Fig. S3).

Three kinds of cardiac glycosides (ouabain, oleandrin, 
and digoxin) inhibited the expression of THADA protein 
in a concentration-dependent manner (30 nM–3 µM) in 
KB cells (Fig.  6). These compounds also decreased the 
protein expression levels of LAT1 and 4F2hc in a con-
centration-dependent manner (30  nM–3  µM) (Fig.  6). 
JPH203 (KYT-0353), a selective inhibitor of LAT1 [17], 
significantly inhibited cell proliferation of KB cells 
(Additional file  1: Fig. S4). These results suggest that 
THADA-LAT1 pathway is associated with the cardiac 
glycosides-induced inhibition of cancer cell proliferation.

Colocalization of THADA with intracellular Na+,K+‑ATPase 
α3‑isoform
In KB cells, Na+,K+-ATPase α1-isoform (α1NaK) was 
expressed in the plasma membrane (Additional file  1: 

Fig. 1  Inhibition of cancer cell proliferation by cardiac glycosides. 
HepG2 cells (A) and KB cells (B) were treated with 300 nM ouabain, 
oleandrin, or digoxin for 24 h. The cell number was counted 
before (0 h) and after (24 h) treatments of cardiac glycosides. As 
a control, the cells were cultured in the absence of cardiac glycosides 
for 24 h (cont). n = 3–6. **P < 0.01 versus control
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Fig. 2  Inhibition of expression of THADA protein by cardiac glycosides. HepG2 cells (A) and KB cells (B) were treated with and without 30–1000 nM 
ouabain (left), oleandrin (middle) or digoxin (right) for 24 h. As a control, the cells were cultured in the absence of cardiac glycosides for 24 h 
(cont). Then, the lysate samples (15 μg/lane) were prepared, and Western blotting was performed. Typical images of the blotting with anti-THADA 
and anti-β-actin antibodies were shown in upper panels. Expression level of THADA (190 kDa) was normalized by corresponding β-actin expression 
(45 kDa), and the quantitative data were shown in lower panels. n = 4–6. *P < 0.05 and **P < 0.01 versus control (cont)
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Fig. S5A), while Na+,K+-ATPase α3-isoform (α3NaK) 
was in the cytoplasm (Additional file  1: Fig. S5B), as 
well as the case in human colorectal cancer HT-29 cells, 
gastric cancer MKN45 cells, and hepatocellular car-
cinoma HepG2 cells [18]. Interestingly, THADA was 
partially colocalized with α3NaK but not α1NaK in KB 
cells (Fig. S5C).

Fig. 3  Inhibition of cancer cell proliferation by THADA-knockdown. 
A Expression of THADA protein (190 kDa) in KB cells treated 
with THADA siRNA (siTHADA) or negative control siRNA (siNC) 
for 48 h. Western blotting was performed by using the lysate samples 
(15 μg/lane) and anti-THADA antibody. Typical image of the blotting 
was shown. B Immunocytochemistry of THADA in KB cells treated 
with siTHADA or siNC or 48 h. Localization of THADA (green) 
and β-actin (red) was shown. DAPI was used for staining nucleus 
(blue). Scale bars, 10 μm. C KB cells were treated with siTHADA 
or siNC. The siTHADA- or siNC-transfected cells were seeded (2 × 104 
cells; 0 h). Then, the cell number was couted 24, 48, and 72 h 
after the treatment. n = 9. **P < 0.01 versus siNC

Fig. 4  Re-expression of THADA in the THADA-knockdown cells. 
A, B The KB cells transfected the THADA siRNA (siTHADA) for 24 h 
were further treated with human THADA-expressing vector 
(hTHADA) or empty vector (mock), and the medium was changed 
5 h after treatment. In A, the cells were subsequently cultured 
for 24 h, and the lysate samples were prepared. Western blotting 
of the samples (7.5 μg/lane) was performed with anti-THADA 
and anti-β-actin antibodies. As a control, the lysate sample (7.5 μg/
lane) from KB cells treated with negative control siRNA (siNC) 
for 48 h was used. Typical images of the blotting were shown. In B, 
the siTHADA-transfected cells were seeded (2 × 104 cells; knockdown). 
Then, the cell numbers of hTHADA- or mock-transfected cells were 
counted 0 h and 24 h after the subsequent culture. n = 8. **P < 0.01 
versus mock
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Discussion
Cardiac glycosides, such as digoxin and digitoxin, have 
been used for treating congestive heart failure and cardiac 
arrhythmia by selective inhibition of Na+,K+-ATPase. On 
the other hand, many reports suggest that cardiac gly-
cosides may be potential chemicals for cancer, because 
they inhibit cell proliferation through multiple pathways, 
including activation of Src/MAPK signaling, induction 
of intracellular Ca2+ signaling, and inhibition of PI3K/
AKT/mTOR, HIF-1, and Wnt/β-catenin signaling [19–
21]. In this study, we revealed that downregulation of the 
THADA-LAT1 pathway is involved in the cardiac glyco-
side-induced anti-cancer effect. Three different inhibitors 
of Na+,K+-ATPase (cardiac glycosides such as ouabain, 
oleandrin, and digoxin) inhibited the proliferation of 
human cancer cells (KB and HepG2 cells), and mark-
edly decreased the expression levels of THADA, LAT1, 
and 4F2hc in the cells. It has been reported that LAT1 is 
specifically expressed in the plasma membrane of cancer 
cells and contributes to massive uptake of amino acids 
[16]. Here, a selective inhibitor of LAT1 (JPH203) inhib-
ited the cancer cell proliferation. Therefore, a decrease in 

the amino acid uptake by the THADA-mediated nega-
tive regulation of LAT1 is at least partially involved in the 
cardiac glycoside-induced effects. In addition, cystine/
glutamate antiporter xCT (SLC7A11) may be involved 
in this mechanism, because 4F2hc regulates the stabil-
ity and transport activity of it in cancer cells [22]. In fact, 
the xCT mRNA was decreased in the ouabain-treated KB 
cells (Additional file 1: Fig. S3). Thus, cystine uptake into 
cancer cells via xCT may be impaired in the cancer cells 
treated with cardiac glycosides.

So far, it has been reported that THADA is colocal-
ized with ER Ca2+-ATPase (SERCA2), which belongs to 
P2-type ATPase family [6], in pancreatic β-cells, and that 
the THADA-SERCA2 association contributes to impair-
ment of insulin secretion [5]. In the present study, we 
found colocalization of THADA with Na+,K+-ATPase 
α3-isoform (α3NaK), which is also involved in P2-type 
ATPase family [6]. In various types of human can-
cer cells, α3NaK is found to be aberrantly expressed in 
intracellular vesicles in which Rab10, a small GTPase, 
is localized [18]. Recently, we found that cardiac glyco-
sides (ouabain, oleandrin, and digoxin) stimulate glucose 
transporter GLUT1 endocytosis in HepG2 and KB cells 
and inhibit glycolysis of the cells by targeting the intra-
cellular α3NaK [21]. In the cells, the [3H]-ouabain uptake 
was increased in a time- and temperature-dependent 
manner and reached a maximum at 10  min [18, 21]. 
Interestingly, a low concentration of ouabain (0.2  μM) 
significantly inhibited the enzyme activity of α3NaK but 
not α1NaK in the cancer cells [21]. Here, we found that 
significant effects of ouabain on the expression levels of 
THADA and LAT1 were observed at around 0.1  μM. 
These results suggest that cardiac glycosides act on intra-
cellular α3NaK that may be functionally associated with 
THADA. In future studies, it is necessary to clarify the 
mechanism of action of cardiac glycosides by using the 
THADA-, LAT1-, or 4F2hc-overexpressing cancer cells.

Li et  al. [8] reported that THADA has a critical role 
in Golgi residency of programmed death-ligand 1 (PD-
L1) and upregulates the expression of PD-L1 in human 
colorectal cancer cells. In this mechanism, THADA is 
associated with PD-L1 in the Sec24A-dependent coat 
protein complex II (COPII) vesicles. As the upregulation 
of PD-L1 in cancer cells inhibits T cell-mediated cytotox-
icity, THADA is suggested to be a promising target for 
overcoming PD-L1-dependent immune evasion [8]. Our 
results of cardiac glycosides-induced downregulation of 
THADA may be effective in decreasing the THADA-PD-
L1 interaction in cancer cells.

Epidemiological data showed that patients who have 
received digitalis therapy are more protected from some 
types of malignancies such as breast, lymphoma/leu-
kemia, and prostate/urinary cancers [23–26]. Menger 
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et  al. [27] reported that cardiac glycosides significantly 
enhance overall survival in cancer patients by using 
a text-based research algorithm to identify all can-
cer patients who received cardiac glycosides during 

conventional cancer therapies (between 1981 and 2009). 
Our present findings may explain one of the mechanisms 
of cardiac glycoside-induced anti-cancer effects.
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Conclusions
In the present study, we found that negative regulation 
of the expression of THADA and LAT1 is related to the 
anti-proliferative mechanisms induced by cardiac glyco-
sides. We suggest that binding of cardiac glycosides to 
intracellular Na+,K+-ATPase α3-isoform negatively regu-
lates the THADA-LAT1 pathway and subsequent cancer 
cell proliferation. This study provides the basis for devel-
oping the cardiac glycoside-relating drugs to inhibit the 
THADA expression for treatment of cancers with clinical 
benefit.
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